JPS61292126A - Liquid crystal shutter device - Google Patents
Liquid crystal shutter deviceInfo
- Publication number
- JPS61292126A JPS61292126A JP60133796A JP13379685A JPS61292126A JP S61292126 A JPS61292126 A JP S61292126A JP 60133796 A JP60133796 A JP 60133796A JP 13379685 A JP13379685 A JP 13379685A JP S61292126 A JPS61292126 A JP S61292126A
- Authority
- JP
- Japan
- Prior art keywords
- light
- liquid crystal
- film
- crystal cell
- polarizing plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Camera Data Copying Or Recording (AREA)
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明は、主にカメラのH付写し込み装置に用いる液
晶シャッタ装置に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates primarily to a liquid crystal shutter device used in an H imprinting device of a camera.
(ロ)従来の技術
従来のカメラのH付写し込み装置に用いられる液晶シャ
ッタ装置では、日付文字のパターンを十分な濃度でコン
トラスト長<撮影するために、液晶セルのパターン電極
を介して露光過度になる程の光量の大きい光を感光フィ
ルムに供給するとともに、パターン部分以外の背景部分
にはメタルマスクを取付けて、前頭部分からもれる光を
フィルムに対して遮断するようにしている。(B) Conventional technology In the liquid crystal shutter device used in the H imprinting device of a conventional camera, in order to photograph the date character pattern with sufficient density and contrast length, overexposure is applied through the pattern electrode of the liquid crystal cell. A large amount of light is supplied to the photosensitive film, and a metal mask is attached to the background area other than the pattern area to block light leaking from the frontal area to the film.
(ハ)発明が解決しようとする問題点
しかしながら、メタルマスクには100虐前後の窓を加
工し、しかもそれをパターン電極に精度よく位置合わせ
することが要求されるので、従来の液晶シャッタ装置は
、製造■稈が煩雑ぐ歩留りが低く、コスト^になるとい
う問題点があった。(c) Problems to be Solved by the Invention However, since it is required to process a window of around 100 squares in the metal mask and precisely align it with the pattern electrode, the conventional liquid crystal shutter device cannot However, there were problems in that the manufacturing process was complicated, the yield was low, and the cost was high.
この発明はこのような事情に鑑みてなされたもので、液
晶セルのパターン部分以外の背景部分からもれる光を、
メタルマスクを使用することなく十分に減少させ、実用
的で生産性の良好な液晶シャッタ装置を提供するもので
ある。This invention was made in view of these circumstances, and it reduces the light leaking from the background area other than the pattern area of the liquid crystal cell.
The object of the present invention is to provide a liquid crystal shutter device which is sufficiently reduced without using a metal mask, and which is practical and has good productivity.
(ニ)問題を解決するための手段
一般にカメラに使用されるこの種の液晶シャッタ装置に
は、その収納スペースをコンパクトにするため反射板が
使用され、それによって光源の光を一皮反射させて液晶
部とフィルムとに供給するようにしている。(d) Means for solving the problem This type of liquid crystal shutter device, which is generally used in cameras, uses a reflector to make the storage space more compact, thereby reflecting a portion of the light from the light source. The liquid is supplied to the liquid crystal section and the film.
この発明は、この反射板の反射光の偏光特性に着目した
もので、その偏光特性を利用することにより従来の液晶
シャッタ装置の構成部品をほとんど変更することなく、
フィルムの露光量を最適に調整することを特徴とする。This invention focuses on the polarization characteristics of the reflected light from this reflector, and by utilizing the polarization characteristics, it can be used without changing the components of conventional liquid crystal shutter devices.
It is characterized by optimally adjusting the exposure amount of the film.
この発明の構成を第1図(ωを用いて説明する。The configuration of this invention will be explained using FIG. 1 (ω).
