JPS61293528A - Wet stack-gas desulfurization method - Google Patents
Wet stack-gas desulfurization methodInfo
- Publication number
- JPS61293528A JPS61293528A JP60135982A JP13598285A JPS61293528A JP S61293528 A JPS61293528 A JP S61293528A JP 60135982 A JP60135982 A JP 60135982A JP 13598285 A JP13598285 A JP 13598285A JP S61293528 A JPS61293528 A JP S61293528A
- Authority
- JP
- Japan
- Prior art keywords
- suspension
- amount
- oxidation
- gypsum
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000725 suspension Substances 0.000 claims abstract description 84
- 235000010261 calcium sulphite Nutrition 0.000 claims abstract description 43
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 40
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 36
- 239000010440 gypsum Substances 0.000 claims abstract description 36
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 20
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 9
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 9
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims description 44
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 claims description 38
- 238000006477 desulfuration reaction Methods 0.000 claims description 36
- 230000023556 desulfurization Effects 0.000 claims description 36
- 238000002485 combustion reaction Methods 0.000 claims description 23
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 19
- 239000003546 flue gas Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 239000000428 dust Substances 0.000 claims description 18
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 abstract description 74
- 238000010521 absorption reaction Methods 0.000 abstract description 60
- 230000003647 oxidation Effects 0.000 abstract description 46
- 235000019738 Limestone Nutrition 0.000 abstract description 24
- 239000006028 limestone Substances 0.000 abstract description 24
- 239000007787 solid Substances 0.000 abstract description 10
- 235000011116 calcium hydroxide Nutrition 0.000 abstract description 7
- 238000011084 recovery Methods 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 229910001868 water Inorganic materials 0.000 abstract description 4
- 229920006395 saturated elastomer Polymers 0.000 abstract description 2
- 235000010216 calcium carbonate Nutrition 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 230000000717 retained effect Effects 0.000 abstract 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 22
- 238000010586 diagram Methods 0.000 description 16
- 239000002002 slurry Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 11
- 239000011575 calcium Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 7
- FAYYUXPSKDFLEC-UHFFFAOYSA-L calcium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [Ca+2].[O-]S([O-])(=O)=S FAYYUXPSKDFLEC-UHFFFAOYSA-L 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000009790 rate-determining step (RDS) Methods 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 1
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は湿式排煙脱硫方法に係り、特に−塔式の吸収塔
内で燃焼排ガス中の固形微粒子、硫黄酸化物を補集し効
率よく石膏として回収することができる湿式排煙脱硫方
法に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a wet flue gas desulfurization method, and in particular, it collects solid fine particles and sulfur oxides in the combustion flue gas in a tower-type absorption tower and efficiently removes gypsum from the flue gas. The present invention relates to a wet flue gas desulfurization method that enables the recovery of waste gases as waste gas.
現在実用化されている湿式排煙脱硫装置は、カルシウム
系の吸収剤を使用し、副生品として石膏を回収するもの
が主流である。すなわち吸収剤として石灰石、生石灰、
消石灰を使用する石灰石・石膏法(または石灰・石膏法
)である。第16図は、石灰石を吸収剤とし、副生品と
して石膏を回収する従来の排煙脱硫装置を示したもので
ある。The mainstream wet flue gas desulfurization equipment currently in use uses calcium-based absorbents and recovers gypsum as a byproduct. In other words, limestone, quicklime,
This is the limestone/gypsum method (or lime/gypsum method), which uses slaked lime. FIG. 16 shows a conventional flue gas desulfurization device that uses limestone as an absorbent and recovers gypsum as a by-product.
ボイラ等の排ガス1は除しん塔2に導びかれ、ここで冷
却除しんされて一部は脱硫されたのら、吸収塔3に導び
かれ、ここで循環液スラリと接触し、デミスタ4でミス
トを除去され、吸収塔3から排出される。一方、吸収剤
スラリである石灰石スラリ20は、石灰石スラリポンプ
21により吸収塔循環タンク5に供給され、そのスラリ
は吸収塔循環ポンプ7により吸収塔3内に設置されたス
プレノズル22に供給され、ここから吸収塔3内に噴霧
されて排ガス1と接触し、排ガス1中の硫黄酸化物を吸
収除去して吸収塔循環タンク5へ戻り、循環使用される
。吸収後の吸収塔循環タンク5内のスラリは、吸収塔ブ
リードポンプ8より、除しん塔循環タンク6へ供給され
、除しん塔2内でスプレーノズル22からスプレーされ
、更に排ガス1と接触し、排ガス1中の硫黄酸化物を除
去することによりスラリ中の未反応の石灰石の量を減じ
て副生品回収系、すなわち、酸化塔供給タンク10へ供
給される。酸化塔供給タンク10で、未反応石灰石は硫
酸を添加することにより石膏とし、また、酸化に好適な
pHに調整される。pl−1整されたスラリは、酸化塔
供給ポンプ11により酸化塔12に供給され、ここで亜
硫酸カルシウムは空気酸化され石膏とされた後、導管1
3を通ってシラフナ14へ導びかれ、タンク15.ポン
プ16で濃縮された後、石膏スラリは、遠心分離機17
で脱水され、粉体の石膏18を回収する。シラフナ14
および遠心分離機17での濾過水19は循環して再利用
される。Exhaust gas 1 from a boiler, etc. is led to a dust removal tower 2, where it is cooled and removed, and a part of it is desulfurized, and then led to an absorption tower 3, where it comes into contact with circulating fluid slurry, and is passed through a demister 4. The mist is removed from the water and discharged from the absorption tower 3. On the other hand, limestone slurry 20, which is an absorbent slurry, is supplied to the absorption tower circulation tank 5 by a limestone slurry pump 21, and the slurry is supplied to a spray nozzle 22 installed in the absorption tower 3 by an absorption tower circulation pump 7. It is sprayed into the absorption tower 3, contacts the exhaust gas 1, absorbs and removes sulfur oxides in the exhaust gas 1, returns to the absorption tower circulation tank 5, and is recycled and used. The slurry in the absorption tower circulation tank 5 after absorption is supplied from the absorption tower bleed pump 8 to the scrubbing tower circulation tank 6, is sprayed from the spray nozzle 22 in the scrubbing tower 2, and further comes into contact with the exhaust gas 1, By removing the sulfur oxides in the exhaust gas 1, the amount of unreacted limestone in the slurry is reduced and the slurry is supplied to the byproduct recovery system, that is, the oxidation tower supply tank 10. In the oxidation tower supply tank 10, unreacted limestone is converted into gypsum by adding sulfuric acid, and the pH is adjusted to a value suitable for oxidation. The pl-1 prepared slurry is supplied to the oxidation tower 12 by the oxidation tower supply pump 11, where the calcium sulfite is air oxidized to gypsum, and then passed through the conduit 1.
3 to Shirafuna 14, and tank 15. After being concentrated by pump 16, the gypsum slurry is passed through centrifuge 17.
The gypsum 18 is dehydrated and powdered gypsum 18 is recovered. Shirafuna 14
The filtered water 19 from the centrifugal separator 17 is circulated and reused.
