[go: up one dir, main page]

JPS61293450A - Artificial blood vessel - Google Patents

Artificial blood vessel

Info

Publication number
JPS61293450A
JPS61293450A JP60113783A JP11378385A JPS61293450A JP S61293450 A JPS61293450 A JP S61293450A JP 60113783 A JP60113783 A JP 60113783A JP 11378385 A JP11378385 A JP 11378385A JP S61293450 A JPS61293450 A JP S61293450A
Authority
JP
Japan
Prior art keywords
artificial blood
blood vessel
tube
annular
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60113783A
Other languages
Japanese (ja)
Other versions
JPH0218098B2 (en
Inventor
靖 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60113783A priority Critical patent/JPS61293450A/en
Publication of JPS61293450A publication Critical patent/JPS61293450A/en
Publication of JPH0218098B2 publication Critical patent/JPH0218098B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合成高分子、特に弗素含有合成高分子又はポリ
ウレタンを構成成分とする人工血管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an artificial blood vessel comprising a synthetic polymer, particularly a fluorine-containing synthetic polymer or polyurethane.

〔発明の概要〕[Summary of the invention]

本発明は、合成樹脂製の人工血管において、人工血管チ
ューブの外周部に外周に沿って環状突起を設け、この環
状突起の平均半値幅とこの環状突起の平均高さとの間に
特定の関係を規定し、この環状突起が該人工血管の周囲
を一周する間に隣接する環状突起との間に交絡して一体
化して外周突起を形成しているようにすることにより、
キンキング現象(曲げたときの折れる現象)なしに曲げ
られ、破裂強度が大きく、長期開存性の優れた人工血管
を得るようにしたものである。
The present invention provides an artificial blood vessel made of synthetic resin, in which an annular projection is provided along the outer periphery of the artificial blood vessel tube, and a specific relationship is established between the average half-width of the annular projection and the average height of the annular projection. By specifying that the annular protrusion intertwines and integrates with adjacent annular protrusions while going around the artificial blood vessel to form a peripheral protrusion,
The purpose is to obtain an artificial blood vessel that can be bent without the kinking phenomenon (a phenomenon of breaking when bent), has high bursting strength, and has excellent long-term patency.

〔従来の技術〕[Conventional technology]

現在、人工血管としては、ポリエステル繊維の編織物で
構成された人工血管と弗素樹脂系の人工血管が主として
用いられている。ポリエステル系の人工血管は、ポリエ
チレンテレフタレートの化学構造をもつ繊維からなり、
キンキング現象を防止するために蛇腹状にクリンプをつ
けて用いられている。一方、弗素樹脂系の人工血管はポ
リテトラフルオロエチレンを構成成分とし、これを熱延
伸して血液接触面をフィブリル化(小繊維群化)して用
いられている。
Currently, as artificial blood vessels, artificial blood vessels made of knitted fabrics of polyester fibers and artificial blood vessels made of fluororesin are mainly used. Polyester-based artificial blood vessels are made of fibers with a chemical structure of polyethylene terephthalate.
It is used with a bellows-shaped crimp to prevent the kinking phenomenon. On the other hand, fluororesin-based artificial blood vessels are made of polytetrafluoroethylene, which is hot-stretched to fibrillate the blood-contacting surface (fine fiber clusters).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

弗素樹脂系の人工血管はポリエステル系の人工血管より
も、小口径人工血管で長期開存性に優れているが、大き
い欠点も有している。それは製造において血液接触面を
フィブリル化する際に、延伸を行っており、この延伸に
よって分子が延伸方向に配向してしまうため、延伸方向
、すなわち人工血管チューブの長さの方向に沿ってさけ
目が出来やすいことである。実際に実験室的にテストし
てみても、又実用してみても人工血管の長さ方向にそっ
ての破裂が生じたり、ちょうど動脈留のように一部が膨
張し、この膨張部分は極めてさけ易くなる。これは人体
における静豚留、動脈音発生に相当する現象であり、実
用に際してこれらの欠点を克服することは極めて重要で
ある。
Although fluororesin-based artificial blood vessels are small-diameter artificial blood vessels and have superior long-term patency than polyester-based artificial blood vessels, they also have major drawbacks. When fibrillating the blood-contacting surface during manufacturing, stretching is performed, and this stretching causes the molecules to be oriented in the stretching direction. This is something that is easy to do. Even in actual laboratory tests and practical tests, rupture along the length of the artificial blood vessel occurs, or a portion of the artificial blood vessel swells, just like an arterial stent, and this swollen part is extremely It becomes easier to avoid. This is a phenomenon equivalent to static stasis and arterial sound generation in the human body, and it is extremely important to overcome these drawbacks in practical use.

従来弗素樹脂よりなる人工血管においては、この現象を
防止するために、別に延伸した同種のテープ状のものを
、弗素樹脂人工血管の長さ方向と実質的にほぼ直角に、
前記人工血管に巻きつけるようにし、人工血管壁を、長
さ方向と、長さ方向に実質的にほぼ直角的に配向した二
層より構成させてこれを防止する方策がとられている。
Conventionally, in artificial blood vessels made of fluororesin, in order to prevent this phenomenon, a separately stretched tape-like material of the same type is stretched substantially perpendicular to the length direction of the fluororesin artificial blood vessel.
Measures have been taken to prevent this by wrapping the artificial blood vessel around the artificial blood vessel and making the artificial blood vessel wall composed of two layers, one in the length direction and one oriented substantially at right angles to the length direction.

あるいは又、長さ方向に分子が配列して縦方向(人工血
管の長さ方向)にそってさけ易くなったことを防止する
ため、たとえばポリプロピレン製の糸をこ゛の人工血管
の外周に螺旋状に巻つけてこの目的を達成しようとする
試みもあるが、これらの方法ではまだ充分に安心して弗
素樹脂系の人工血管を、圧力のかかる動脈系に用いるこ
とに不安がある。
Alternatively, in order to prevent the molecules from arranging in the length direction and becoming easy to avoid along the longitudinal direction (the length direction of the artificial blood vessel), for example, a polypropylene thread can be wrapped around the outer periphery of the artificial blood vessel in a spiral shape. Some attempts have been made to achieve this goal by wrapping the fluororesin-based artificial blood vessel around the body, but there are still concerns that these methods can be used safely in arterial systems that are subject to pressure.

現在開発されつつあるポリウレタン系の人工血管も同様
の危険性を秘めており、これらの改良がつよく望まれて
いる。いまひとつの問題点は、キンキング現象である。
Polyurethane-based artificial blood vessels that are currently being developed have similar risks, and improvements in these are highly desired. Another problem is the kinking phenomenon.

このキンキング現象は人工血管を末梢血管代用に用いる
とき、ひざやひじの曲げに対して容易に生じ、かなりの
曲率で曲げてもこのキンキング現象をおこさない人工血
管の出現がつよく要望されていた。
When an artificial blood vessel is used as a substitute for a peripheral blood vessel, this kinking phenomenon easily occurs when the knee or elbow is bent, and there has been a strong desire for an artificial blood vessel that does not cause this kinking phenomenon even when bent to a considerable degree of curvature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上に提示した問題点の解決のために構造的な
面らか検討し、種々の試みを重ねた結果1、本発明に到
達した。
In order to solve the above-mentioned problems, the present inventor studied structural aspects and made various attempts, and as a result 1, he arrived at the present invention.

本発明の要旨とするところは、合成樹脂、殊に弗素樹脂
系又はポリウレタン系の人工血管であって、第1図に示
すように、人工血管チューブ1の外周部2に、該人工血
管の長さ方向に実質的に直角方向に外周に沿って環状突
起3を設け、この環状突起3の平均半値幅w(*n)が
突起の平均高さ高さh(w)との間に 0、IT≦W≦2T−・−・−・・・(1)の関係があ
り、この環状突起は該人工血管の周囲を一周する間に隣
接する環状突起との間に少くとも3ケ所において互いに
交絡して一体化して外周突起を形成していることを特徴
とする人工血管に関するものである。
The gist of the present invention is to provide an artificial blood vessel made of synthetic resin, particularly fluororesin or polyurethane, in which, as shown in FIG. An annular protrusion 3 is provided along the outer periphery in a direction substantially perpendicular to the horizontal direction, and the average half width w (*n) of the annular protrusion 3 is between 0 and the average height h (w) of the protrusion. There is a relationship of IT≦W≦2T−・−・−・(1), and while this annular projection goes around the artificial blood vessel, it intertwines with the adjacent annular projections in at least three places. The present invention relates to an artificial blood vessel characterized in that the two are integrated to form a peripheral protrusion.

ここで半値幅とは前記環状突起3の高さの−の高さすな
わち−h(MM)における前記環状突起の幅幅w(m)
である。環状突起3はW≦−Tであることが好ましく、
≦−Tであると更に好ましい。
Here, the half width is the height of the annular protrusion 3 minus the height, that is, the width w (m) of the annular protrusion at -h (MM).
It is. It is preferable that the annular projection 3 satisfies W≦−T,
It is more preferable that ≦−T.

外周部2に形成される環状突起3は前記人工血管チュー
ブ1と一体に成形されており、この環状突起の数nは、
人工血管の内径#(mm)と、この人工血管の長さ2龍
内の環状突起の平均の数丁との間に例えば次の関係式 %式%(2) の範囲にありかつ人工血管チューブ】の厚みd(n)と
環状突起の平均半価幅w(mm)との間に0.1 d≦
7≦10 d−−−−−−・・・−・・・・・(3)の
ような条件をみたすと曲げに対して抗キンキング性を発
揮しかつ強い破裂強度を示すためには好ましい。すなわ
ち環状突起の数nが内径lに対し7て上記条件より少い
と曲げに対する順応性がなくてキンキング現象を生じて
不自然となり、又余りに突起部分の数が多いと伸縮性に
欠けて、あたかも肉厚のチューブのようになって曲げら
れないという場合が生じ得る。よって上記(2)式の条
件を満たせば容易に急角度に曲げることが出来るので好
ましい。本発明における環状突起3は該人工血管チュー
ブと同種の素材で出来ていることが望ましい。
The annular protrusion 3 formed on the outer circumference 2 is integrally formed with the artificial blood vessel tube 1, and the number n of the annular protrusions is:
For example, the relationship between the inner diameter # (mm) of the artificial blood vessel and the average number of annular protrusions within the length of this artificial blood vessel is within the range of the following relational expression % (2) and the artificial blood vessel tube ] 0.1 d≦ between the thickness d(n) and the average half-width w(mm) of the annular protrusion
7≦10 d It is preferable to satisfy the condition (3) in order to exhibit kink resistance against bending and to exhibit strong bursting strength. In other words, if the number n of annular protrusions is less than the above condition (7) with respect to the inner diameter l, there will be no bending flexibility and a kinking phenomenon will occur, resulting in an unnatural appearance.If the number of protrusions is too large, the elasticity will be lacking and the shape will look as if it were There may be cases where it becomes like a thick-walled tube and cannot be bent. Therefore, it is preferable to satisfy the condition of the above formula (2) because it can be easily bent to a steep angle. It is desirable that the annular protrusion 3 in the present invention be made of the same material as the artificial blood vessel tube.

(1)式は更に好ましくは一≦W≦T−・−一−−−・
・・・(1)′の範囲にある。
The formula (1) is more preferably 1≦W≦T−・−1−−・
...(1)' is within the range.

(2)式は更に好ましくは 0.21!≦7≦4I!・−一−−−−−−−−−−−
−・・−・(2)′の範囲にあり、 (3)式は更に好ましくは 0.3d≦7≦5 d 、−−−−−−−−−−−−・
・−・ (3)′の間にある。また人工血管は手術での
場合、縫合に際して、人工血管壁の薄い方が容易であり
、その縫合仕上げの良し悪しによって長期開存性が左右
されるので、吻合し易いこと、縫合しやすいことは大変
重要である。吻合や縫合の容易さは人工血管の肉厚によ
って決り、薄い方が吻合、縫合に適している。ところが
、薄くなると破裂強度かよりくなって欠点を露呈する。
Equation (2) is more preferably 0.21! ≦7≦4I!・−1−−−−−−−−−
−・・−・(2)′, and formula (3) is more preferably 0.3d≦7≦5 d, −−−−−−−−−−−・
... (3) It is between '. In addition, when suturing an artificial blood vessel during surgery, it is easier to suture the thinner the artificial blood vessel wall, and long-term patency depends on the quality of the suture finish. Very important. The ease of anastomosis and suturing is determined by the thickness of the artificial blood vessel, and the thinner the wall, the more suitable for anastomosis and suturing. However, as it becomes thinner, its bursting strength becomes weaker, exposing its shortcomings.

そこで、好ましくはく3)式に示すように肉厚dと環状
突起の半値幅を規定すると、破裂強度も充分で縫合性、
吻合性に優れ、しかもキンキング現象なしに曲率半径を
小さく曲げることが出来る。本発明は力学的性能に優れ
極めて小さい曲率半径でキンキング現象なしに曲げるこ
とが出来る新しい人工血管を提供するものである。
Therefore, it is preferable to define the wall thickness d and the half-width of the annular protrusion as shown in equation 3), so that the bursting strength is sufficient and the sutureability is
It has excellent anastomotic properties and can be bent to a small radius of curvature without kinking. The present invention provides a new artificial blood vessel that has excellent mechanical performance and can be bent with an extremely small radius of curvature without any kinking phenomenon.

本発明は別の表現をすると、人工血管の環状突起物の断
面幅に対して環状突起物の突起高を一定範囲に規制し、
好ましくは人工血管の直径に対しである範囲の環状突起
の数を規定し、また好ましくは人工血管の肉厚に対して
、環状突起の断面幅をある範囲に規制すれば、破裂強度
が強くキンキング現象なしに急カーブに曲げられる人工
血管となることを見出したのである。
Expressed in another way, the present invention regulates the protrusion height of the annular protrusion within a certain range with respect to the cross-sectional width of the annular protrusion of the artificial blood vessel,
Preferably, if the number of annular protrusions is defined within a certain range for the diameter of the artificial blood vessel, and preferably the cross-sectional width of the annular protrusions is regulated within a certain range for the wall thickness of the artificial blood vessel, the bursting strength is strong and kinking is achieved. They discovered that the artificial blood vessel could be bent into sharp curves without any phenomenon.

本発明によれば、内径A’(w)・の人工血管において
は該人工血管の中心線4(第2図参照)の曲率半径r(
−)が1.51以下、更に1.01以下、更に0.8f
以下にまでキンキング現象なしに曲げることが可能であ
る。これは、本発明に示したように人工血管を構成する
ことによって人工血管が各部とも夫々可なりの自由度を
もって伸縮出来るので、曲げた場合人工血管の曲げの曲
率中心側(内側)は縮みうるし、外側(曲げの中心すな
わち曲率中心より遠い方向)は伸びうる性質が付与され
たためである。
According to the present invention, in an artificial blood vessel having an inner diameter of A'(w), the radius of curvature r(
-) is 1.51 or less, furthermore 1.01 or less, furthermore 0.8f
It is possible to bend the following without kinking phenomenon. This is because by configuring the artificial blood vessel as shown in the present invention, each part of the artificial blood vessel can expand and contract with a considerable degree of freedom, so when the artificial blood vessel is bent, the center of curvature side (inside) of the bending of the artificial blood vessel can shrink. This is because the outer side (direction far from the center of bending, that is, the center of curvature) is given the property of being stretchable.

このようにキンキング現象なしに小さい曲率半径で曲げ
うるためにはさらにこの人工血管が伸縮性を有すること
が望ましく、第3A図の無負荷状態の自然長し。に対し
て第3B図のように人工血管の長さ方向に圧縮したとき
の長さし、との間に0.1Lo≦Lp≦0.7 L。
In order to be able to bend with a small radius of curvature without the kinking phenomenon, it is desirable that this artificial blood vessel has elasticity, and the natural length in the unloaded state shown in FIG. 3A. As shown in Figure 3B, the length of the artificial blood vessel when compressed in the longitudinal direction is 0.1Lo≦Lp≦0.7L.

好ましくは 0.3LO≦L、≦0.6L。Preferably 0.3LO≦L, ≦0.6L.

更に好ましくは 0.3L、  ≦しい ≦0.5LO の範囲に圧縮可能な人工血管が好ましい。More preferably 0.3L, ≦I≦0.5LO An artificial blood vessel that can be compressed within the range of

本発明の人工血管の環状突起3は規則正しく整然とした
ものよりも不規則な方が好ましい。その理由は、不規則
に交絡した方があらゆる方向に応力が伝達して、高い破
裂抵抗を示すからである。
It is preferable that the annular protrusion 3 of the artificial blood vessel of the present invention be irregular rather than regular. The reason for this is that irregular intertwining allows stress to be transmitted in all directions, resulting in higher burst resistance.

言いかえると、破裂は局所的に力がかかり、機械的に弱
いところに切裂が生じるのであるから環状突起がランダ
ムに構成されている方が局所的な欠陥を補い易い。
In other words, since a rupture is caused by a localized force and a tear occurs in a mechanically weak area, it is easier to compensate for local defects if the annular protrusions are arranged randomly.

本発明の人工血管におい才は、さらに平均半値幅w(m
)に対して、隣接する環状突起間の平均間隔D (m)
を 0.37≦D≦157 の間に設定することが好ましい。
The advantage of the artificial blood vessel of the present invention is that the average half-width w (m
), the average distance between adjacent annular protrusions D (m)
is preferably set between 0.37≦D≦157.

このようなものは、あとで実施例でのべるように弗素樹
脂系では成形加工条件を適当に変えてつくることができ
るし、ポリウレタンの場合も加工時に環状突起付与の間
隔を適当にあければよい。
Such a product can be made by appropriately changing the molding conditions in the case of a fluororesin, as will be described later in the examples, and in the case of polyurethane, the intervals between the annular protrusions may be appropriately spaced during processing.

本発明に用いる弗素樹脂はポリテトラフルオロエチレン
が用いられ、改質の目的で他の物質、たとえばアクリル
系樹脂やボIfウレタンを添加してもよい。又はポリテ
トラフルオロエチレン共重合体たとえば四弗化エチレン
−パーフルオロアルコキシビニルエーテル共重合体、四
弗化エチレン−エチレン共重合体、四弗化エチレン−プ
ロピレン共重合体、三弗化エチレン塩化エチレン、弗化
ビニリデンであってもよい。
The fluororesin used in the present invention is polytetrafluoroethylene, and other substances such as acrylic resin or polyurethane may be added for the purpose of modification. or polytetrafluoroethylene copolymers such as tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-propylene copolymer, trifluoroethylene chloride, fluoroethylene Vinylidene chloride may also be used.

ポリウレタンはポリエステル系、ポリエーテル系のポリ
ウレタンウレア又はポリウレタンがいずれも用いられる
。ポリウレタンとしてはソフトセグメント成分にポリテ
トラメチレンオキシドを含むものが力学的性質の点から
殊に有用である。
As the polyurethane, either polyester-based, polyether-based polyurethane urea or polyurethane can be used. As polyurethanes, those containing polytetramethylene oxide as a soft segment component are particularly useful from the viewpoint of mechanical properties.

〔作用〕[Effect]

本発明に示された手段を人工血管に付与することにより
、破裂強度が大きく、小さい曲率半径で曲げることが出
来る新しい性能を付与した人工血管の提供が可能となり
、動脈系に使用出来る合成樹脂製の長期開存性に優れた
人工血管の提供が可能となったものである。
By adding the means shown in the present invention to an artificial blood vessel, it is possible to provide an artificial blood vessel with new performance such as high burst strength and bendability with a small radius of curvature. This makes it possible to provide an artificial blood vessel with excellent long-term patency.

〔実施例〕〔Example〕

以下実施例によって本発明の詳細な説明する。 The present invention will be explained in detail below with reference to Examples.

(実施例 1〜6) 分子量1600の両末端水酸基のポリテトラメチレング
リコールと4,4′ジフエニルメチレンジイソシアネー
トをジメチルアセトアミド中で反応させて、両末端イソ
シアネートのプレポリマーをつくり、これを常法によっ
てエチレンジアミンで鎖延長してポリウレタンウレアを
合成した。次いで、メタノールを加えて沈殿させ、沈殿
物を再びジメチルアセトアミドにとかし、不溶のゲル状
物質を除いた後、メタノールを加えて沈殿させた。
(Examples 1 to 6) Polytetramethylene glycol having a molecular weight of 1600 and having hydroxyl groups at both ends was reacted with 4,4' diphenylmethylene diisocyanate in dimethylacetamide to produce a prepolymer having isocyanates at both ends, and this was prepared by a conventional method. Polyurethane urea was synthesized by chain extension with ethylenediamine. Next, methanol was added to cause precipitation, and the precipitate was dissolved again in dimethylacetamide to remove insoluble gel-like substances, and then methanol was added to cause precipitation.

このポリウレタンを再びジメチルアセトアミドにとかし
て16%の溶液とし、これを環状スリットから押し出し
て直接又は空気層を通した後水中に導き凝固させて、内
径(1)が夫々3B、4n、5酊、8m、10龍、13
mmのポリウレタンチューブ6をつくった(第4図参照
)。これらのチューブの内腔に略密着するようにステン
レス棒7を差込み、ステンレス棒7を長さ方向を回転軸
として回転させ1第4図に示すように、ポリウレタン濃
厚溶液8を一定の速さでノズル9から押し出してポリウ
レタンチューブ6の外壁に押し出し、このステンレス棒
を一定方向に移動させて乾燥炉1に導く。塗布されたポ
リウレタン溶液は遠心力によって回転軸に対して直角方
向に伸び、これが乾燥炉に入って溶媒が蒸発し、炉から
出たチューブには螺旋状の環状突起11が形成された。
This polyurethane was again dissolved in dimethylacetamide to make a 16% solution, which was extruded through an annular slit and solidified into water either directly or after passing through an air layer. 8m, 10 dragons, 13
A polyurethane tube 6 with a diameter of 6 mm was prepared (see Fig. 4). Insert the stainless steel rods 7 into the inner cavities of these tubes so that they are in close contact with each other, and rotate the stainless steel rods 7 with the length direction as the axis of rotation.1 As shown in Fig. 4, the concentrated polyurethane solution 8 is applied at a constant speed. It is extruded from the nozzle 9 onto the outer wall of the polyurethane tube 6, and the stainless steel rod is moved in a certain direction and guided into the drying oven 1. The applied polyurethane solution was stretched in a direction perpendicular to the axis of rotation by centrifugal force, entered a drying oven, the solvent was evaporated, and a spiral annular protrusion 11 was formed on the tube that came out of the oven.

この場合、ポリウレタン濃厚溶液吐出ノズル9をチュー
ブ6の長さ方向に移動させつつ押し出してチューブにつ
けると、隣接した環状突起が互いに交絡するようにさせ
ることが出来る。このようにして出来た人工血管の寸法
は夫々第1表に示す通りであった。
In this case, by moving the polyurethane concentrated solution discharging nozzle 9 in the length direction of the tube 6 and extruding it onto the tube, adjacent annular protrusions can be intertwined with each other. The dimensions of the artificial blood vessels thus produced were as shown in Table 1.

(以下余白、次頁につづく。) 1−−」ニーー表 (注)表中の各記号の意味は次の通りである。(The following is the margin, continued on the next page.) 1--” knee table (Note) The meaning of each symbol in the table is as follows.

T: 環状突起の平均の高さく龍) W: 環状突起の平均の半値幅(1m)n:  内径j
2(mm)の時、人工血管の長さl ++++間隔内の
環状突起の平均数 d: 人工血管チューブの肉厚(鰭) l: 人工血管の内径(鰭) D: 環状突起間の平均間隔(11) r: キンキングなしに曲げられる最小の曲率半径(−
m)(実施例7) 偵延長剤としてブタンジオールを用いた他は実施例1と
同様にして合成したポリウレタンを用いて内径6鶴のポ
リウレタンチューブをつくり、これに実施例1と同様に
ステンレスの棒を内挿し、このステンレス棒を長さ方向
中心線で回転しつつ、ポリウレタン濃厚溶液を不規則に
間欠的にチューブの長さ方向に適時移動させつつ吐出し
てポリウレタンチューブの外壁に帯状につけ、隣接して
いるポリウレタン帯が互いに交絡するようにした。
T: Average height of the annular protrusion) W: Average half width of the annular protrusion (1 m) n: Inner diameter j
2 (mm), the length of the artificial blood vessel l +++++ Average number of annular processes within the interval d: Wall thickness of the artificial blood vessel tube (fin) l: Inner diameter of the artificial blood vessel (fin) D: Average spacing between the annular processes (11) r: Minimum radius of curvature that can be bent without kinking (-
m) (Example 7) A polyurethane tube with an inner diameter of 6 mm was made using polyurethane synthesized in the same manner as in Example 1, except that butanediol was used as a lengthening agent, and a stainless steel tube was made into this tube in the same manner as in Example 1. A rod is inserted, and while the stainless steel rod is rotated along its longitudinal centerline, a concentrated polyurethane solution is irregularly and intermittently moved in the length direction of the tube and discharged to form a band on the outer wall of the polyurethane tube. Adjacent polyurethane strips were made to intertwine with each other.

ポリウレタンチューブ上についたポリウレタンの濃厚溶
液部分は遠心力によって遠心力方向に、すなわちチュー
ブの長さ方向に対して直角の方向に伸びる。この状態で
ステンレス心棒を乾燥炉に導いて溶媒を除くと、互いに
交絡しつつ、チューブの長さ方向に略直角の環状突起を
有する人工血管となった。
The concentrated solution of polyurethane on the polyurethane tube is stretched by centrifugal force in the direction of the centrifugal force, ie, perpendicular to the length of the tube. In this state, the stainless steel mandrel was introduced into a drying oven to remove the solvent, resulting in an artificial blood vessel having annular projections that were intertwined with each other and were approximately perpendicular to the length direction of the tube.

この人工血管の環状突起の高さは平均1.5鶴、長さc
fl中の突起の数は7、平均半値幅は0.5m、環状突
起間の平均間隔(D)は0.8m、肉厚(d)は0.8
富嘗である。
The average height of the annular protrusion of this artificial blood vessel is 1.5 cranes, and the length is c.
The number of protrusions in fl is 7, the average half width is 0.5 m, the average distance between the annular protrusions (D) is 0.8 m, and the wall thickness (d) is 0.8
This is Tomiyoshi.

この場合のり、/ L Oは0.40であった。In this case, the glue/LO was 0.40.

(実施例8−12)(第5図参照) 市販の四弗化エチレン樹脂(三井フロロケミカル社製テ
フロン)1kgと押し出し助剤(液状潤滑剤)としての
ホワイトオイル(スモイルP−55゜封栓石油社製)2
60ccとをタンブラ−で均一に混合し、これを加圧予
備成形後、ラム押し出し機でチューブ状に押し出した。
(Example 8-12) (See Figure 5) 1 kg of commercially available tetrafluoroethylene resin (Teflon manufactured by Mitsui Fluorochemical Co., Ltd.) and white oil as an extrusion aid (liquid lubricant) (Sumoil P-55° sealing cap) (manufactured by Sekiyusha) 2
60 cc were uniformly mixed in a tumbler, preformed under pressure, and then extruded into a tube shape using a ram extruder.

次いでホワイトオイルをその沸点以下の温度で加熱して
充分除去した。
The white oil was then heated at a temperature below its boiling point to thoroughly remove it.

この状態のチューブ12の内腔に略密着する状態にステ
ンレス棒13を挿入し、これを回転しつつ、鋭利な刃物
14でチューブの内壁より一部を残して切れ目15を入
れる。
In this state, the stainless steel rod 13 is inserted into the inner cavity of the tube 12 so as to be in close contact therewith, and while rotating the stainless steel rod 13, a cut 15 is made with a sharp knife 14 leaving a part of the inner wall of the tube.

切れ目15は完全に円周せず、ところどころに切れ目を
つくる。このとき切れ目のないところ16を一円周当り
3ケ所つくるようにする。切れ目と切れ目との横間隔は
正確にしても又故意に不正確にしてもよい。
The cuts 15 are not completely circumferential, but are made here and there. At this time, three unbroken areas 16 are created per circumference. The lateral spacing between cuts may be precise or intentionally inaccurate.

このチューブを327℃以下の温度で1.2倍〜10倍
に延伸するが200℃位が適当である。本例では20c
mのチューブを200℃に加熱した状態で急速に100
個に延伸した。この処置によって切れ目の部分が強度に
延伸され、切れ目と切れ目の間には力がかからないので
延伸されず、第3A図の如き本発明の構造となる。
This tube is stretched 1.2 to 10 times at a temperature of 327°C or lower, preferably about 200°C. In this example, 20c
m tube heated to 200℃ and rapidly heated to 100℃.
It was stretched into pieces. By this treatment, the cut portions are strongly stretched, and since no force is applied between the cuts, they are not stretched, resulting in the structure of the present invention as shown in FIG. 3A.

延伸後のチューブが収縮しないように両端を固定し、チ
ューブの端に冷却空気を導入するパイプを接続し、他端
を閉じ、温度をあげて320℃になったときO″、4k
g/c+dの空気圧を急激に導入し、この空気圧を保持
しながら温度を上昇させ400℃に達すると今度は急激
に冷やして室温にもどした。このようにして以下の内径
と形態の人工血管をつ(った。この人工血管は極めて小
さい曲率でキンキングなしに曲げることが出来る。
Fix both ends of the stretched tube to prevent it from shrinking, connect a pipe to introduce cooling air to one end of the tube, close the other end, raise the temperature, and when it reaches 320℃, it will reach O'', 4k.
An air pressure of g/c+d was rapidly introduced, the temperature was raised while maintaining this air pressure, and when it reached 400° C., it was then rapidly cooled to return to room temperature. In this way, we created an artificial blood vessel with the following inner diameter and configuration. This artificial blood vessel has an extremely small curvature and can be bent without kinking.

結果を以下の第2表に一括した。The results are summarized in Table 2 below.

(以下余白、次頁につづく。) 第一一」L−一部 表中の記号は第1表の脚注に示したと同じ意味を有する
(The following margins are continued on the next page.) Symbols in the 11th L-Part table have the same meanings as shown in the footnotes of Table 1.

〔発明の効果] 本発明によって弗素樹脂系及びポリウレタン系の如き合
成樹脂よりなる人工血管で破裂強度が大きくて充分動脈
用の血管として使用出来、しかも小さい曲率半径でキン
キングなしに曲げられ、末梢血管代用に使用出来、長期
開存性に優れた人工血管の提供が可能となった。
[Effects of the Invention] According to the present invention, artificial blood vessels made of synthetic resins such as fluororesin and polyurethane have high bursting strength and can be used as arterial blood vessels.Moreover, they can be bent without kinking with a small radius of curvature, and can be used as peripheral blood vessels. It has now become possible to provide an artificial blood vessel that can be used as a substitute and has excellent long-term patency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明の人工血管の一実施例を示す斜視図、
第1B図は第1A図の人工血管の縦断面図、第2図は第
1図の人工血管を折り曲げた状態で示す部分正面図、第
3A図は第1図の人工血管の無負荷状態の概略正面図、
第3B図は第3A図の人工血管を圧縮した状態の概略正
面図、第4図と第5図は本発明の人工血管を製造する方
法を説明するための図である。 なお図面に用いた符号において、 1・・・−−−一−−−−−・−・・・人工血管チュー
ブ2−・−一一−−−−−−−−−−−−外周部3.1
1・・−・・−・−・−環状突起である。
FIG. 1A is a perspective view showing an embodiment of the artificial blood vessel of the present invention;
Figure 1B is a longitudinal sectional view of the artificial blood vessel shown in Figure 1A, Figure 2 is a partial front view of the artificial blood vessel shown in Figure 1 in a bent state, and Figure 3A is a view of the artificial blood vessel shown in Figure 1 in an unloaded state. Schematic front view,
FIG. 3B is a schematic front view of the artificial blood vessel shown in FIG. 3A in a compressed state, and FIGS. 4 and 5 are diagrams for explaining the method of manufacturing the artificial blood vessel of the present invention. In addition, in the symbols used in the drawings, 1...--1--------... Artificial blood vessel tube 2---11-------------- Outer peripheral part 3 .1
1・・・・・−・−・−It is an annular projection.

Claims (1)

【特許請求の範囲】 合成樹脂製の人工血管であって、人工血管チューブの外
周部に外周に沿って環状突起を設け、この環状突起の平
均半値幅@w@(mm)とこの環状突起の平均高さ@h
@(mm)との間に 0.1@h@≦@w@≦2@h@ なる関係があり、この環状突起は該人工血管の周囲を一
周する間に隣接する環状突起との間に少くとも3ケ所に
おいて交絡して一体化して外周突起を形成していること
を特徴とする人工血管。
[Claims] An artificial blood vessel made of synthetic resin, in which an annular protrusion is provided along the outer periphery of the artificial blood vessel tube, and the average half-width @w@(mm) of the annular protrusion and the annular protrusion are Average height @h
There is a relationship between 0.1@h@≦@w@≦2@h@ and @ (mm), and this annular process has a relationship between it and the adjacent annular process while going around the artificial blood vessel. An artificial blood vessel characterized by being intertwined and integrated at at least three locations to form a peripheral protrusion.
JP60113783A 1985-05-27 1985-05-27 Artificial blood vessel Granted JPS61293450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60113783A JPS61293450A (en) 1985-05-27 1985-05-27 Artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60113783A JPS61293450A (en) 1985-05-27 1985-05-27 Artificial blood vessel

Publications (2)

Publication Number Publication Date
JPS61293450A true JPS61293450A (en) 1986-12-24
JPH0218098B2 JPH0218098B2 (en) 1990-04-24

Family

ID=14620987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60113783A Granted JPS61293450A (en) 1985-05-27 1985-05-27 Artificial blood vessel

Country Status (1)

Country Link
JP (1) JPS61293450A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332035A (en) * 1978-11-30 1982-06-01 Sumitomo Electric Industries, Ltd. Porous structure of polytetrafluoroethylene and process for production thereof
EP0137605A1 (en) * 1983-08-03 1985-04-17 Shiley Incorporated Vascular graft prosthesis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332035A (en) * 1978-11-30 1982-06-01 Sumitomo Electric Industries, Ltd. Porous structure of polytetrafluoroethylene and process for production thereof
EP0137605A1 (en) * 1983-08-03 1985-04-17 Shiley Incorporated Vascular graft prosthesis

Also Published As

Publication number Publication date
JPH0218098B2 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US3105492A (en) Synthetic blood vessel grafts
US5607464A (en) Prosthetic vascular graft with a pleated structure
US7879085B2 (en) ePTFE crimped graft
CA2243477C (en) A radially supported polytetrafluoroethylene vascular graft
USRE31618E (en) Tubular organic prosthesis
CA1066456A (en) Vascular insert and process for making it
US4647416A (en) Method of preparing a vascular graft prosthesis
AU648699B2 (en) A catheter with a balloon
US3337673A (en) Uniformly corrugated prosthesis and process of making same
US5700287A (en) Prosthetic vascular graft with deflectably secured fibers
US5910168A (en) Prosthetic vascular graft
US7244271B2 (en) Self-sealing PTFE vascular graft and manufacturing methods
US4550447A (en) Vascular graft prosthesis
US4731073A (en) Arterial graft prosthesis
US5192310A (en) Self-sealing implantable vascular graft
US20070244539A1 (en) Self-sealing PTFE vascular graft and manufacturing methods
EP0128501B1 (en) Artificial vessel and process for preparing the same
JPS61293450A (en) Artificial blood vessel
JPS61272047A (en) Artificial blood vessel
JPS61293451A (en) Artificial blood vessel
JPS62343A (en) Fluorocarbon resin type artificial blood vessel and its production
JPS61293452A (en) Fluororesin artificial blood vessel and its production
EP0596905A1 (en) Vascular prosthesis
JP2005152181A (en) Embedding-type tubular treating tool
JPS60182958A (en) Artifical vessel