(101)は光源、(102)は光源(ioi>からの
入射光(LO)を入射し楕円偏光した反射光(11)を
発する反射板、(103a ) (103b )は反
射光(L 1 )の光路に設けられ相互に平行な透過軸
(B)(D)をもつ2枚の偏光板、(104)は90°
ねじれネマチック配向処理が施こされた一対の透明電極
基板(104a) (104b)間に正の誘電異方性
のネマチック液晶(104C)が封入されて偏光板(1
03a) (103b)間に介在する液晶セルである
。(101) is a light source, (102) is a reflector that receives incident light (LO) from the light source (ioi> and emits elliptically polarized reflected light (11), and (103a) and (103b) are reflected light (L 1 ). Two polarizing plates with transmission axes (B) and (D) parallel to each other are provided in the optical path of , (104) is 90°
A nematic liquid crystal (104C) with positive dielectric anisotropy is sealed between a pair of transparent electrode substrates (104a) (104b) subjected to twisted nematic alignment treatment, and a polarizing plate (104C)
03a) This is a liquid crystal cell interposed between (103b).
これらは、偏光板(103a) (103b)の透過軸
〔矢印(B)およびl)方向〕が反射光(+−1>の楕
円偏光の長軸(矢印(A)方向〕に対して所定の角度(
θ)をな【ノ、液晶セルの光入射側の基板(104a)
の内面に接する液晶分子の長軸方向〔矢印(B)〕が偏
光板(103a)の透過軸〔矢印(B)方向〕と平行(
又は直交)して配置され液晶シャッタ装置を構成する。These are such that the transmission axes of the polarizing plates (103a) and (103b) [direction of arrows (B) and angle(
θ), the substrate on the light incident side of the liquid crystal cell (104a)
The long axis direction [arrow (B)] of the liquid crystal molecules in contact with the inner surface of is parallel to the transmission axis [arrow (B) direction] of the polarizing plate (103a) (
or perpendicular) to constitute a liquid crystal shutter device.
なお、(1ns)はこのシャッタ装置によって踊影する
写貞用フィルムである。Note that (1 ns) is a photographic film whose image is captured by this shutter device.
(ホ)作 用
この発明の作用を第1図(a) −(C)を用いて説明
する。光源(101)から発した光(LO)は、その電
気ベクトルがかたよることなくあらゆる方向に振動して
いる。この光(LO)が、第1図山)に示すように金属
表面などの反射板(102)に照射されると、反射板(
102)の表面内に振動方向をもつX軸方向のベクトル
成分が最も強く反射されると共に、V軸方向のベクトル
成分が最も弱く反射されて、第1図(C)に示すように
長軸と短軸の長さの比が大きい楕円偏光を生ずる。(E) Function The function of this invention will be explained using FIGS. 1(a) to (C). The light (LO) emitted from the light source (101) vibrates in all directions without changing its electric vector. When this light (LO) is irradiated onto a reflective plate (102) such as a metal surface as shown in Figure 1, the reflective plate (
The vector component in the X-axis direction, which has a vibration direction within the surface of 102), is reflected most strongly, and the vector component in the V-axis direction is reflected most weakly. Produces elliptically polarized light with a large short axis length ratio.
従って、第1図(a)のように、光(LO)は、反射板
(102)に反射されると矢印(A)方向に長軸をもつ
楕円偏光(Ll)となる。そこで、この矢印(A)方向
に偏光板(103a)の透過軸を一致させると楕円偏光
(Ll)の長軸に対応する最も大きい光量の光が液晶セ
ル(104)に入射され、矢印(A)方向に偏光板(1
03a)の透過軸を直交させると楕円偏光([1)の短
軸に対応する最も小さい光mの光が液晶セル(104)
に入射される。Therefore, as shown in FIG. 1(a), when the light (LO) is reflected by the reflection plate (102), it becomes elliptically polarized light (Ll) with its long axis in the direction of the arrow (A). Therefore, if the transmission axis of the polarizing plate (103a) is aligned with the direction of the arrow (A), the largest amount of light corresponding to the long axis of the elliptically polarized light (Ll) will be incident on the liquid crystal cell (104), ) in the polarizing plate (1
When the transmission axes of 03a) are orthogonal to each other, the smallest light m corresponding to the short axis of the elliptically polarized light ([1)] is the liquid crystal cell (104).
is incident on the
すなわち、矢印(A>方向と偏光板(103a)とのな
す角度(θ)を選択すれば、第1図(C)に示す楕円偏
光の長軸(×軸)から短軸(V軸)のベクトルの角度(
θ)に対応する光量が偏光板(103a)を介して液晶
セル(104)に入射され、液晶セル(104)に入射
する光量が広い範囲にわたって任意に設定される。That is, by selecting the angle (θ) between the arrow (A> direction and the polarizing plate (103a)), the change from the long axis (x axis) to the short axis (V axis) of the elliptically polarized light shown in FIG. Vector angle (
θ) is incident on the liquid crystal cell (104) via the polarizing plate (103a), and the amount of light incident on the liquid crystal cell (104) is arbitrarily set over a wide range.
第1図(a)において、矢印(B)方向に偏光された光
(L2)は、液晶セルに入射して、液晶分子の捩れに沿
って90°だけ回転し、偏光(L3)となって偏光板(
103b)に達する。偏光(L3)と偏光板(103b
)の透過軸は直交するので、大部分はの光はそこで遮断
され微小な光量の光(L4)がフィルム(107)に達
する。一方、液晶セル(1oe)の電極間に所定の電圧
が印加されると、電極パターン間の液晶は旅先性を失う
ので光(L2)は液晶セル(106)に入射して電極パ
ターン部分を透過し、その偏光方向のまま偏光(L5)
として偏光板(103b)に達する。偏光(L5)と偏
光板(103b)の透過軸は平行であるので、大部分の
光はそのまま透過して光量の大きい光([6)としてフ
ィルム(107)に達し、フィルム(107)にパター
ンを感光させる。In Figure 1(a), light (L2) polarized in the direction of arrow (B) enters the liquid crystal cell, rotates by 90° along the twist of the liquid crystal molecules, and becomes polarized light (L3). Polarizer(
103b). Polarized light (L3) and polarizing plate (103b
) are perpendicular to each other, most of the light is blocked there, and only a small amount of light (L4) reaches the film (107). On the other hand, when a predetermined voltage is applied between the electrodes of the liquid crystal cell (1oe), the liquid crystal between the electrode patterns loses its traveling property, so the light (L2) enters the liquid crystal cell (106) and passes through the electrode pattern part. Then, the polarized light (L5) remains in that polarization direction.
As a result, the light reaches the polarizing plate (103b). Since the transmission axes of the polarized light (L5) and the polarizing plate (103b) are parallel, most of the light passes through as is and reaches the film (107) as light with a large amount of light ([6), which creates a pattern on the film (107). expose to light.
そこで、光(1−4>(パターン部分以外の背景部分の
光)による露光量はフィルムに対して十分に露光不定と
なり、パターン部分の光([6)はフィルムに対して適
正露光となるように、光(Ll)の光量が角度(θ)に
よって選択される。Therefore, the amount of exposure due to light (1-4> (light from the background area other than the pattern area) is sufficiently unstable for the film, and the light from the pattern area ([6) is set to provide appropriate exposure for the film. Then, the amount of light (Ll) is selected by the angle (θ).
従って、このように構成すれば、従来のように背景部分
の光をメタルマスクを用いて遮断する必要がなくなる。Therefore, with this configuration, there is no need to block the light in the background portion using a metal mask as in the conventional case.
(へ)実施例
以十、図面に示す実施例に基づいてこの発明を詳述する
。なお、これによってこの発明が限定されるものではな
い。(f) Embodiments From the following ten examples, the present invention will be described in detail based on the embodiments shown in the drawings. Note that this invention is not limited to this.
第2図Ta)はカメラの日付写し込み装置に用いる液晶
シャッタ装置であり、(1)は光源、(2)は反射板、
(3a) (3b) ハ偏光板、(4)は液晶セル、
(5)はフィルム、(6)はカメラボディである。Figure 2 Ta) shows a liquid crystal shutter device used in a camera's date imprint device, where (1) is a light source, (2) is a reflector,
(3a) (3b) C polarizing plate, (4) liquid crystal cell,
(5) is the film, and (6) is the camera body.
光源(1)にはタングステンランプを、反射板(2)に
は表面が鏡面処理されたアルミ板を、偏光板(3a)(
3b)にはLL02 82−188型(王立化成■製)
をそれぞれ使用している。また、液晶セル(4)の2枚
の基板には厚さ0.55 mmのガラス基板を使用し、
その一方にはITO膜を用いたホト・エツチング法によ
って日付は文字用の透明パターン電極を形成し、他方も
同様にして透明共通電極を形成する。The light source (1) is a tungsten lamp, the reflection plate (2) is an aluminum plate with a mirror-finished surface, and the polarizing plate (3a) (
3b) is LL02 82-188 type (manufactured by Royal Kasei ■)
are used respectively. In addition, glass substrates with a thickness of 0.55 mm are used for the two substrates of the liquid crystal cell (4),
On one side, a transparent pattern electrode for date and characters is formed by photo-etching using an ITO film, and on the other side, a transparent common electrode is formed in the same manner.
これらの基板表面の両方にラビング処理を施こす。液晶
には、屈折率異方性(八〇)の大きなネマチック液晶た
とえば商品名N r、2108 (Roche側製)を
使用する。A rubbing process is applied to both of these substrate surfaces. As the liquid crystal, a nematic liquid crystal with a large refractive index anisotropy (80), for example, a trade name Nr, 2108 (manufactured by Roche) is used.
次に、第2回出)を用いて第2図(a)の光路に対する
位置関係と作用を説明する。光源(1)から発した光(
MO)が反射板(2)で反射されると、その反射光(M
l)は楕円偏光となって、矢印(A1)方向に楕円の長
軸をもち矢印(A2)方向に楕円の短軸をもつ偏光とな
る。偏光板(3a) (3b)は、その透過軸〔矢印
(B1)および(Dl)方向〕が反射光(Ml)の楕円
偏光の長軸〔矢印(A1)方向〕に対して直交するよう
に、すなわち反射光(Ml)の楕円偏光の短軸〔矢印(
A2)方向〕に一致するように配置される。液晶セル(
4)は、ラビング処理された基板(4a)が偏光板(3
a)に対=7−
向すると共に、基板(4a)の内面に接する液晶分子の
長軸方向(フビング方向)が偏光板(3a)の透過軸(
矢印(B1)方向〕と平行するように配置される。Next, the positional relationship and effect with respect to the optical path in FIG. 2(a) will be explained using the second example. Light emitted from light source (1) (
When the light (MO) is reflected by the reflector (2), the reflected light (M
1) becomes elliptically polarized light, with its long axis in the direction of arrow (A1) and its short axis in the direction of arrow (A2). The polarizing plates (3a) (3b) are arranged so that their transmission axes [in the directions of arrows (B1) and (Dl)] are perpendicular to the long axis [in the direction of arrow (A1)] of the elliptically polarized light of the reflected light (Ml). , that is, the short axis of the elliptically polarized light of the reflected light (Ml) [arrow (
A2) direction]. Liquid crystal cell (
4), the rubbed substrate (4a) is attached to the polarizing plate (3).
a), and the long axis direction (fubing direction) of the liquid crystal molecules in contact with the inner surface of the substrate (4a) is the transmission axis (3a) of the polarizing plate (3a).
arrow (B1) direction].
従って、反射光(Ml)は、楕円偏光の短軸方向の成分
のみが偏光板(3a)を透過し光(M2)となってセル
(4)へ入射する。光(M2)はその偏光軸がセル(4
)の内部で90°ねじられて光(M3)となって偏光板
(3b)に到達する。偏光板(3b)の透過軸は光(M
3)の偏光軸を直交するので、光(M3)の大部分は偏
光板(3b)に吸収されごく微量光(M4)(背景部分
の光)となってフィルム(5)に達する。Therefore, in the reflected light (Ml), only the component in the short axis direction of the elliptically polarized light passes through the polarizing plate (3a), becomes light (M2), and enters the cell (4). The light (M2) has its polarization axis aligned with the cell (4
) is twisted by 90° and becomes light (M3), which reaches the polarizing plate (3b). The transmission axis of the polarizing plate (3b) is the light (M
3), most of the light (M3) is absorbed by the polarizing plate (3b) and reaches the film (5) as a very small amount of light (M4) (background light).
一方、セル(4)の基板(4a) (4b)の電極間
に所定の電圧が印加されると、電極間の液晶は電場方向
に配列し90°の旋光性を消失するので、偏光(M2)
はセル(4)によって旋光されることなく電極のパター
ン部分を透過して光(M5)となって偏光板(3b)に
達する。偏光板(3b)の透過軸は光(M5)の偏光軸
と平行であるので、光(M5)の大部分は偏光板(3b
)にほとんど吸収されることなく、光(MO)(パター
ン部分の光)となってフィルム(5)に達する。光(M
O)と(M4)との光量の比すなりらコントラスト比は
4ユに液晶セル(4)の特性によって決定されるが、こ
の実施例では60:1という一般的な値である。On the other hand, when a predetermined voltage is applied between the electrodes of the substrates (4a) and (4b) of the cell (4), the liquid crystal between the electrodes aligns in the direction of the electric field and loses its 90° optical rotation. )
The light is not rotated by the cell (4), but passes through the patterned part of the electrode, becomes light (M5), and reaches the polarizing plate (3b). Since the transmission axis of the polarizing plate (3b) is parallel to the polarization axis of the light (M5), most of the light (M5) passes through the polarizing plate (3b).
) and reaches the film (5) as light (MO) (light from the patterned portion). Light (M
The contrast ratio, which is the ratio of the amounts of light between O) and M4, is determined by the characteristics of the liquid crystal cell (4), but in this example it is a common value of 60:1.
第3図は、この実施例に使用した4輿用フィルム(5)
の露光量(D)に対する濃度(E)の特性の一例を示す
グラフである。フィルム(5)が光(MO)と(M4)
によって感光されるとき、それらに対応するフィルム(
5)への露光量は(E6)(E4)となりこれらに対応
するフィルム(5)の濃度はそれぞれ(B6)(B4)
となる。このとき(F6):(F4)は60:1である
。Figure 3 shows the 4-carriage film (5) used in this example.
3 is a graph showing an example of the characteristic of density (E) with respect to exposure amount (D). Film (5) is light (MO) and (M4)
When exposed to light, their corresponding films (
The exposure amount to 5) is (E6) (E4), and the corresponding density of film (5) is (B6) (B4), respectively.
becomes. At this time, (F6):(F4) is 60:1.
ところで、従来の液晶シャッタ装置においては、偏光板
(3a) (3b)の偏光軸は楕円偏光(Ml)の長
軸に平行に配置される。従って、光(MO)と(M4)
とのコントラスト比は60:1であってもそれらの光量
が大ぎいためフィルム(5)に対する露光量(E)はそ
れぞれ第3図に示す(F6’ )(E4’ )となり、
背景部分の濃度変化が大きくなってしまう。つまりそれ
らに対応するフィルム濃度(D)は各々(D6’ )(
D4’ )となってパターン部分のみならず、その背景
部分までも高い濃度でフィルムに写し込まれる。故に、
従来の液晶シャッタ装置では、この露光量(E4’)を
抑制するためにセル(4)にメタルマスクを使用せざる
を得ない。By the way, in the conventional liquid crystal shutter device, the polarization axes of the polarizing plates (3a) (3b) are arranged parallel to the long axis of the elliptically polarized light (Ml). Therefore, light (MO) and (M4)
Even though the contrast ratio with the film (5) is 60:1, the amount of light is large, so the exposure amount (E) for the film (5) is (F6') (E4') as shown in Figure 3, respectively.
The density change in the background area becomes large. In other words, the corresponding film densities (D) are (D6') (
D4'), and not only the pattern part but also the background part is imprinted on the film with high density. Therefore,
In the conventional liquid crystal shutter device, a metal mask must be used for the cell (4) in order to suppress this exposure amount (E4').
これに対して、この実施例によれば、メタルマスクを使
用せずに文字のパターン部分は十分な濃度でフィルム(
5)に写し込まれるが、背景部分は濃度が非常に低くほ
とんど写し込まれないという液晶シャッタ装置が提供さ
れる。On the other hand, according to this embodiment, the character pattern area is covered with a film (with sufficient density) without using a metal mask.
5) However, there is provided a liquid crystal shutter device in which the background portion has a very low density and is hardly imprinted.
この発明の他の実施例として、液晶が二色性色素を含有
したネマチック液晶である場合について説明する。As another embodiment of the present invention, a case where the liquid crystal is a nematic liquid crystal containing a dichroic dye will be described.
第2図(a)山)に示す実施例の液晶セル(4)の液晶
として二色性色素例えばアントラキノン系色素CLD
506を2重間%を含有し正の誘電異方性を有した屈折
率異方性の大きいネマチック液晶を使用すると、色素は
液晶分子の配向に従う。従って、液晶セル(4)に入射
する光(M2)は二色性色素によって吸収をうけながら
90°旋光し、光(M3)として偏光板(3h)に到達
する。この二色性色素は波長600〜700nlBの光
をもつともよく吸収するので、光(M3)の波長600
〜1000mの成分は液晶セル(4)の内部で減衰され
、更に偏光板(3b)で遮断されてその透過光(M4)
(背景部分の光)はほとんどフィルム(5)に到達しな
い。一方、電極に電圧が印加されると、電極間の色素の
吸収軸も液晶分子に従い基板(4a) (4fi)に
対して垂直になるので入射光(M2)はほとんど吸収さ
れることなく、またその偏光軸が旋回されることなく電
極のパターン部を透過して光(M5)となって偏光板(
3b)に達する。偏光板(3b)の透過軸は光(M5)
の偏光軸と平行であるので、光(M5)の大部分はその
まま光(M6)(パターン部分の光)となってフィルム
(5)に達する。A dichroic dye such as an anthraquinone dye CLD was used as the liquid crystal of the liquid crystal cell (4) of the example shown in FIG.
When a nematic liquid crystal containing 506% by double and having positive dielectric anisotropy and a large refractive index anisotropy is used, the dye follows the orientation of the liquid crystal molecules. Therefore, the light (M2) incident on the liquid crystal cell (4) is rotated by 90° while being absorbed by the dichroic dye, and reaches the polarizing plate (3h) as light (M3). This dichroic pigment absorbs light with a wavelength of 600 to 700 nlB, so if the wavelength of light (M3) is 600 nlB,
The component of ~1000m is attenuated inside the liquid crystal cell (4), and further blocked by the polarizing plate (3b) to transmit the transmitted light (M4).
Almost no light (light from the background) reaches the film (5). On the other hand, when a voltage is applied to the electrodes, the absorption axis of the dye between the electrodes also follows the liquid crystal molecules and becomes perpendicular to the substrates (4a) (4fi), so the incident light (M2) is hardly absorbed; The polarization axis passes through the electrode pattern without being rotated and becomes light (M5) on the polarizing plate (
3b) is reached. The transmission axis of the polarizing plate (3b) is light (M5)
Since the light (M5) is parallel to the polarization axis of the light (M5), most of the light (M5) directly becomes light (M6) (light of the pattern portion) and reaches the film (5).
ところで一般の写真用フィルムの光の波長に対する感光
感度の特性は第4図のように示され、とくに60θ〜7
00nmの波長の光に対してその感度が^くなっている
。前述のようにこの実施例においては、背景部分の光と
してフィルム(5)に達する光(M4)は、この波長領
域においセル(4)の内部で吸収されるので、フィルム
(5)から見た実質的な光(M6)と(M4)とのコン
トラスト比はさらに大きくなり、この実施例では約10
0: 1になる。By the way, the photosensitivity characteristics of general photographic films with respect to the wavelength of light are shown as shown in Figure 4.
Its sensitivity to light with a wavelength of 00 nm is ᄒ. As mentioned above, in this example, the light (M4) reaching the film (5) as background light is absorbed inside the cell (4) in this wavelength range, so the light (M4) as seen from the film (5) The substantial contrast ratio between lights (M6) and (M4) is even larger, approximately 10 in this example.
0: becomes 1.
従って、フィルム(5)の露光#!(E)は、第3図に
示すように、光(M6)については(E6)となって前
述の実施例とほぼ同等であるが、光(M4)については
(E4″)となって、それに対応する濃度(D)が極度
に低トしほぼ零に等しくなっている。このように1液晶
にフィルムによく感光する波長の光を吸収する二色性色
素を混合させることにより、パターン部分以外の背景部
分の光は、さらに減衰されてフィルムに感光されなくな
り、パターン部分のみの撮影が良好に行われる。Therefore, exposure # of film (5)! As shown in FIG. 3, (E) is (E6) for light (M6), which is almost the same as the above example, but for light (M4), it is (E4''), The corresponding density (D) is extremely low and almost equal to zero.In this way, by mixing one liquid crystal with a dichroic dye that absorbs light at a wavelength that is well sensitive to the film, the pattern area Light from other background areas is further attenuated and is no longer exposed to the film, allowing only the pattern area to be photographed successfully.
(ト)発明の効果
この発明によれば、写真フィルムに写し込むパターン部
分とその背景部分のフィルム露光量を、光源からの光を
反射させる反射板の偏光特性を利用して調整することに
より、パターン部分のフィルム濃度を適正に保ちつつ、
背景部分のフィルムII瓜を十分に低減させることが可
能となるので、背景部分にメタルマスクを設ける必要が
なくなり、実用的で生産性の良好な液晶シャッタ装置が
提供される。(G) Effects of the Invention According to this invention, by adjusting the film exposure amount of the pattern portion to be imprinted on the photographic film and its background portion by using the polarization characteristics of the reflector that reflects the light from the light source, While maintaining the appropriate film density in the pattern area,
Since it is possible to sufficiently reduce the appearance of Film II in the background portion, there is no need to provide a metal mask in the background portion, and a practical liquid crystal shutter device with good productivity is provided.
第1図(a)はこの発明の構成を示す説明図、第1図(
tn (C)は反射板の偏光を示す説明図、第2図(a
)はこの発明の一実施例を示す説明図、第2図+toは
第2図(ωの構成を示す説明図、第3および第4図は写
真用フィルムの特性を示すグラフである。
(1)・・・・・・光源、 (2)・・・・・・反射
板、(3a) (3b)・・・・・・偏光板、 (4
)・・・・・・液晶セル、(5)・・・・・・写真用フ
ィルム。
第1図(b)
第1図(C)FIG. 1(a) is an explanatory diagram showing the configuration of the present invention, FIG.
tn (C) is an explanatory diagram showing the polarization of the reflector, Fig. 2 (a
) is an explanatory diagram showing one embodiment of the present invention, FIG. 2+to is an explanatory diagram showing the structure of FIG. )...Light source, (2)...Reflector, (3a) (3b)...Polarizing plate, (4
)...Liquid crystal cell, (5)...Photographic film. Figure 1 (b) Figure 1 (C)
Claims (1)
射板と、前記反射板の光路に設けられ相互に平行な透過
軸をもつ2枚の偏光板と、90°ねじれネマチック配向
処理が施こされた一対の透明電極基板間に正の誘導異方
性のネマチック液晶が封入されて形成され前記偏光板間
に介在する液晶セルとを備え、 前記2枚の偏光板の透過軸が前記反射板の反射光の楕円
偏光の長軸に対して所定の角度をなし且つ前記液晶セル
の光入射側の基板内面に接する液晶分子の長軸方向が前
記偏光板の透過軸と平行又は直交するように構成された
液晶シャッタ装置。 2、2枚の偏光板の透過軸が、反射板の反射光の楕円偏
光の長軸に対して直交する特許請求の範囲第1項記載の
液晶シャッタ装置。 3、ネマチック液晶が、600〜700nmの波長を吸
収する二色性色素を含有する特許請求の範囲第1項記載
の液晶シャッタ装置。[Scope of Claims] 1. A light source, a reflecting plate that reflects the light from the light source and makes it elliptically polarized, and two polarizing plates provided in the optical path of the reflecting plate and having mutually parallel transmission axes; ° a liquid crystal cell formed by sealing a nematic liquid crystal with positive induction anisotropy between a pair of transparent electrode substrates subjected to twisted nematic alignment treatment and interposed between the polarizing plates; The transmission axis of the plate makes a predetermined angle with the long axis of the elliptically polarized light reflected by the reflecting plate, and the long axis direction of the liquid crystal molecules in contact with the inner surface of the substrate on the light incident side of the liquid crystal cell is transmitted through the polarizing plate. A liquid crystal shutter device configured to be parallel or perpendicular to the axis. 2. The liquid crystal shutter device according to claim 1, wherein the transmission axes of the two polarizing plates are orthogonal to the long axis of the elliptically polarized light reflected by the reflecting plate. 3. The liquid crystal shutter device according to claim 1, wherein the nematic liquid crystal contains a dichroic dye that absorbs wavelengths of 600 to 700 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60133796A JPS61292126A (en) | 1985-06-19 | 1985-06-19 | Liquid crystal shutter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60133796A JPS61292126A (en) | 1985-06-19 | 1985-06-19 | Liquid crystal shutter device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61292126A true JPS61292126A (en) | 1986-12-22 |
Family
ID=15113220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60133796A Pending JPS61292126A (en) | 1985-06-19 | 1985-06-19 | Liquid crystal shutter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61292126A (en) |
-
1985
- 1985-06-19 JP JP60133796A patent/JPS61292126A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4569574A (en) | Optical modulation device with masking structure and method of driving the same | |
KR100289026B1 (en) | Method and apparatus for shifting polarization pattern | |
US3890628A (en) | Liquid crystal light control device and circuit | |
JPH0366646B2 (en) | ||
JPS599639A (en) | Liquid crystal display element | |
JP2006085130A (en) | Liquid crystal display and method for manufacturing the same | |
JPS61292126A (en) | Liquid crystal shutter device | |
JPS60162227A (en) | Twisted nematic liquid-crystal display device | |
JPS62169120A (en) | spatial light modulator | |
JP2000347179A (en) | Color filter for transmissive liquid crystal display device and transmissive liquid crystal display device | |
JPH11119439A (en) | LCD mask type exposure marking system | |
US6576407B2 (en) | Method of improving astigmatism of a photoresist layer | |
JPS63123002A (en) | Color filter for liquid crystal display body and its production | |
SU1277057A1 (en) | Method of producing images from photomasters on transparent base | |
JPH07307278A (en) | Projection exposure device | |
JPH0341420A (en) | MIM liquid crystal electro-optical device and its manufacturing method | |
KR100282933B1 (en) | LCD panel and projection display device using same | |
KR940009164B1 (en) | Manufacturing method of color filter of color liquid crystal display | |
JPS6097315A (en) | Display device | |
JPH09189808A (en) | Method for processing color photographic material | |
JPH10268282A (en) | Liquid crystal element | |
JPH01107291A (en) | Liquid crystal color display device | |
JPS59116721A (en) | liquid crystal display device | |
JP3161331B2 (en) | Projection type liquid crystal electro-optical device | |
JPH01254935A (en) | Data imprinting device for camera |