なお、20は石灰石スラリ、21は石灰石スラリポンプ
である。In addition, 20 is a limestone slurry, and 21 is a limestone slurry pump.
しかしながら、この従来技術では吸収塔3と除しん塔2
が別置されていること、吸収系から抜出したスラリ中の
未反応石灰石の中和装置(硫酸タンク硫酸ポンプ等)お
よび亜硫酸カルシウムの酸化装置が必要であるため、敷
地面積が大きくなり、また設備が複雑となる欠点を有し
ている。また、反応石灰石(過剰石灰石)、添加する硫
酸のユーティリティが必要であった。However, in this prior art, the absorption tower 3 and the removal tower 2
is located separately, a device for neutralizing unreacted limestone in the slurry extracted from the absorption system (sulfuric acid tank, sulfuric acid pump, etc.) and a device for oxidizing calcium sulfite are required, resulting in a large site area and equipment. It has the disadvantage that it is complicated. Additionally, the utility of reacting limestone (excess limestone) and adding sulfuric acid was required.
この様に燃焼排ガス1は吸収塔3に導びき、ここで炭酸
カルシウムあるいは水酸化カルシウムを含む懸濁液と気
液接触させ、懸濁液に硫黄酸化物を吸収させる。その吸
収反応過程を炭酸カルシウムを含む懸濁液の場合につい
て示すと、以下の通りである。In this manner, the combustion exhaust gas 1 is led to the absorption tower 3, where it is brought into gas-liquid contact with a suspension containing calcium carbonate or calcium hydroxide, and the suspension absorbs sulfur oxides. The absorption reaction process for a suspension containing calcium carbonate is as follows.
燃焼排ガス中の硫黄酸化物としてSO2について考える
と、SO□ガスは懸濁液中に物理吸収し亜硫酸を生成す
る。Considering SO2 as a sulfur oxide in combustion exhaust gas, SO□ gas is physically absorbed into a suspension to generate sulfurous acid.
SOバガス)で==ニジ5O(懸濁液中に吸収)(1)
SO2(液中) +1lz01=コl1zSO+
(2)液中の亜硫酸は解離し下式の様な反応を
する。SO bagasse)== Niji 5O (absorbed in suspension) (1)
SO2 (in liquid) +1lz01=kol1zSO+
(2) Sulfurous acid in the liquid dissociates and reacts as shown below.
HzSOs ;=ゴH” + ll5Ot−<31一
方、炭酸カルシウムとして石灰石が用いられる場合が多
いが、石灰石中の炭酸カルシウムは懸濁液中に溶解する
。HzSOs;=GoH"+ll5Ot-<31 On the other hand, limestone is often used as calcium carbonate, and the calcium carbonate in limestone is dissolved in the suspension.
CaC0t 4?::2CaCOz(液中)(4)溶解
した炭酸カルシウムは懸濁液中で亜硫酸と反応し、亜硫
酸カルシウムを生成する。CaC0t 4? ::2CaCOz (in liquid) (4) Dissolved calcium carbonate reacts with sulfite in suspension to produce calcium sulfite.
CaC0t + It” +ll501−→Ca5Oa
+ !IzO+ C(h↑(5)又、(5)式で生
成する亜硫酸カルシウムは懸濁液中の亜硫酸と反応し次
亜硫酸カルシウムを生成する。CaC0t + It" +ll501-→Ca5Oa
+! IzO+ C(h↑(5) Also, the calcium sulfite produced by formula (5) reacts with sulfite in the suspension to produce calcium hyposulfite.
CaSO3+ H” +l!SO3−a、−コCa 0
1S(h) 2 (6)一方、(6)式の反応
で生成した次亜硫酸カルシウムは懸濁液中の炭酸カルシ
ウムと下式の様な反応が進み、亜硫酸カルシウムを生成
する。CaSO3+ H" +l!SO3-a, -koCa 0
1S(h) 2 (6) On the other hand, calcium hyposulfite produced by the reaction of formula (6) undergoes a reaction with calcium carbonate in the suspension as shown in the following formula to produce calcium sulfite.
2CaCOs+Ca(lIsO*)z →2CaS0.
3+Ca01COs)z (71弱酸性の重炭酸水素カ
ルシウムCa(llcO+) 2 、+6)式の弱酸性
のCa(IICOaLを生成する。CaC0Sが供給さ
れた場合でもlIC0s−、ll5Oa−が存在するこ
とで緩衝剤として働きpHは比較的安定しているごとに
なる。2CaCOs+Ca(lIsO*)z →2CaS0.
3+Ca01COs)z (71 Weakly acidic calcium bicarbonate Ca (llcO+) 2 , +6) produces weakly acidic Ca (IICOaL). It acts as an agent and keeps the pH relatively stable.
従来の湿式排煙脱硫方法では前述の懸濁液中の一部を酸
化塔に導ひき、亜硫酸カルシウムの酸化反応を進め、石
膏とするが、酸化塔では硫酸を添加し懸濁液のpH調整
を行い次亜硫酸カルシウムとして酸化反応を進める。一
方、懸濁液に硫酸を添加したとき、未反応の炭酸カルシ
ウムとの中和反応が起り石膏が生成する。In the conventional wet flue gas desulfurization method, a portion of the above-mentioned suspension is led to an oxidation tower to proceed with the oxidation reaction of calcium sulfite to form gypsum, but in the oxidation tower, sulfuric acid is added to adjust the pH of the suspension. to proceed with the oxidation reaction to form calcium hyposulfite. On the other hand, when sulfuric acid is added to the suspension, a neutralization reaction occurs with unreacted calcium carbonate and gypsum is produced.
CaC0z + HtSOa + lzQ→Ca5Oa
・211zO+ Cot↑(8)又、亜硫酸カルシウ
ムは
2CaSO3+ +12SO4+ 2H□0→CaSO
4・2020 + Ca(IISOi) 2酸化塔に空
気を供給すると、酸素は液中に溶解し溶解酸素と大部分
の亜硫酸カルシウムは(91,001式の次亜硫酸カル
シウムと反応し、石膏を生成する。CaC0z + HtSOa + lzQ → Ca5Oa
・211zO+ Cot↑(8) Also, calcium sulfite is 2CaSO3+ +12SO4+ 2H□0→CaSO
4.2020 + Ca (IISOi) When air is supplied to the oxidation tower, oxygen is dissolved in the liquid, and the dissolved oxygen and most of the calcium sulfite react with calcium hyposulfite (formula 91,001) to form gypsum. .
Ca ()ISO3) z + % Ot+ 2820
−→Ca5Oa・28zO+ H2SO+このように、
従来の湿式排煙脱硫装置では、未反応の炭酸カルシウム
が吸収塔から抜かれるため炭酸カルシウムを過剰に供給
する必要があること、さらに酸化塔でp H調整用の硫
酸が必要であることから、ニーテリティコストが高くつ
く問題があることと、酸化塔などを設置するための補機
関連による設備コストが高くなる欠点があった。Ca () ISO3) z + % Ot+ 2820
−→Ca5Oa・28zO+ H2SO+ In this way,
In conventional wet flue gas desulfurization equipment, unreacted calcium carbonate is removed from the absorption tower, so it is necessary to supply an excessive amount of calcium carbonate, and sulfuric acid is also required for pH adjustment in the oxidation tower. There was a problem in that the utility cost was high, and the equipment cost was high due to the auxiliary equipment for installing the oxidation tower.
そこで、ニーテリティコスト、設備コストを低減する目
的で吸収塔内で01式の酸化反応を行わせるために特公
昭58−28206 、特開昭58−92451 。Therefore, Japanese Patent Publication No. 58-28206 and Japanese Patent Application Laid-open No. 58-92451 have been proposed in order to carry out the 01 type oxidation reaction in an absorption tower for the purpose of reducing the utility cost and equipment cost.
特開昭58−92452 、特開昭58−95543
、特開昭58−98125 、特開昭58−98126
、特開昭58−104619゜特開昭58−1046
20.実開昭588−91428などがすでに提案され
ている。しかしながら、いずれも懸濁液のpHは高く、
燃焼排ガス中の亜硫酸ガスの吸収に対しては好ましいが
、p Hが高いため酸化反応速度が遅く、懸濁液中の亜
硫酸根の濃度が徐々に高くなってゆくことになる。JP-A-58-92452, JP-A-58-95543
, JP-A-58-98125, JP-A-58-98126
, JP-A-58-104619° JP-A-58-1046
20. Utility Model Application No. 588-91428 has already been proposed. However, in both cases, the pH of the suspension is high;
Although it is preferable for the absorption of sulfite gas in the combustion exhaust gas, the oxidation reaction rate is slow due to the high pH, and the concentration of sulfite radicals in the suspension gradually increases.
即ち、吸収塔内で除じん、吸収、酸化を円滑に行い、酸
化塔に別に設置することなく効率よく石膏の回収と高脱
硫性能を得るには、亜硫酸カルシウム酸化系のpH調整
と、SOz吸収系の全SO3−″濃度の調整を行なう必
要がある。In other words, in order to smoothly perform dust removal, absorption, and oxidation in the absorption tower, and to efficiently recover gypsum and obtain high desulfurization performance without separately installing it in the oxidation tower, it is necessary to adjust the pH of the calcium sulfite oxidation system and to absorb SOz. It is necessary to adjust the total SO3-'' concentration of the system.
本発明の目的は従来の湿式排煙脱硫方法で行われていた
酸化塔を設置することなく、吸収塔内で亜硫酸カルシウ
ムの酸化を行い石膏を回収するための吸収塔及び石膏回
収装置を一塔式で行なうものである。The purpose of the present invention is to provide an absorption tower and a gypsum recovery device that can be used to oxidize calcium sulfite in an absorption tower and recover gypsum without installing an oxidation tower, which was done in the conventional wet flue gas desulfurization method. This is done in a ceremony.
本発明は前述の目的を達成するために、塔内の循環タン
ク内で酸素を含むガスと接触させることによって、懸濁
液中の全亜硫酸根の量がpH3,8における亜硫酸カル
シウムの飽和溶解量の1.3倍量以下になるように調整
し、しかる後に炭酸カルシウムあるいは水酸化カルシウ
ムを添加して、懸濁液のpHを3.8以上5.0以下に
維持して燃焼排ガスと気液接触させるようにしたもので
ある。In order to achieve the above-mentioned object, the present invention aims to reduce the amount of total sulfite radicals in the suspension by contacting with oxygen-containing gas in a circulation tank in a column, thereby reducing the amount of saturated calcium sulfite dissolved at pH 3.8. After that, calcium carbonate or calcium hydroxide is added to maintain the pH of the suspension between 3.8 and 5.0 to separate combustion exhaust gas and gas liquid. It is designed so that they are in contact with each other.
〔発明の実施例〕 以下本発明の実施例を図面を用いて説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の実施例に係る湿式排煙脱硫装置の原理
図、第2図から第5図は発明者らの実験によって得られ
たデータで、第2図は懸濁液pHと離脱した気相中のS
O□濃度の関係、第3図は懸濁液pHとSO2吸収速度
の関係、第4図は懸濁液pHとCaSO3の酸化速度の
関係を示す。第5図は亜硫酸カルシウムの酸化反応装置
を示す断面図、第6図および第7図は空気アトマイザを
示す断面図、第8図および第9図は空気供給量と酸化速
度の関係を示す空気アトマイザの酸化性能特性図、第1
0図はダスト粒径と除しん率の関係を示すスプレー除し
ん性能特性図、第11図は実験装置の概略図、第12図
は懸濁液のpHと脱硫性能の関係を示す特性図、第13
図は懸濁液中の全5(h−と5(lzの吸収速度比率の
関係を示す特性図、第14図はpHと全5O1−の関係
を示す特性図、第15図は石膏粒径と累積重量分布の関
係を示す特性図である。Fig. 1 is a principle diagram of a wet flue gas desulfurization device according to an embodiment of the present invention, Figs. 2 to 5 are data obtained by experiments by the inventors, and Fig. 2 shows suspension pH and separation. S in the gas phase
Figure 3 shows the relationship between the O□ concentration, Figure 3 shows the relationship between suspension pH and SO2 absorption rate, and Figure 4 shows the relationship between suspension pH and CaSO3 oxidation rate. Figure 5 is a sectional view showing a calcium sulfite oxidation reaction device, Figures 6 and 7 are sectional views showing an air atomizer, and Figures 8 and 9 are air atomizers showing the relationship between air supply amount and oxidation rate. Oxidation performance characteristic diagram, 1st
Figure 0 is a spray dust removal performance characteristic diagram showing the relationship between dust particle size and dust removal rate, Figure 11 is a schematic diagram of the experimental equipment, Figure 12 is a characteristic diagram showing the relationship between suspension pH and desulfurization performance, 13th
The figure is a characteristic diagram showing the relationship between the absorption rate ratio of total 5(h- and 5(lz) in the suspension. Figure 14 is a characteristic diagram showing the relationship between pH and total 5O1-. Figure 15 is the gypsum particle size. It is a characteristic diagram which shows the relationship between and cumulative weight distribution.
この様な構造において、実施例を説明する以前に第2図
、第3図および第4図を用いて発明者らの実験結果から
紹介する。Before explaining the embodiments of this structure, the experimental results of the inventors will be introduced using FIGS. 2, 3, and 4.
本発明者らはかねてから湿式排煙脱硫装置についての設
備合理化と効率向上の検討を進めてきたが、基礎検討結
果及びパイロットプラントでの試験の結果、従来の湿式
排煙脱硫装置である吸収塔および酸化塔を一体化し、か
つ!調温液のpH調整用の硫酸量が不要であり、炭酸カ
ルシウムの消費量も低減でき、市場性のある副生石膏を
回収できる湿式脱硫装置及び石膏回収法について見い出
した。The inventors of the present invention have been studying equipment rationalization and efficiency improvement for wet flue gas desulfurization equipment for some time, and as a result of basic studies and tests at a pilot plant, the conventional wet flue gas desulfurization equipment Integrate the oxidation tower and! We have discovered a wet desulfurization device and a gypsum recovery method that do not require the amount of sulfuric acid for adjusting the pH of the temperature control liquid, can reduce the amount of calcium carbonate consumed, and can recover marketable by-product gypsum.
燃焼排ガス中の硫黄酸化物を吸収した懸濁液中の亜硫酸
カルシウムを酸化するには主に前述のC11式に従かう
が、酸化反応は懸濁液中の水素イオン濃度、即ちp H
の依存性が大きいことが明らかになった。これは懸S液
中のpHが変化すると亜硫酸カルシウムの溶解速度が増
大し、亜硫酸カルシウム酸化速度が高まることになる。To oxidize calcium sulfite in a suspension that has absorbed sulfur oxides in combustion exhaust gas, the above-mentioned formula C11 is mainly followed, but the oxidation reaction depends on the hydrogen ion concentration in the suspension, that is, pH
It has become clear that there is a strong dependence on This is because when the pH in the suspended S solution changes, the dissolution rate of calcium sulfite increases, and the rate of calcium sulfite oxidation increases.
第4図は基礎検討結果で明らかになったことであるが、
懸濁液中のpHと酸化速度を求めた結果である。懸濁液
中pHが7近傍では酸化が殆んど起らず、このために亜
硫酸あるいは硫酸を添加してpHを徐々に低下させると
、亜硫酸カルシウムの酸化反応速度は急激に増加し、p
Hが4近傍から以下では一定となることが明らかにな
った。Figure 4 shows what was revealed from the basic study results.
These are the results of determining the pH and oxidation rate in the suspension. Oxidation hardly occurs when the pH in the suspension is around 7. Therefore, when sulfurous acid or sulfuric acid is added to gradually lower the pH, the oxidation reaction rate of calcium sulfite increases rapidly, and the pH
It has become clear that H becomes constant from around 4 to below.
一方、第2図に示すように懸濁液のpHが低下してくる
と第4図で説明した様に亜硫酸カルシウムの酸化濃度は
高くなる傾向を示すが、気相中にSO2が脱離してくる
。即ち亜硫酸カルシウムの酸化反応過程では、pH3,
8〜5.0近傍で行うことがより経済的である。On the other hand, as shown in Figure 2, as the pH of the suspension decreases, the oxidation concentration of calcium sulfite tends to increase as explained in Figure 4, but SO2 is desorbed into the gas phase. come. That is, in the oxidation reaction process of calcium sulfite, pH 3,
It is more economical to set the value around 8 to 5.0.
第2図は供給空気量を一定とした場合の結果であるが、
p Hが高い領域での酸化反応は亜硫酸カルシウムの溶
解速度が律速段階であり、これに対してpHが低い領域
では、酸素の溶解速度が律速段階で酸化反応が進行する
ことがわかる。すなわち、pHjW域を3.8〜5.0
において亜硫酸カルシウムを酸化する際、酸素の溶解速
度を高めること、即ち、空気の微細化を同じとすれば、
単位懸濁液当りへの空気供給量を調整することで亜硫酸
カルシウムの酸化量を調整できることが明らかになった
。Figure 2 shows the results when the amount of supplied air is constant.
It can be seen that the dissolution rate of calcium sulfite is the rate-determining step in the oxidation reaction in a high pH region, whereas in the low pH region, the rate of oxygen dissolution is the rate-determining step in the oxidation reaction. That is, the pHjW range is 3.8 to 5.0.
When oxidizing calcium sulfite in , increasing the dissolution rate of oxygen, that is, keeping the air atomization the same,
It has become clear that the amount of calcium sulfite oxidation can be adjusted by adjusting the amount of air supplied per unit suspension.
又、理論上は燃焼排ガス中に含まれる硫黄酸化物の化学
等量に等しい炭酸カルシウムを吸収系に供給することで
石膏を回収する際のカルシウムの収支はバランスする。In theory, by supplying calcium carbonate to the absorption system in an amount equivalent to the chemical equivalent of sulfur oxides contained in the combustion exhaust gas, the calcium balance during gypsum recovery can be balanced.
但し、炭酸カルシウムを含む石灰石の溶解速度は、懸濁
液中の水素イオン濃度、炭酸カルシウム濃度1右灰石粒
径、カルシウ11イオン濃度、炭酸イオン濃度、温度な
どに影響することが、基礎検討結果から明らかになり、
特に水素イオン濃度に対する依存性が大きいことが明ら
かになった。即ち、石灰石の溶解速度はpHを下げるこ
とによって、水素イオン濃度に対しての反応次数は2程
度とpHの依存性が大きいことが明らかになった。この
ことは従来の湿式排煙脱硫装置での吸収塔内の懸濁液p
Hが5.5〜6近傍で運用されていたために石灰石の溶
解速度を抑制し、過剰な石灰石を供給する原因となって
いた。However, basic research has shown that the dissolution rate of limestone containing calcium carbonate is affected by the hydrogen ion concentration in the suspension, the calcium carbonate concentration 1 right limestone particle size, the calcium 11 ion concentration, the carbonate ion concentration, and the temperature. It is clear from the results that
In particular, it became clear that the dependence on hydrogen ion concentration was large. In other words, it has been revealed that by lowering the pH, the dissolution rate of limestone has a reaction order of about 2 with respect to the hydrogen ion concentration, which is highly dependent on pH. This means that the suspension p in the absorption tower in conventional wet flue gas desulfurization equipment
Since H was operated at around 5.5 to 6, the dissolution rate of limestone was suppressed and excessive limestone was supplied.
このことは次の酸化塔での硫酸消費量が増大するという
悪循環を引き起す原因ともなっていた。This caused a vicious cycle in which the amount of sulfuric acid consumed in the next oxidation tower increased.
次に発明者らは吸収塔内で亜硫酸カルシウムを同時に酸
化する際、懸濁液のp Hを順次下げていった場合、懸
濁液へのSOtの吸収速度、即ち!!!濁液のp Hと
単位懸濁液容積当りのSO□吸収容量についての検討を
行う必要があった。これは前述の+11. (2)、
431式に示したように懸濁液中の水素イオン濃度が増
加していくと当然SOz吸収速度が低下し、吸収塔での
脱硫性能が悪くなることになる。Next, the inventors determined that when simultaneously oxidizing calcium sulfite in an absorption tower and sequentially lowering the pH of the suspension, the absorption rate of SOt into the suspension, ie! ! ! It was necessary to study the pH of the suspension and the SO□ absorption capacity per unit volume of suspension. This is +11 mentioned above. (2),
As shown in Equation 431, as the hydrogen ion concentration in the suspension increases, the SOz absorption rate naturally decreases, and the desulfurization performance in the absorption tower deteriorates.
第3図は懸濁液界面でのpHとSO2の吸収速度につい
て示したものであるが、pHが3.5〜3.8領域から
急激にSO,吸収速度が低下し、吸収塔での脱硫性能は
低下するが、懸濁液pHが4近傍以上では、SO□吸収
速度の急激な低下はなく、懸濁液pHが4近傍以上では
脱硫性能は従来通りの性能を維持できることが明らかに
なった。Figure 3 shows the pH and SO2 absorption rate at the suspension interface, and the SO2 absorption rate decreases rapidly from the pH range of 3.5 to 3.8, and the desulfurization rate in the absorption tower decreases. Although the performance deteriorates, when the suspension pH is around 4 or higher, the SO□ absorption rate does not drop sharply, and when the suspension pH is around 4 or higher, the desulfurization performance can be maintained as before. Ta.
次に本発明者らは吸収塔内で酸化、及び除じんを行わせ
るため、気液接触法で燃焼排ガスに含むサブミクロンに
相当する微粒子が補集できるかどうかの検討が必要であ
った。本発明者らは従来から低い通風損失が維持できか
つ気液接触効率に優れたスプレ一方式の気液接触装置を
採用し、低圧力F員失で且つ高脱硫性能を得ている。ス
プレ一方式での除しん性能は高く、吸収塔外に設置して
いた従来法の除しん塔を無くし、吸収塔内で硫黄酸化物
の吸収と除しん機能が可能となった・吸収塔系で亜硫酸
カルシウムの酸化を完全に行うには、所要空気量を微細
化し、空気利用率の高い微細化法が重要である。従来法
の酸化塔では、2〜3ats+程度に系内を維持した条
件下で空気をアトマイズし亜硫酸カルシウムを酸化して
いた。Next, in order to carry out oxidation and dust removal in the absorption tower, the present inventors needed to investigate whether submicron particles contained in the combustion exhaust gas could be collected by the gas-liquid contact method. The present inventors have conventionally adopted a spray type gas-liquid contacting device that can maintain low ventilation loss and have excellent gas-liquid contact efficiency, and have achieved low pressure loss and high desulfurization performance. The dust removal performance of the one-spray system is high, and the conventional dust removal tower installed outside the absorption tower has been eliminated, allowing the absorption of sulfur oxides and the dust removal function to be performed within the absorption tower.・Absorption tower system In order to completely oxidize calcium sulfite, it is important to refine the amount of air required and use a refinement method that has a high air utilization rate. In the conventional oxidation tower, calcium sulfite was oxidized by atomizing air under conditions in which the inside of the system was maintained at about 2 to 3 ats+.
即ち、従来法では空気利用率50〜70%の高効率な酸
化を進めていたが、吸収塔内で酸化反応を進める場合に
は系内の圧力はほぼ大気圧であり、空気アトマイズ法(
微細化法)が重要となった。In other words, in the conventional method, highly efficient oxidation was carried out with an air utilization rate of 50 to 70%, but when the oxidation reaction is carried out in an absorption tower, the pressure in the system is almost atmospheric pressure, and the air atomization method (
(miniaturization method) became important.
さらに空気アトマイザで重要なことは、微細化のための
動力消費量が小さいことにあるが、種々のアトマイザに
ついて検証を行い低動力で且高効率のアトマイザを開発
した。Furthermore, the important thing about air atomizers is that the power consumption for miniaturization is small, and we have verified various atomizers and developed a low-power, high-efficiency atomizer.
以上の検討結果、本発明に示す設備合理化ができ省エネ
ルギ型湿式排煙脱硫装置の開発にいたった。As a result of the above studies, we have developed an energy-saving wet flue gas desulfurization device that can streamline equipment as shown in the present invention.
以下に本発明の一実施例を第1図を用いて説明する。An embodiment of the present invention will be described below with reference to FIG.
吸収塔3は、酸化反応装置23、気液接触装置22、懸
濁液24の循環ライン25・ 26・酸素源となる空気
の供給ライン27、炭酸カルシウムあるいは水酸化カル
シウムを吸収塔3に送る供給ライン28.29、石膏を
含む懸濁液の抜き出しライン30、懸濁液のpH検出器
31、検出ライン32、懸濁液撹拌器33、ミスト補集
器4などを内蔵している。硫黄酸化物を含む燃焼排ガス
1は吸収塔3に導入され、気液接触装置22で懸濁液と
気液接触し、固形微粒子、硫黄酸化物が懸濁液に補集さ
れ処理ガス34となる。懸濁液は酸化反応装置23に補
集されて、懸濁液24となる。The absorption tower 3 includes an oxidation reaction device 23, a gas-liquid contact device 22, circulation lines 25 and 26 for the suspension 24, a supply line 27 for air serving as an oxygen source, and a supply line for sending calcium carbonate or calcium hydroxide to the absorption tower 3. It has built-in lines 28 and 29, a suspension line 30 for extracting a suspension containing gypsum, a suspension pH detector 31, a detection line 32, a suspension stirrer 33, a mist collector 4, and the like. The combustion exhaust gas 1 containing sulfur oxides is introduced into the absorption tower 3 and comes into gas-liquid contact with a suspension in a gas-liquid contactor 22, and solid particles and sulfur oxides are collected in the suspension to become a treated gas 34. . The suspension is collected in the oxidation reactor 23 and becomes a suspension 24.
亜硫酸カルシウムの一部は燃焼排ガス1中の酸素5〜7
%と気液接触し一部は石膏となる。亜硫酸カルシウムの
大部分は、酸化反応装置23において、酸素源供給袋2
27から送られる空気が微細化され、酸素が懸濁液中に
溶解し、溶存酸素と反応し石膏に酸化される。酸化反応
装置23の底部には、懸濁液撹拌器33が設置してあり
、懸濁液24中の固形物が沈降しないように撹拌させて
いる・一方、炭酸カルシウムあるいは水酸化カルシウム
の水との懸濁液は供給ライン28.29から酸化反応装
置23へ供給され、懸濁液24あるいは懸濁液24の循
環ライン25.循環ポンプ7゜供給ライン26に供給す
る。酸化反応装置23の懸濁液24は、pH検出器31
と空気供給ライン32の流量調整器と連動させ、酸化反
応に最適なpH1石灰石供給量、燃焼排ガス中の硫黄酸
化物を検出し、空気供給量を制御する。石膏は、酸化反
応装置8内を一定時間滞留した後、抜き出しライン10
2から抜き出し図示していない石膏回収装置に送る。A part of calcium sulfite is oxygen 5 to 7 in combustion exhaust gas 1.
% and some of it becomes gypsum. Most of the calcium sulfite is transferred to the oxygen source supply bag 2 in the oxidation reaction device 23.
The air sent from 27 is atomized and oxygen is dissolved in the suspension, which reacts with the dissolved oxygen and is oxidized to gypsum. A suspension stirrer 33 is installed at the bottom of the oxidation reaction device 23 to stir the solids in the suspension 24 to prevent them from settling.On the other hand, calcium carbonate or calcium hydroxide is mixed with water. The suspension is fed to the oxidation reactor 23 via the feed line 28.29, and the suspension 24 or the suspension 24 circulation line 25. Circulation pump 7° feeds into supply line 26. The suspension 24 of the oxidation reaction device 23 is detected by the pH detector 31
In conjunction with the flow rate regulator of the air supply line 32, the optimum pH1 limestone supply amount for the oxidation reaction and sulfur oxides in the combustion exhaust gas are detected, and the air supply amount is controlled. After staying in the oxidation reactor 8 for a certain period of time, the gypsum is transferred to the extraction line 10.
2 and sent to a gypsum recovery device (not shown).
懸濁液中の亜硫酸カルシウムを全量あるいは所定量濃度
以下になるように酸化するに必要な空気盪は、空気のア
トマイザの効率によって異なるが、アトマイザの効率を
上げると動力費が嵩さむ因果関係にあるので、懸濁液撹
拌器33に空気を吹きつけて撹拌翼のせん断力で空気を
微細化する方式などが効果的となる。The amount of air required to oxidize the calcium sulfite in the suspension to a total concentration or less than a predetermined concentration varies depending on the efficiency of the air atomizer, but increasing the efficiency of the atomizer increases the power cost. Therefore, an effective method is to blow air into the suspension stirrer 33 and use the shear force of the stirring blades to atomize the air.
また、第6図に示す懸濁液24の配管系36に絞り部3
5を設置し流れ方向に対して、絞り部35の前段側に空
気供給ライン27.懸濁液24をある一定流速で二液体
を絞り部35で混合すると、空気はより微細化する。こ
れらの二液体空気アトマイザを第7図に示すように酸化
反応装置23の円筒円周方向に噴出すれば懸濁液24の
撹拌作用もある。第6図に示した空気アトマイザの酸化
性能について基礎実験結果の代表例を第8図および第9
図に示す。In addition, a constriction part 3 is provided in the piping system 36 for the suspension 24 shown in FIG.
5 is installed, and an air supply line 27. When the two liquids are mixed in the suspension 24 at a certain flow rate in the constriction section 35, the air becomes finer. If these two-liquid air atomizers are ejected in the cylindrical circumferential direction of the oxidation reactor 23 as shown in FIG. 7, the suspension 24 can also be stirred. Figures 8 and 9 show representative examples of basic experimental results regarding the oxidation performance of the air atomizer shown in Figure 6.
As shown in the figure.
第8図及び第8図に示すように、酸化速度は第6図の絞
り部35の二液体の流速、空気供給量によって決まるの
で、酸化反応装置23内の亜硫酸カルシウムの酸化量を
調整するのに好適な空気アトマイザである。As shown in FIGS. 8 and 8, the oxidation rate is determined by the flow rate of the two liquids in the constriction section 35 in FIG. This is an air atomizer suitable for
次に本発明の湿式脱硫装置では、燃焼排ガスと懸濁液を
気液接触させた際、燃焼排ガス中の固形微粒子が補集で
きるものかどうかについてスプレィ噴出ノズルで懸濁液
を微粒化した時の除しん性能結果を第10図に示す。第
10図は懸濁液の液滴径は800〜2300μmと変化
し、空塔ガス流速は1.3〜3.1m/Sに変化した・
又・懸濁液とガス量の比を1.5〜6と変化したときの
代表的な除し性能を示すものである。従来の燃焼排ガス
中の固形微粒子を補集した除しん性能より高除しん性能
が得られた。すなわち、本発明で示す吸収塔内での燃焼
排ガス中の固形微粒子を高効率で補集できることが明ら
かになった。Next, in the wet desulfurization equipment of the present invention, when the combustion exhaust gas and the suspension are brought into gas-liquid contact, it is checked whether the solid particles in the combustion exhaust gas can be collected or not. Figure 10 shows the dust removal performance results. Figure 10 shows that the droplet diameter of the suspension varied from 800 to 2300 μm, and the superficial gas flow velocity varied from 1.3 to 3.1 m/S.
It also shows typical removal performance when the ratio of suspension to gas amount is varied from 1.5 to 6. Higher dust removal performance was obtained than the conventional dust removal performance that collected solid particulates in combustion exhaust gas. That is, it has become clear that solid particles in the combustion exhaust gas can be collected with high efficiency in the absorption tower according to the present invention.
又、懸濁液のpHを亜硫酸カルシウムの酸化しやすい流
域にしたとき、第3図に示したようにSO□の吸収速度
に示したようにpH4以上ではあまり大きな影響を受け
ないことが明らかになったが、第11図に示す150m
m中の吸収塔での吸収実験を行いS02除去性能を検討
した。懸濁液はCaC0,0,4wt%、Ca5Ot%
、Ca5O,%とし、模擬燃焼排ガス中のSOz濃度は
11000ppとし、ガス流速は1.2m/Sとした。Furthermore, when the pH of the suspension is set to a region where calcium sulfite is easily oxidized, it is clear that the absorption rate of SO□ is not significantly affected at pH 4 or higher, as shown in Figure 3. 150m as shown in Figure 11.
Absorption experiments were carried out using an absorption tower in the middle of the experiment, and the S02 removal performance was investigated. Suspension is CaC0.0.4wt%, Ca5Ot%
, Ca5O,%, the SOz concentration in the simulated combustion exhaust gas was 11000 pp, and the gas flow rate was 1.2 m/S.
懸濁液pHと脱硫性能を第12図に示すように、pH4
近傍で脱硫性能は若干低下する傾向があるが、pH4以
上では脱硫性能にはあまり影響されておらず、第13図
に示すように懸濁液中の全5Off−?J1度が100
+−mol/ (l近傍になるとpH4近傍では脱硫性
能が低下するが、それ以下に30.3″−を保持すれば
本発明の湿式脱硫法は高脱硫性能が得られることがわか
った。As shown in Figure 12, the suspension pH and desulfurization performance are as follows:
Desulfurization performance tends to decrease slightly in the vicinity, but at pH 4 or higher, desulfurization performance is not affected much, and as shown in Figure 13, the total 5Off-? J1 degree is 100
+-mol/(1) Desulfurization performance decreases near pH 4, but it was found that if the pH value is maintained below 30.3''-, high desulfurization performance can be obtained in the wet desulfurization method of the present invention.
又、第4図に示す本発明の構成で示した酸化反応装置2
3での亜硫酸カルシウムの酸化速度は、pH領域が4近
傍では非常に早く、酸素吸収速度が律速過程にあり、空
気量の調整、空気アトマイズ法の改良で酸化速度は高め
ることができる。第14図はpHと全503−の飽和溶
解度曲線を示す。Further, the oxidation reaction apparatus 2 shown in the configuration of the present invention shown in FIG.
The oxidation rate of calcium sulfite in pH 3 is very fast in the pH range of around 4, and the rate of oxygen absorption is the rate-determining process, and the oxidation rate can be increased by adjusting the amount of air and improving the air atomization method. Figure 14 shows the pH and saturation solubility curves of all 503-.
pH4近傍では、70〜80 m−mol/ 1にある
が、第4図に示した酸化反応装置ff123で全量酸化
することが脱硫性能から好ましい。しかし第11図に示
した吸収塔の実験結果では固形の亜硫酸カルシウムを含
め全亜硫酸イオン濃度がpH4近傍の飽和溶解量に対し
て約1.3倍以下であれば脱硫性能は変らないことが明
らかにされた。At around pH 4, it is 70 to 80 mmol/1, but it is preferable from the viewpoint of desulfurization performance to oxidize the entire amount in the oxidation reactor ff123 shown in FIG. However, the experimental results of the absorption tower shown in Figure 11 show that the desulfurization performance remains unchanged as long as the total sulfite ion concentration, including solid calcium sulfite, is approximately 1.3 times or less than the saturated dissolved amount near pH 4. was made into
又、第5図に示すように、酸素溶解量を増やすために、
酸化反応装置23の高さ方向に空気を複数場所から供給
することが効率的であり、大きな石膏を回収するには、
酸化反応装置23の底部をユーン状とし、緩慢な撹拌作
用によって粗大石膏回収が可能である。Also, as shown in Figure 5, in order to increase the amount of dissolved oxygen,
It is efficient to supply air from multiple locations in the height direction of the oxidation reactor 23, and in order to recover large gypsum,
The bottom of the oxidation reactor 23 is shaped like a Yune, and coarse gypsum can be recovered by slow stirring.
第15図は本発明の性能を確認するため排ガスit60
ONm3/bの実ガス(石炭焚きボイラ)により確認
し、回収石膏の粒径分布を示した。石膏中の不純物とし
てはCaSO3・%1120が0.00002mol
/ l 、 CaC0tは未検出の結果を得た。このよ
うに回収された石膏純度からも本発明による湿式排煙脱
硫法が従来法と同じく市場性のある品質であることが明
らかになった。Figure 15 shows exhaust gas it60 to confirm the performance of the present invention.
The particle size distribution of the recovered gypsum was confirmed using actual gas (coal-fired boiler) of ONm3/b. As impurities in gypsum, CaSO3・%1120 is 0.00002 mol
/l, CaC0t was not detected. The purity of the gypsum recovered in this way also revealed that the wet flue gas desulfurization method according to the present invention has marketable quality as well as the conventional method.
特に、本発明法における酸化反応装置では、燃焼排ガス
中の硫黄酸化物の含有率によって、pH領域を空気供給
量の調整で行うことができる点にある。燃焼排ガス中の
硫黄酸化物含有率に応じて、供給する石灰石の供給量が
調整されるが、pHが低いため緩衝剤として次亜硫酸カ
ルシウムが生成し懸濁液のpHは大きな変動がなく所定
の酸化反応に適したpHで運用できる。又、空気量を増
やし、次亜硫酸カルシウムの酸化反応速度を早めるとp
Hは低下する傾向を示すので、第4図に示す酸化反応
装置8内の懸濁液pHは供給空気量の調整によって可能
となる。但し、空気量を増やすと脱炭酸反応も並発して
起り、pHを高める傾向を示すが、それらの影響は小さ
いことが明らかになった。Particularly, in the oxidation reaction apparatus according to the method of the present invention, the pH range can be adjusted by adjusting the air supply amount depending on the content of sulfur oxides in the combustion exhaust gas. The amount of limestone supplied is adjusted according to the sulfur oxide content in the combustion exhaust gas, but since the pH is low, calcium hyposulfite is produced as a buffer, and the pH of the suspension remains at the specified level without major fluctuations. It can be operated at a pH suitable for oxidation reactions. In addition, increasing the amount of air and accelerating the oxidation reaction rate of calcium hyposulfite will reduce p.
Since H tends to decrease, the pH of the suspension in the oxidation reactor 8 shown in FIG. 4 can be adjusted by adjusting the amount of air supplied. However, when the amount of air is increased, decarboxylation reactions occur simultaneously, which tends to increase the pH, but it has become clear that these effects are small.
本発明によれば、燃焼排ガス中の固形微粒子、硫黄酸化
物を懸濁液中に補集し、亜硫酸カルシウムの酸化反応に
好適なp H領域及び懸濁液のSo2吸収速度が低下し
ない亜硫酸根の含有率に限定することによって、円滑な
亜硫酸カルシウムの酸化が行えることと、亜硫酸根の酸
化量を空気吹き込み量で調整するようにしたものである
から、従来法のSot吸収速度と変らず脱硫性能が得ら
れる。According to the present invention, solid fine particles and sulfur oxides in combustion exhaust gas are collected in a suspension, and a pH range suitable for the oxidation reaction of calcium sulfite and a sulfite group that does not reduce the So2 absorption rate of the suspension are obtained. Smooth oxidation of calcium sulfite can be achieved by limiting the content of Sot, and since the amount of oxidation of sulfite radicals is adjusted by the amount of air blown, the desulfurization rate remains the same as the Sot absorption rate of the conventional method. Performance can be obtained.
又、燃焼排ガス中の硫黄酸化物の吸収除去と合せて、燃
焼排ガス中の固形状の微粒子が懸濁液に補集できること
が明らかになり、従来の除しん塔が不要となる。吸収塔
の下部に設置する亜硫酸カルシウムの酸化反応系では空
気供給量によって、亜硫酸カルシウムの酸化量が調整で
きるので、気液接触部に供給する懸濁液中の亜硫酸根量
を所定量以下に調整できるので、高脱硫性能が得られる
。In addition to absorption and removal of sulfur oxides in the combustion exhaust gas, it has also become clear that solid particles in the combustion exhaust gas can be collected in a suspension, making the conventional dust removal tower unnecessary. In the calcium sulfite oxidation reaction system installed at the bottom of the absorption tower, the amount of calcium sulfite oxidized can be adjusted by adjusting the air supply amount, so the amount of sulfite radicals in the suspension supplied to the gas-liquid contact section can be adjusted to a predetermined amount or less. As a result, high desulfurization performance can be obtained.
以上のように除じん、吸収、酸化機構を一塔に機能集約
化することで、石灰石の供給過剰率を低減でき、石灰石
の利用率を高める効果がある。又、亜硫酸カルシウムの
酸化反応系に供給する空気量によってpH調整が可能で
あり、亜硫酸カルシウムの酸化反応系への硫酸補充が不
要となり、ニーテリティ低減が可能となる。By integrating the functions of dust removal, absorption, and oxidation mechanisms into one tower as described above, it is possible to reduce the oversupply rate of limestone and have the effect of increasing the utilization rate of limestone. In addition, the pH can be adjusted by adjusting the amount of air supplied to the calcium sulfite oxidation reaction system, making it unnecessary to replenish sulfuric acid to the calcium sulfite oxidation reaction system, making it possible to reduce nutrition.
第1図は本発明の実施例に係る湿式排煙脱硫装置の原理
図、第2図から第5図は実験データを示すもので、第2
図は懸濁液p)(と脱離した気相中)SOt:a度ノ関
係、第3 図ハ懸濁液pH(!: soz 吸収速度の
関係、第4図は懸濁液pHとCaC0:+の酸化速度の
関係を示す。第5図は亜硫酸カルシウムの酸化反応装置
を示す断面図、第6図および第7図は空気アトマイザを
示す断面図、第8図および第9図は空気供給量と酸化速
度の関係を示す空気アトマイザの酸化性能特性図、第1
0図はダスト粒径と除しん率の関係を示すスプレー除し
ん性能特性図、第11図は実験装置の概略図、第12図
は懸濁液のpHと脱硫性能の関係を示す特性図、第13
図は懸濁液中の全803− とS(hの吸収速度比率
の関係を示す特性図、第14図はpHと全503−
の関係を示す特性図、第15図は石膏粒径と累積重量分
布の関係を示す特性図、第16図は従来の湿式排煙脱硫
装置の概略系統図である。
1・・・排ガス、3・・・吸収塔、5・・・循環タンク
、23・・・酸化反応装置、24・・・懸濁液、27・
・・酸素源供給装置。
第1図
第 3 図
→景4荀液界面でのpH(−)
第4図
第5図
第6図
第7図
第8図
□ 12 り1 イ5!−給 量 (Kg ハ )第9
図
I % M Di (Nrr?/h)
第10図
一タ゛スト4′iネトのI/z墳1(m a−5)第1
1図
第13図
0 50 100 +50 ZOO→懸濁*v+I
C齢o、−(m−moQ/見)第14図
一シpH(−)
第15図
−一う引骨村掻 (表m)Fig. 1 is a principle diagram of a wet flue gas desulfurization device according to an embodiment of the present invention, Figs. 2 to 5 show experimental data;
The figure shows the relationship between suspension p) (and the desorbed gas phase) SOt: a degree, Figure 3 shows the relationship between suspension pH (!: soz absorption rate), and Figure 4 shows the relationship between suspension pH and CaC0. : Shows the relationship between the oxidation rate of +.Figure 5 is a cross-sectional view showing a calcium sulfite oxidation reaction device, Figures 6 and 7 are cross-sectional views showing an air atomizer, and Figures 8 and 9 are air supply. Oxidation performance characteristic diagram of air atomizer showing the relationship between amount and oxidation rate, 1st
Figure 0 is a spray dust removal performance characteristic diagram showing the relationship between dust particle size and dust removal rate, Figure 11 is a schematic diagram of the experimental equipment, Figure 12 is a characteristic diagram showing the relationship between suspension pH and desulfurization performance, 13th
The figure is a characteristic diagram showing the relationship between the absorption rate ratio of total 803- and S(h) in the suspension, and Figure 14 shows the relationship between pH and total 503-
FIG. 15 is a characteristic diagram showing the relationship between gypsum particle size and cumulative weight distribution. FIG. 16 is a schematic system diagram of a conventional wet flue gas desulfurization apparatus. DESCRIPTION OF SYMBOLS 1... Exhaust gas, 3... Absorption tower, 5... Circulation tank, 23... Oxidation reaction device, 24... Suspension, 27.
...Oxygen source supply device. Figure 1 Figure 3 Figure → View 4 pH at the liquid interface (-) Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 □ 12 R1 I5! -Supply amount (Kg) 9th
Figure I % M Di (Nrr?/h) Figure 10: I/z Tomb 1 (m a-5) No. 1 of Taste 4'i Net
Figure 1 Figure 13 0 50 100 +50 ZOO → Suspension *v+I
C age o, - (m-moQ/view) Fig. 14 - pH (-) Fig. 15 - Ichi Uhikunemurakaki (Table m)
Claims (1)
と硫黄酸化物を含む燃焼排ガスとを気液接触させて脱硫
すると共に、排ガスの冷却、除じん、硫黄酸化物の吸収
除去を同一塔内で行ない副生物として石膏を回収する湿
式排煙脱硫方法において、前記塔内の循環タンク内で酸
素を含むガスと接触させることによって、懸濁液中の全
亜硫酸根の量がpH3.8における亜硫酸カルシウムの
飽和溶解量の1.3倍量以下になるように調整し、しか
る後に炭酸カルシウムあるいは水酸化カルシウムを添加
して、懸濁液のpHを3.8以上5.0以下に維持して
燃焼排ガスと気液接触させるようにしたことを特徴とす
る湿式排煙脱硫方法。A suspension containing calcium carbonate or calcium hydroxide is brought into gas-liquid contact with combustion exhaust gas containing sulfur oxides to desulfurize it, and the exhaust gas is also cooled, dust removed, and sulfur oxides absorbed and removed in the same tower. In a wet flue gas desulfurization method for recovering gypsum as a living organism, the amount of total sulfite in the suspension is reduced to saturation of calcium sulfite at pH 3.8 by contacting it with an oxygen-containing gas in a circulation tank in the tower. Adjust the amount to be 1.3 times or less of the dissolved amount, then add calcium carbonate or calcium hydroxide to maintain the pH of the suspension at 3.8 or more and 5.0 or less and remove it from the combustion exhaust gas. A wet flue gas desulfurization method characterized by bringing gas into liquid contact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60135982A JPS61293528A (en) | 1985-06-24 | 1985-06-24 | Wet stack-gas desulfurization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60135982A JPS61293528A (en) | 1985-06-24 | 1985-06-24 | Wet stack-gas desulfurization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61293528A true JPS61293528A (en) | 1986-12-24 |
JPH0579364B2 JPH0579364B2 (en) | 1993-11-02 |
Family
ID=15164422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60135982A Granted JPS61293528A (en) | 1985-06-24 | 1985-06-24 | Wet stack-gas desulfurization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61293528A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9604644B2 (en) | 2012-08-08 | 2017-03-28 | Toyota Jidosha Kabushiki Kaisha | Running control system for vehicle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60179120A (en) * | 1984-02-28 | 1985-09-13 | Mitsubishi Heavy Ind Ltd | Process for treating waste gas with separation and recovery of gypsum and dust |
-
1985
- 1985-06-24 JP JP60135982A patent/JPS61293528A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60179120A (en) * | 1984-02-28 | 1985-09-13 | Mitsubishi Heavy Ind Ltd | Process for treating waste gas with separation and recovery of gypsum and dust |
Also Published As
Publication number | Publication date |
---|---|
JPH0579364B2 (en) | 1993-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0536085B2 (en) | ||
WO2016163318A1 (en) | Method and device for wet flue-gas desulfurization | |
JPH0359730B2 (en) | ||
JPH0523535A (en) | Removal of acidic gas from combustion exhaust gas | |
WO1998034716A1 (en) | Method of processing desulfurization absorption liquid and apparatus therefor | |
JP7196575B2 (en) | Method for detoxifying exhaust gas containing sulfur dioxide | |
JPS61293528A (en) | Wet stack-gas desulfurization method | |
JPS62225226A (en) | Wet stack-gas desulfurization facility | |
JPS62193630A (en) | Method and equipment for wet stack-gas desulfurization | |
JPS62225227A (en) | Method for controlling operation of wet stack-gas desulfurization facility | |
JPH11290646A (en) | Method and device for wet flue gas desulfurization | |
JPH0691938B2 (en) | Method for removing sulfur oxides in exhaust gas | |
JPH0526525B2 (en) | ||
JPS6261620A (en) | Wet waste gas desulfurization method | |
JPH04346816A (en) | Treatment of exhaust gas | |
JPH1157395A (en) | Treatment of stack gas and stack gas treating device | |
JPS6094117A (en) | Wet desulfurizer | |
JP4192319B2 (en) | Wet flue gas desulfurization method and wet flue gas desulfurization apparatus | |
JPS62244426A (en) | Wet flue gas desulfurization method | |
JPH0410899Y2 (en) | ||
JPS62114630A (en) | Wet waste gas desulfurizing apparatus | |
JPS61216718A (en) | Wet waste gas desulfurization apparatus | |
JPS621440A (en) | Wet waste gas desulfurization apparatus | |
JPS62121619A (en) | Wet exhaust gas desulfurization device | |
JPH09308815A (en) | Wet flue gas desulfurization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |