JPS61293544A - Grain transfer apparatus - Google Patents
Grain transfer apparatusInfo
- Publication number
- JPS61293544A JPS61293544A JP13597385A JP13597385A JPS61293544A JP S61293544 A JPS61293544 A JP S61293544A JP 13597385 A JP13597385 A JP 13597385A JP 13597385 A JP13597385 A JP 13597385A JP S61293544 A JPS61293544 A JP S61293544A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- particle
- particles
- reactor
- transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005243 fluidization Methods 0.000 claims abstract description 17
- 230000007246 mechanism Effects 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims description 91
- 238000000605 extraction Methods 0.000 claims description 18
- 239000000284 extract Substances 0.000 claims description 2
- 238000007664 blowing Methods 0.000 abstract description 2
- 230000005484 gravity Effects 0.000 abstract description 2
- 230000001174 ascending effect Effects 0.000 abstract 2
- 238000005192 partition Methods 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009760 functional impairment Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G53/00—Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
- B65G53/04—Conveying materials in bulk pneumatically through pipes or tubes; Air slides
- B65G53/16—Gas pressure systems operating with fluidisation of the materials
- B65G53/18—Gas pressure systems operating with fluidisation of the materials through a porous wall
- B65G53/22—Gas pressure systems operating with fluidisation of the materials through a porous wall the systems comprising a reservoir, e.g. a bunker
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、石炭ガス化炉、流動層触媒装置等の流動層反
応器における粒子移送装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a particle transfer device in a fluidized bed reactor such as a coal gasifier or a fluidized bed catalyst device.
(従来の技術) 流動層反応器の前記粒子移送装置の従来例は。(Conventional technology) A conventional example of the particle transfer device for a fluidized bed reactor is as follows.
第2図に示すように反応器(1)には、粒子(、Zlの
供給管(1α)、流動化ガス(A)の供給管(1b)、
発生ガス(O’)の取出し管(iff)、分散板(ld
)および流動層中の粒子(α)の粒子抜出し管(4)等
が設けられ、分散板(ld)上の粒子(a)層中に流動
化ガス(b)が下方から供給されて流動層(α、b)K
形成されるとともに%流動化ガス(A)は流動層(α、
A)およびその上部に形成されたフリーポー)’ (C
)で反応または触媒として機能し、発生ガス(C′)と
して取出し管(IC)から系外へ排出され、また、前記
粒子(α)は、供給管(1α)から流動層(cL、 、
6)内に供給され反応または触媒として機能する構造に
なっている。As shown in FIG. 2, the reactor (1) includes a supply pipe (1α) for particles (, Zl), a supply pipe (1b) for fluidizing gas (A),
Output pipe (iff) for generated gas (O'), dispersion plate (ld)
) and a particle extraction pipe (4) for the particles (α) in the fluidized bed, etc., and a fluidizing gas (b) is supplied from below into the particle (a) layer on the distribution plate (ld) to form the fluidized bed. (α,b)K
As the fluidized gas (A) is formed, the fluidized bed (α,
A) and the free port formed on top of it)' (C
), and is discharged from the extraction pipe (IC) as a generated gas (C') to the outside of the system, and the particles (α) are transferred from the supply pipe (1α) to the fluidized bed (cL, ,
6) It has a structure in which it is supplied into the reactor and functions as a reaction or catalyst.
また1分散板(1d)から反応器(1)の下部に延出さ
れた粒子抜出し管(4)には、ロータリーパルプ(5)
、第1ホツパー(6)、第1仕切ジノ9ルプ(力、第1
気密パルプ(8)、第2ホツ/ぞ−(9)、第2仕切シ
バルズ(LOlおよび第2気密パルプαD等が順次に連
設され、流動層(α、b)内の粒子(α)を抜き出して
移送する装置になっており、流動層(α、b)内の粒子
(α)は1粒子抜出し管(4)を通りロータリーパルプ
(5)で抜出し量が制御され、第1ホツ、((61、第
1仕切ジノζルプ(力、第1気密パルプ(8)を経て第
2ホツパー(9)内に貯えられて、第2ホツパー(9)
内の粒子が満杯になるとその粒子(α)は、第1仕切F
) /eルプ(7)、続いて第1気密ノミルプ(8)を
閉じ、第2ホツノ(−(9)内の圧力が系外圧力に釣合
うように調整したのち、第2気密パルプαυと第2仕切
シバルプ<11を開き抜出し粒子(α′)として系外へ
排出する。前記第2ホツノぞ−(9)内の粒子抜出し中
に、流動層(α、b)から抜き出される粒子は第1ホツ
パー(6)内に貯えられる。In addition, a particle extraction pipe (4) extending from the first dispersion plate (1d) to the lower part of the reactor (1) is equipped with a rotary pulp (5).
, 1st hopper (6), 1st partition Zino 9 loop (power, 1st
The airtight pulp (8), the second hole/hole (9), the second partition Sibals (LOl, the second airtight pulp αD, etc.) are successively installed, and the particles (α) in the fluidized bed (α, b) are The particle (α) in the fluidized bed (α, b) passes through a single particle extraction pipe (4), and the amount of extraction is controlled by a rotary pulp (5). (61, the first partition pulp (power) is stored in the second hopper (9) through the first airtight pulp (8), and the second hopper (9)
When the particles inside are full, the particles (α) move to the first partition F
)/e pulp (7), followed by the first airtight pulp (8), and after adjusting the pressure in the second pulp (-(9)) to balance the pressure outside the system, the second airtight pulp αυ and The second partition Sivalp<11 is opened to discharge the extracted particles (α') out of the system.During the extraction of particles in the second hole (9), the particles extracted from the fluidized bed (α, b) are It is stored in the first hopper (6).
前記第2ホツノ−”−(91内の粒子の系外抜き出しが
終ると、第2仕切シバルプ0I、続いて第2気密パルプ
aυを閉じ、第1ホツノ(−(6)と第2ホツノ々−(
9)内の圧力を第2ホツパー(9)内の圧力で調整、釣
合いにしたのち、第1気密パルプ(8)、続いて第1仕
切りノZルプ(7)を開き、第1ホツパー(6)内の粒
子を第2ホツパー(9)内に導入し、前記一連の操作を
繰返すことによシ、流動層(α、b)内の粒子(α)を
連続的に抜出し粒子(α′)として系外に抜き出し移送
する構造になっている。When the particles in the second hot spring (91) have been extracted from the system, the second partition SIBALPU 0I, and then the second airtight pulp aυ are closed, and the first hot water (-(6) and the second hot water) are closed. (
After adjusting and balancing the pressure in the second hopper (9) with the pressure in the second hopper (9), open the first airtight pulp (8) and then the first partition nozzle (7), and open the first hopper (6). ) are introduced into the second hopper (9), and by repeating the above series of operations, particles (α) in the fluidized bed (α, b) are continuously extracted and particles (α′) are introduced into the second hopper (9). The structure is such that it can be extracted and transported outside the system.
(従来技術の問題点)
従来の前記粒子移送装置は、流動層の温度が常温よシも
高い場合あるいは低い場合に、流動層中の粒子が持つ熱
エネルギーを回収しないで系外に抜き出すため、熱効率
のロスが大きく、また、抜出し粒子(α′)と第1気密
パルプおよび第2気密パルプとの温度差が大きい場合に
、前記両気密パルプが前記粒子の熱で変形され、シール
部への粒子の噛み込みが生じその腐触が促進されるなど
によ)シール性を失い1反応器内ガスの系外への漏出、
また−は系外ガスの反応器内への侵入などが起り、装置
の運転停止という事態を惹起するなどの問題点がある。(Problems with the Prior Art) In the conventional particle transfer device, when the temperature of the fluidized bed is higher or lower than room temperature, the thermal energy of the particles in the fluidized bed is extracted out of the system without being recovered. When the loss of thermal efficiency is large and the temperature difference between the extracted particles (α') and the first airtight pulp and the second airtight pulp is large, both the airtight pulps are deformed by the heat of the particles, causing damage to the sealing part. 1. Gas inside the reactor leaks out of the system due to loss of sealing properties due to particle entrapment and accelerated corrosion, etc.)
In addition, there are other problems such as the intrusion of gas from outside the system into the reactor, which may cause the equipment to stop operating.
(発明の目的、問題点の解決手段)
本発明は、前記のような問題点に対処するために開発さ
れたものであって、内部に流動層とフリーボードを形成
した反応器から前記流動層の粒子を抜き出して移送する
反応器の粒子移送装置において、前記反応器の前記フリ
ーボード部から側方下向きに斜設されホッパーに連結さ
れたガス循環兼粒子移送用の傾斜配管と、前記反応器下
部の粒子抜出し管に連設され前記傾斜配管における前記
流動層表面よシも下側の部位に連結されガスによる粒子
の流動化機構が付設された抜出し粒子の流動化移送配管
と、該流動化移送配管に配設された熱交換機構とを具備
した構成に特徴を有し、反応器の粒子抜出し管とホッパ
ーとの間において、抜出し粒子をガスで流動化して移動
し、同移送中に粒子の顕熱を回収するとともに冷却する
ことにより、熱効率を高めるとともに粒子の抜出し移送
機器の信頼性、耐久性を高め粒子抜出し移送性能を著し
く向上させて前記のような問題点を解消した粒子移送装
置を提供するにある。(Objective of the Invention, Means for Solving the Problems) The present invention has been developed to solve the above-mentioned problems. A particle transfer device for a reactor that extracts and transfers particles from the reactor, comprising: an inclined piping for gas circulation and particle transfer, which is installed diagonally downward from the freeboard portion of the reactor and is connected to a hopper; A fluidization transfer pipe for the extracted particles, which is connected to the lower particle extraction pipe, is connected to a portion of the inclined pipe below the surface of the fluidized bed, and is equipped with a mechanism for fluidizing the particles using gas; It is characterized by a structure equipped with a heat exchange mechanism installed in the transfer pipe, and the extracted particles are fluidized with gas and transferred between the particle extraction pipe of the reactor and the hopper, and the particles are transferred during the transfer. This particle transfer device solves the above-mentioned problems by recovering and cooling the sensible heat of the particles, increasing the thermal efficiency, increasing the reliability and durability of the particle extraction and transfer device, and significantly improving the particle extraction and transfer performance. is to provide.
(実施例)
第1図に本発明の一実施例を示しておシ、図中(1)は
、−粒子(α)の供給管(1α)、流動化ガス(b)の
供給管(1b)、発生ガス(α′)の取出し管(1c)
、分散管(1d)および粒子抜出し管(4)等からなる
反応器であって、反応器(1)内の分散板(1d)上に
は、流動層(α、A)とフリーボード(c)が形成され
る構成になっておシ、また1図中(6)は第1ホツパー
、(力は第1仕切シバルプ、(8)は第1気密パルプ、
(9)は第2ホツパー、α@は第2仕切シバルプ、aυ
は第2気密パルプである。(Example) Fig. 1 shows an example of the present invention. ), extraction pipe (1c) for generated gas (α')
, a dispersion tube (1d), a particle extraction tube (4), etc., and a fluidized bed (α, A) and a free board (c) are placed on the dispersion plate (1d) in the reactor (1). ) is formed, and (6) in Figure 1 is the first hopper, (the force is the first partition sieve, (8) is the first airtight pulp,
(9) is the second hopper, α@ is the second partition, aυ
is the second hermetic pulp.
さらに、前記反応器(1)の前記フリーボーy<c)部
分から側方下向きにガス循環兼粒子移送用の傾斜配管(
20a 、 2OA)を連設し、該傾斜配管(20α、
20A)の下端部を前記第1ホツパー(6)K連結する
とともに、反応器(1)下部に設゛けられた前記粒子抜
出し管(4)の下部に斜設された粒子下降管(21α)
と縦設された粒子上昇管(21j)を連設し、該粒子上
昇管(21A)の上端部を、前記傾斜配管(20α、2
0b)における前記流動層(α、A)表面よシも下側の
部位に図示のように連結するとともK、前記粒子下降管
(21α)と粒子上昇管(21A)に、流動比容送用ガ
ス(b′)を吹き込む複数のノズk (224)C22
b)C220)を配設し、さらに、熱交換用流体(d)
の給、排管(24αX24b)を有するジャケット(ハ
)が付設されて、前記ノズル(22αX22A)(22
c)は、粒子下降管(215りと粒子上昇管(21A)
内の抜出し粒子(αつ内に流動化移送用ガス(b′)を
供給して流動化する流動化機構(22α、 22b 、
22C)に構成され、前記給、排管(24α)(24
b)を有するジャケット(ハ)は、熱交換用流体(d)
によって前記抜出し粒子(α′)との熱交換機構(23
,24α、24b)に構成され、前記粒子下降管(21
α)と粒子上昇管(21A)は、流動化機構(22α、
22b。Furthermore, an inclined pipe for gas circulation and particle transfer (
20a, 2OA) are installed in series, and the inclined piping (20α,
A particle downcomer pipe (21α) is connected to the first hopper (6) K at its lower end, and is obliquely installed at the bottom of the particle extraction pipe (4) provided at the bottom of the reactor (1).
A vertically installed particle rising pipe (21j) is connected, and the upper end of the particle rising pipe (21A) is connected to the inclined pipe (20α, 2
The surface of the fluidized bed (α, A) in 0b) is also connected to the lower part as shown in the figure. Multiple nozzles k (224) C22 that blow gas (b')
b) C220) and further a heat exchange fluid (d)
A jacket (C) having supply and exhaust pipes (24αX24b) is attached to the nozzle (22αX22A) (22
c) Particle downcomer pipe (215) and particle riser pipe (21A)
A fluidization mechanism (22α, 22b,
22C), and the supply and exhaust pipes (24α) (24
b) The jacket (c) has a heat exchange fluid (d)
The heat exchange mechanism (23) with the extracted particles (α') is
, 24α, 24b), and the particle downcomer (21
α) and the particle riser (21A) are fluidized mechanisms (22α,
22b.
22C)と熱交換機構(23,24α、24h)が付設
された抜出し粒子(α′)の流動化移送配管(21α、
21b)に構成され、さらに、前記傾斜配管(20α、
20b)は、流動化移送されている抜出し粒子(α′)
中のガスを配管(20α)によシ反応器(1)内のフリ
ーボード(C)中にガス循環する機能と、前記ガス分離
後の前記抜出し粒子(−’)を配管(20b)によシ重
力移送し第1ホツ、” −(6)へ移送する粒子移送の
機能とを有する構成になっている。22C) and a fluidization transfer pipe (21α,
21b), further comprising the inclined pipe (20α,
20b) is the extracted particle (α′) that is being fluidized and transferred.
The function is to circulate the gas inside the freeboard (C) in the reactor (1) through the piping (20α), and to circulate the extracted particles (-') after the gas separation through the piping (20b). It is configured to have a function of transporting particles by gravity to the first hole (6).
(作用)
本発明の実施例は、前記のような構成になっているので
、流動化移送用ガス(b′)をノズル(22αX22b
)(22C)から粒子下降管(21α)、粒子上昇管(
21A)内に吹き込むことにより、粒子抜出し管(4)
、粒子下降管(21α)、粒子上昇管(21b)内の抜
出し粒子(α′)が流動化され、その抜出し粒子(αつ
は、粒子自身から生じる圧力差によシ反応器(1)内の
流動層(cL、b)から粒子上昇管(21b)へ移動し
、重力によシ傾斜配管(20α、20b)の配管(20
b)を経て第1ホツ・モー(6)へ移送される。(Function) Since the embodiment of the present invention has the above-mentioned configuration, the fluidization transfer gas (b') is passed through the nozzle (22αX22b
) (22C) to the particle downcomer (21α) and the particle riser (
21A) by blowing into the particle extraction tube (4).
The extracted particles (α') in the particle downcomer pipe (21α) and the particle riser pipe (21b) are fluidized, and the extracted particles (α are caused by the pressure difference generated from the particles themselves) into the reactor (1). The particles move from the fluidized bed (cL, b) to the riser pipe (21b), and the pipe (20α, 20b) of the inclined pipe (20α, 20b)
b) and then transferred to the first hotu mo (6).
また、粒子上昇管(21b>を上昇した流動化移送用ガ
ス(bつは、傾斜配管(20α、20b)の配管C2D
tX)を経て反応器(1)のフリーボー)’(C)内へ
流入し、粒子下降管(21α)から粒子抜出し管(4)
へ上昇する流動化移送用ガス(b′)は、反応器(1)
内の流動層(α、b)へ流入しフリーボード(C)内に
混入される。さらに、粒子下降管(21α)および粒子
上昇管<21b)において、 抜出し粒子(αりが流動
化、移送されている際に、該粒子は両管の壁面をとおし
てジャケット(ハ)内の熱交換用流体(d)と熱交換さ
れる。In addition, the fluidization transfer gas (b is the pipe C2D of the inclined pipe (20α, 20b) that has risen through the particle riser pipe (21b)
t
The fluidized transfer gas (b') rising to the reactor (1)
It flows into the fluidized bed (α, b) inside and is mixed into the freeboard (C). Furthermore, in the particle downcomer pipe (21α) and the particle riser pipe <21b), when the extracted particles (α) are fluidized and transferred, the particles pass through the walls of both pipes and absorb the heat in the jacket (c). Heat is exchanged with the exchange fluid (d).
第1ホツパー(6)内に入る抜出し粒子(αつの温度は
、熱交換用流体(d)の温度調節、または、粒子下降管
(21α)、粒子上昇管(21b)の長さつtb熱交換
壁面の面積調整により制御できる。The temperature of the extracted particles (α) entering the first hopper (6) is determined by the temperature adjustment of the heat exchange fluid (d), or by the length of the particle downcomer pipe (21α) and the particle riser pipe (21b). It can be controlled by adjusting the area of the wall surface.
(発明の効果)
前述のように本発明は、内部に流動層(α、b)と7リ
ーボー)’(t1?)を形成した反応器(1)から流動
層(α、b)の粒子(α)を抜き出して移送する反応器
(11の粒子移送装置において、反応器(1)のフリー
ボード(C)部分から側方下向きに斜設されホッパー(
6)に連結されたガス循環兼粒子移送用の傾斜配管(2
0α。(Effects of the Invention) As described above, the present invention enables particles (α, b) of the fluidized bed (α, b) to be transferred from the reactor (1) in which the fluidized bed (α, b) and 7 Liebaud)' (t1?) are formed. In the particle transfer device (11), a hopper (
Slanted piping (2) for gas circulation and particle transfer connected to (6)
0α.
20b)と、反応器(1)下部の粒子抜出し管(4)に
連設され傾斜配管(20α、20A)における流動層(
α、A)表面よシも下側の部位に連結されガス(b′)
による粒子(α)の流動化機′構(22α、22b、2
2c)が付設された抜出し粒子(α′)の熱流動化移送
配管(21α、21b)と、流動化移送配管(21α、
21b)に配設された熱交換機構(23,24α。20b) and a fluidized bed (20α, 20A) in inclined pipes (20α, 20A) connected to the particle extraction pipe (4) at the bottom of the reactor (1).
α, A) The surface is also connected to the lower part and the gas (b')
Fluidization mechanism of particles (α) (22α, 22b, 2
Thermal fluidization transfer piping (21α, 21b) for the extracted particles (α′) attached with 2c) and the fluidization transfer piping (21α,
Heat exchange mechanism (23, 24α) arranged in 21b).
24b)とを具備しているので、粒子の抜出し量調節用
の従来の高価なロータリーパルプが不要となシ、抜出し
粒子は流動化移送配管中で流動化移送されて熱交換され
るため、円滑に移送されその抜出し量の調整が可能であ
るとともに該粒子と管壁面間の伝熱係数が著しく高めら
れ(250〜500 Kcal/m”hr’c)、かつ
流動化移送用ガスのフリーボードへの流入により、優れ
た熱回収性能が得られ熱効率を著しく高めることができ
、さらに・ホラ″−に連設されている気密バルブ等と抜
出し粒子との温度差が著しく小さくなシ、抜出し移送機
器の損傷1機能阻害等が防止され、信頼性とともに耐久
性が著しく高められるとともに、粒子抜出し移送性能が
著しく向上されている。また、構造が簡単となシ保守が
容易であるなどの効果を有している。24b), there is no need for the conventional expensive rotary pulp for adjusting the amount of particles to be extracted, and the extracted particles are fluidized and transferred in the fluidization transfer pipe for heat exchange, resulting in a smooth process. It is possible to adjust the amount of the extracted particles, and the heat transfer coefficient between the particles and the pipe wall surface is significantly increased (250 to 500 Kcal/m"hr'c), and the fluidization transfer gas is transferred to the free board. Excellent heat recovery performance can be obtained and thermal efficiency can be significantly increased by the inflow of particles.In addition, the temperature difference between the airtight valve etc. connected to the hole and the extracted particles is extremely small. Damage to the structure, functional impairment, etc. are prevented, reliability and durability are significantly improved, and particle extraction and transfer performance is significantly improved. It also has the advantage of being simple in structure and easy to maintain.
以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明゛の精神を逸脱しない範囲内で種稲の設計の改変を施
しうるものである。The present invention has been described above with reference to embodiments, but of course the present invention is not limited to such embodiments, and the design of the seed rice may be modified without departing from the spirit of the present invention. It is.
第1図は本発明の一冥施例を示す粒子移送装置の機構図
、第2図は従来例を示す機構図である。
1:反応器 4:粒子抜出し管 6:ホツパー加α、2
ob:傾斜配管 21α、21b:流動化移送配管22
α、22b、22c :流動化機構田、24α、24b
:熱交換機構 α、b:流動層C:フリーボード
復代理人 弁理士 岡 本 重 文
外2名
第2図
h−′FIG. 1 is a mechanical diagram of a particle transfer device showing one embodiment of the present invention, and FIG. 2 is a mechanical diagram showing a conventional example. 1: Reactor 4: Particle extraction tube 6: Hopper addition α, 2
ob: Inclined piping 21α, 21b: Fluidization transfer piping 22
α, 22b, 22c: Fluidization mechanism field, 24α, 24b
: Heat exchange mechanism α, b: Fluidized bed C: Freeboard sub-agent Patent attorney Shige Okamoto 2 people outside of the text Figure 2 h-'
Claims (1)
流動層の粒子を抜き出して移送する反応器の粒子移送装
置において、前記反応器の前記フリーボード部から側方
下向きに斜設されホッパーに連結されたガス循環兼粒子
移送用の傾斜配管と、前記反応器下部の粒子抜出し管に
連設され前記傾斜配管における前記流動層表面よりも下
側の部位に連結されガスによる粒子の流動化機構が付設
された抜出し粒子の流動化移送配管と、該流動化移送配
管に配設された熱交換機構とを具備したことを特徴とす
る粒子移送装置。In a particle transfer device for a reactor that extracts and transfers particles of the fluidized bed from a reactor in which a fluidized bed and a freeboard are formed, the particle transfer device is provided diagonally downward from the freeboard portion of the reactor and connected to a hopper. The inclined pipe for gas circulation and particle transfer is connected to the particle extraction pipe at the bottom of the reactor, and is connected to a part of the inclined pipe below the surface of the fluidized bed, and is connected to a part of the inclined pipe for fluidizing particles by gas. A particle transfer device comprising an attached fluidization transfer pipe for extracted particles and a heat exchange mechanism disposed in the fluidization transfer pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13597385A JPS61293544A (en) | 1985-06-24 | 1985-06-24 | Grain transfer apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13597385A JPS61293544A (en) | 1985-06-24 | 1985-06-24 | Grain transfer apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61293544A true JPS61293544A (en) | 1986-12-24 |
JPH0456658B2 JPH0456658B2 (en) | 1992-09-09 |
Family
ID=15164195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13597385A Granted JPS61293544A (en) | 1985-06-24 | 1985-06-24 | Grain transfer apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61293544A (en) |
-
1985
- 1985-06-24 JP JP13597385A patent/JPS61293544A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0456658B2 (en) | 1992-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2818236B2 (en) | Fluid bed cooler, fluid bed combustion reactor and method of operating the reactor | |
CA2200450C (en) | Circulating fluidized bed reactor and method of operating the same | |
JPS6321401A (en) | Steam generator using separate fluid flow circuit and operating method thereof | |
JPS6354504A (en) | Circulating fluidized bed reactor and operating method thereof | |
PL176693B1 (en) | Method of and apparatus for heat recovering in a fluidized bed reactor | |
US5533471A (en) | fluidized bed reactor and method of operation thereof | |
EP0390776B1 (en) | Method and reactor for combustion in a fluidised bed | |
EP0630683A1 (en) | Method and apparatus for treating or ultilizing a hot gas flow | |
US5634516A (en) | Method and apparatus for treating or utilizing a hot gas flow | |
JPS63233204A (en) | Fluidized bed device | |
US5184671A (en) | Fluidized bed heat exchanger and method of operating same | |
JP3118259B2 (en) | Method and apparatus for operating a circulating fluidized bed reactor | |
CN106536036A (en) | Process and apparatus for chemical looping redox combustion with control of the heat exchanges | |
JP3258665B2 (en) | Method and apparatus for treating floor material in a fluidized bed reactor | |
JPS5840140A (en) | Fluidized bed type reactor | |
JPS61293544A (en) | Grain transfer apparatus | |
US6276441B1 (en) | Method and regenerator for regenerative heat transfer | |
JP5748784B2 (en) | Fluidized bed reactor equipment | |
US5108712A (en) | Fluidized bed heat exchanger | |
FI87147B (en) | REFERENCE FOUNDATION FOER BEHANDLING AV GASER OCH / ELLER FAST MATERIAL I EN REACTOR WITH CIRCULAR FLUIDISERAD BAEDD. | |
EP0692999B2 (en) | A fluidized bed reactor system and a method of manufacturing the same | |
CN104755839B (en) | Fluidized bed heat exchanger | |
CN110207513A (en) | Ash-dregs cooler and afterheat utilizing system | |
JPS62258912A (en) | Fluidized-bed combustion furnace | |
JPH0824623A (en) | Fluidized bed catalytic reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |