JPS61288381A - Manufacture of fuel cell composing element - Google Patents
Manufacture of fuel cell composing elementInfo
- Publication number
- JPS61288381A JPS61288381A JP60130288A JP13028885A JPS61288381A JP S61288381 A JPS61288381 A JP S61288381A JP 60130288 A JP60130288 A JP 60130288A JP 13028885 A JP13028885 A JP 13028885A JP S61288381 A JPS61288381 A JP S61288381A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- fuel cell
- plate
- support
- thickness distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000002002 slurry Substances 0.000 claims abstract description 46
- 238000001125 extrusion Methods 0.000 claims abstract description 13
- 238000005520 cutting process Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 11
- 210000003850 cellular structure Anatomy 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000010304 firing Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 125000005587 carbonate group Chemical group 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 17
- 238000001035 drying Methods 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 13
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 210000002445 nipple Anatomy 0.000 description 6
- 239000004014 plasticizer Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/0252—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form tubular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8864—Extrusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、燃料電池のための構成要素の製造方法に関し
、詳しくは、特に、溶融炭酸塩型燃料電池のための電極
板又は電解質板として好適に用いることができる均一な
厚み分布を有する板状、又は規則的な厚み分布によって
所定の断面形状を有する板状の電池構成要素を製造する
方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing components for fuel cells, in particular as electrode plates or electrolyte plates for molten carbonate fuel cells. The present invention relates to a method for manufacturing a plate-shaped battery component having a uniform thickness distribution, or a plate-shaped battery component having a predetermined cross-sectional shape with a regular thickness distribution, which can be suitably used.
(従来の技術)
近年、電解質として溶融炭酸塩を用いて、高温で作動さ
せる溶融炭酸塩型燃料電池が、高い発電効率を有するう
えに、利用可能な燃料の種類が多いこと、白金等のよう
な貴金属触媒を必要としないこと、高温作動させるため
に質の高い排熱が回収されること等のために、注目を集
めており、実用化が進められている。(Prior art) In recent years, molten carbonate fuel cells, which use molten carbonate as an electrolyte and operate at high temperatures, have high power generation efficiency and can be used with many types of fuel, such as platinum. It is attracting attention because it does not require a precious metal catalyst, and high-quality waste heat is recovered for high-temperature operation, and its practical application is progressing.
このような溶融炭酸塩型燃料電池においては、従来、溶
融炭酸塩を含む電解質板を挟んで正極板と負極板が積層
されて単電池が構成され、この単電池が集電板とセパレ
ータとを介して多数積層されて燃料電池が構成されてい
る。セパレータ及び/又は電極板には、燃料ガス又は酸
化剤ガスの通路としての溝が設けられることがあり、燃
料ガスとしては例えば水素及び/又は−酸化炭素が、ま
た、酸化剤としては、例えば空気と炭酸ガスとが供給さ
れて、電極にてそれぞれ所定の電気化学的反応が行なわ
れる。Conventionally, in such molten carbonate fuel cells, a single cell is constructed by stacking a positive electrode plate and a negative electrode plate with an electrolyte plate containing molten carbonate in between, and this single cell is made up of a current collector plate and a separator. A fuel cell is constructed by stacking a large number of them with each other in between. The separator and/or the electrode plate may be provided with grooves as passages for fuel gas or oxidizing gas, the fuel gas being e.g. hydrogen and/or carbon oxide, and the oxidizing agent being e.g. air. and carbon dioxide gas are supplied, and predetermined electrochemical reactions are performed at the electrodes, respectively.
いずれにしても、上記のような従来の溶融炭酸塩型燃料
電池においては、正極としては、代表的には、ニッケル
粉末を水素中で高温で焼結し、気孔率60%程度の多孔
質シートとし、これを表面酸化処理して導電性を与えた
ニッケル多孔質板が用いられている。負極としては、ニ
ッケルークロム又はニッケルーコバルト等のようなニッ
ケル合金からなる多孔質体が用いられている。また、セ
パレータとしては、高い導電性を有すると共に、気体不
透過性及び耐食性にすぐれることが要求されるので、従
来、ステンレス鋼やそのニッケルクラッド板が用いられ
ている。In any case, in the conventional molten carbonate fuel cell described above, the positive electrode is typically a porous sheet made by sintering nickel powder in hydrogen at high temperature and having a porosity of about 60%. A porous nickel plate whose surface is oxidized to give it conductivity is used. As the negative electrode, a porous body made of a nickel alloy such as nickel-chromium or nickel-cobalt is used. Furthermore, since the separator is required to have high conductivity, gas impermeability, and corrosion resistance, stainless steel or a nickel-clad plate thereof has been conventionally used.
上記したような燃料電池における各構成要素のうち、特
に、電極板及び電解質板は、従来、それぞれ押出法やプ
レス法等によって、当初から平板状に成形して製作され
ている。表面に溝を有するような成形物の場合も、適宜
の型を用いて、当初からかかる溝を有する平板状に製作
されている。Among the constituent elements of the fuel cell as described above, the electrode plate and the electrolyte plate in particular are conventionally manufactured by being formed into a flat plate shape from the beginning by an extrusion method, a press method, etc., respectively. Even in the case of a molded product having grooves on its surface, it is manufactured into a flat plate shape having such grooves from the beginning using an appropriate mold.
これら構成要素は、通常、電池容積を小型化するために
、一般に、厚み数日程度、寸法数十印乃至1mm角度の
薄板状であるが、隣接する板状の構成要素との間に均一
な接触を保つために、高い製作精度にて成形製作される
ことが要求され、特に、構成要素が大面積であるほど、
又は薄いほど、均一な平板状への要求が高くなる。即ち
、構成要素が均一な平板性に欠けるときは、構成要素間
の接触抵抗が大きく、電池出力が低下する等して、十分
な電池性能を得ることができないほか、電池の長時間の
連続運転においては、各構成要素が機械的、熱的な原因
によって一層不均一な形状変化、例えば、伸縮を生じて
、更に構成要素間の接触抵抗が増大し、このようにして
、電池性能を低下させるからである。In order to reduce the battery capacity, these components are generally thin plate-shaped with a thickness of several days and dimensions ranging from tens of marks to 1 mm angle, but there is a uniform gap between adjacent plate-shaped components. In order to maintain contact, molding and manufacturing are required with high manufacturing precision, and in particular, the larger the area of the component, the more
Or, the thinner the material, the higher the requirement for a uniform flat plate shape. In other words, when the constituent elements lack uniform flatness, the contact resistance between the constituent elements is large, the battery output decreases, and sufficient battery performance cannot be obtained, and the battery cannot be used continuously for long periods of time. In this case, each component undergoes more non-uniform shape changes due to mechanical and thermal causes, such as expansion and contraction, which further increases the contact resistance between the components, thus reducing battery performance. It is from.
しかし、従来のように、当初から平板状に成形するとき
は、均一な平板性を有する板状成形物を製造することは
容易ではない。例えば、押出法による場合は、従来、ス
ラリーの押出速度と押し出された板状物の送り速度とを
厳密に制御しているが、板状成形物が大面積であるほど
、又は薄いほど、押出時に押し出されたスラリーが波打
ち現象を起こして、一様な厚みを有し、又は規則的な厚
み分布を有して所定の断面形状を有する板状物を得るこ
とが困難である。そのうえ、かかる押出物を加熱乾燥す
る段階において、更に、曲がりや変形を生じることが避
は難い。また、上記のように、スラリーの押出速度と押
し出された板状物の送り速度とを厳密に制御する必要が
あるために、設備が複雑であり、且つ、高価である。However, when molding into a flat plate from the beginning as in the conventional method, it is not easy to produce a plate-shaped molded product having uniform flatness. For example, when using an extrusion method, conventionally the extrusion speed of the slurry and the feeding speed of the extruded plate-shaped product are strictly controlled, but the larger the area or the thinner the plate-shaped product, the more difficult it is to extrude. Sometimes, the extruded slurry causes a waving phenomenon, making it difficult to obtain a plate-like product having a uniform thickness or a regular thickness distribution and a predetermined cross-sectional shape. Moreover, in the step of heating and drying such an extrudate, further bending and deformation are unavoidable. Furthermore, as described above, it is necessary to strictly control the extrusion speed of the slurry and the feeding speed of the extruded plate-like material, making the equipment complex and expensive.
(発明の目的)
本発明は、溶融炭酸塩型燃料電池のための成形物からな
る構成要素、特に、電極板及び電解質板の製造における
上記した問題を解決するためになされたものであって、
溶融炭酸塩型燃料電池のための電極板又は電解質板とし
て好適に用いることができる均一な厚み分布を有する平
板状、又は規則的な厚み分布によって所定の断面形状を
有する平板状の成形物としての電池構成要素を製造する
方法を提供することを目的とする。(Object of the Invention) The present invention has been made in order to solve the above-mentioned problems in the production of molded components for molten carbonate fuel cells, in particular electrode plates and electrolyte plates.
As a plate-like molded product having a uniform thickness distribution or having a predetermined cross-sectional shape due to a regular thickness distribution, which can be suitably used as an electrode plate or an electrolyte plate for a molten carbonate fuel cell. It is an object of the present invention to provide a method of manufacturing a battery component.
(発明の構成)
本発明は、燃料電池構成要素としての板状成形物の製造
方法において、管又は棒からなる支持体を上記燃料電池
構成要素のための成分粉末を含むスラリーと共に所定の
形状を有する口型から同軸に押出し、上記スラリーが所
定の断面形状にて付着された支持体を得、このスラリー
をこの支持体上で乾燥させて支持体上に環状のグリーン
体を得、次いで、この環状のグリーン体を支持体上で押
出方向に切開して平板状とした後、加熱焼成することを
特徴とする。(Structure of the Invention) The present invention provides a method for manufacturing a plate-shaped molded article as a fuel cell component, in which a support made of a tube or a rod is formed into a predetermined shape together with a slurry containing component powder for the fuel cell component. The slurry is coaxially extruded from a mouth die having a predetermined cross-sectional shape to obtain a support, and this slurry is dried on this support to obtain an annular green body on the support. The method is characterized in that the annular green body is cut in the extrusion direction on the support to form a flat plate, and then heated and fired.
本発明において、電池構成要素とは、成形物としての電
極板及び電解質板をいい、従って、電池構成要素のため
の成分粉末としては、構成要素が例えば溶融炭酸塩型燃
料電池の電極である場合は、従来より一般に電極金属と
して用いられている金属粉末、例えば、ニッケルのほか
、ニッケルークロム合金、ニッケルーコバルト合金等の
粉末が好ましく用いられる。また、構成要素が例えば溶
融炭酸塩型燃料電池の電解質板である場合は、そのため
の成分粉末としては、炭酸塩の粉末でよく、勿論、これ
には適宜の添加剤が含有されていてもよい。In the present invention, battery components refer to electrode plates and electrolyte plates as molded articles, and therefore, component powders for battery components include, for example, when the component is an electrode of a molten carbonate fuel cell. For example, in addition to nickel, powders of nickel-chromium alloys, nickel-cobalt alloys, etc. are preferably used. Furthermore, if the component is, for example, an electrolyte plate for a molten carbonate fuel cell, the component powder therefor may be carbonate powder, which may of course contain appropriate additives. .
これら構成要素のための成分粉末は、バインダー及び溶
剤のほかに、必要に応じて可塑剤、解膠剤等、その他所
要の助剤と共に混合され、スラリーとされる。溶剤とし
ては、通常、水が好ましく用いられ、従って、バインダ
ーとしても、通常、ポリビニルアルコールやポリエチレ
ングリコール等のような水溶性樹脂が好ましく用いられ
るが、しかし、これに限定されるものではない。In addition to a binder and a solvent, the component powders for these components are mixed with other necessary auxiliary agents such as a plasticizer and a deflocculant, if necessary, to form a slurry. As the solvent, water is usually preferably used, and therefore, as the binder, water-soluble resins such as polyvinyl alcohol, polyethylene glycol, etc. are usually preferably used, but are not limited thereto.
また、可塑剤は、スラリーに所要の粘度を与えるために
、解膠剤は均一なスラリーを得るためにそれぞれ添加さ
れるものであって、特に、限定されるものではないが、
可塑剤としては、例えば、ポリオール系樹脂等が、また
、解膠剤としては、例えば、高分子ポリカルボン酸アン
モニウム塩等が用いられる。In addition, the plasticizer is added to give the slurry the required viscosity, and the deflocculant is added to obtain a uniform slurry, but they are not particularly limited.
As the plasticizer, for example, a polyol resin or the like is used, and as the deflocculant, for example, ammonium salt of a high-molecular polycarboxylic acid is used.
無機化合物や金属微粉末のスラリーを調製する方法は、
既に種々の技術分野において広く知られており、本発明
においても、これら従来の技術に従って、適当な粘度を
有するスラリーを得ることができる。従って、スラリー
における成分粉末、バインダー、可塑剤、解膠剤等の配
合量は必ずしも限定されるものではないが、例えば、ス
ラリーにおいて、成分粉末40〜80 重量%、溶剤1
0〜500〜50重量ンダー3〜30重量%、可塑剤0
〜10重量%及び解膠剤O〜5重景重量適当である。ま
た、スラリー粘度は25℃において2000〜2000
0 cps程度が好適である。The method for preparing slurry of inorganic compounds and fine metal powder is as follows:
These conventional techniques are already widely known in various technical fields, and in the present invention, a slurry having an appropriate viscosity can be obtained according to these conventional techniques. Therefore, the blending amounts of component powders, binders, plasticizers, peptizers, etc. in the slurry are not necessarily limited, but for example, in the slurry, 40 to 80% by weight of component powders and 1 part solvent.
0-500-50 weight under 3-30% by weight, plasticizer 0
~10% by weight and peptizer O~5% by weight are appropriate. In addition, the slurry viscosity is 2000 to 2000 at 25°C.
Approximately 0 cps is suitable.
本発明において、支持体としては、耐熱性を有する丸棒
や両端を密閉した管が好ましく、例えば、ステンレス鋼
からなる丸棒や管が好ましい。In the present invention, the support is preferably a heat-resistant round rod or a tube with both ends sealed, and for example, a round rod or tube made of stainless steel is preferable.
本発明においては、所定の形状を有する口型を備えた容
器又は押出機内に上記スラリーと支持体を装入し、支持
体にスラリーを付着させつつ、この支持体を上記スラリ
ーと共に所定の形状を有する口型から同軸に押出し、上
記スラリーが周面上に所定の断面形状にて付着された支
持体を得る。In the present invention, the slurry and support are charged into a container or extruder equipped with a mouth mold having a predetermined shape, and while the slurry is attached to the support, the support is formed into a predetermined shape together with the slurry. The slurry is coaxially extruded from a mold having a mouth to obtain a support having a predetermined cross-sectional shape on the peripheral surface of the slurry.
即ち、口型が一様な円孔である場合は、明らかに均一な
厚み分布を有する環状にスラリーが付着した支持体を得
ることができる。また、口型が例えば規則的な凹凸形状
によって周縁が形成される円孔からなる場合は、例えば
、第1図に示すように、スラリー11が周面上に規則的
な凹凸の断面形状によって規則的な厚み分布を有するよ
うに環状に付着した支持体12を得ることができる。That is, when the mouth shape is a uniform circular hole, it is possible to obtain a support to which the slurry is attached in an annular shape having a clearly uniform thickness distribution. In addition, when the mouth shape is formed of a circular hole whose periphery is formed by regular uneven shapes, for example, as shown in FIG. It is possible to obtain a support 12 which is attached in an annular manner so as to have a uniform thickness distribution.
次いで、本発明によれば、上記支持体上に環状に付着し
たスラリーを加熱し、溶剤を除去して、支持体上に環状
のグリーン体を得る。このグリーン体は尚バインダーを
含有して、柔軟であるので、これを支持体上にて押出方
向に切開し、展開すれば、平板状のグリーン体を得るこ
とができる。これを燃料電池構成要素のための成分に応
じて、所要の温度に加熱焼成し、バインダーを除去する
ことによって、均一な厚み分布を有する板状の成形物、
又は前述したように、口型が所定の断面形状を有する場
合は、この日型形状に応じて、第2図に示すように、規
則的な厚み分布によって所定の断面形状を有する板状の
成形物13を電極板又は電解質板として得ることができ
る。Next, according to the present invention, the slurry attached in an annular shape on the support is heated to remove the solvent, thereby obtaining an annular green body on the support. Since this green body still contains a binder and is flexible, a flat green body can be obtained by cutting it in the extrusion direction on a support and rolling it out. This is heated and fired to a required temperature depending on the ingredients for the fuel cell component, and the binder is removed to create a plate-shaped molded product with a uniform thickness distribution.
Or, as mentioned above, if the mouth mold has a predetermined cross-sectional shape, according to the shape of the mouth mold, as shown in FIG. The object 13 can be obtained as an electrode plate or an electrolyte plate.
尚、可塑剤や解膠剤等の成形助剤は、その種類によって
は、上記焼成後にも成形物に残存することがあるが、焼
結助剤を兼ねることもあるので、焼成によって除去する
必要は必ずしもない。Depending on the type, molding aids such as plasticizers and peptizers may remain in the molded product even after the above-mentioned firing, but they may also serve as sintering aids, so they must be removed by firing. Not necessarily.
グリーン体の加熱焼成温度は、構成要素のための成分に
もよるが、例えば、電極のための金属粉末の場合は、通
常、1000℃又はそれ以上が好適である。The heating and firing temperature of the green body depends on the components, but for example, in the case of metal powder for electrodes, 1000° C. or higher is usually suitable.
第3図は、本発明の方法を実施するのに好適に用いるこ
とができる押出機の一例を示す。即ち、押出機21は、
胴壁22にスラリー供給口23を有すると共に、先端に
所定の断面形状の口型24を備えている。胴内にはこの
日型に臨んで、これと同軸にリップ25を有するニップ
ル26と、これと一体のスリーブ27が回動(及び前進
)可能に収容されており、このスリーブ及びニップル内
に支持体28が挿入され、このニップル及び上記口型を
経て、口型に同軸に押し出される。上記ニップルは、先
端部において胴壁との間に空隙29を有すると共に、前
記スラリー供給口の軸方向に対して傾斜する環状の傾斜
溝30を有し、上記空隙はこの傾斜溝に連通されている
。FIG. 3 shows an example of an extruder that can be suitably used to carry out the method of the present invention. That is, the extruder 21 is
The body wall 22 has a slurry supply port 23, and the tip thereof is provided with a mouth mold 24 having a predetermined cross-sectional shape. A nipple 26 having a lip 25 coaxially with the body and a sleeve 27 integral with the nipple 26 are rotatably (and forwardly) accommodated in the body, facing the date mold, and a sleeve 27 is supported within the sleeve and nipple. A body 28 is inserted and coaxially extruded through the nipple and the mouth mold into the mouth mold. The nipple has a gap 29 between it and the body wall at its tip, and also has an annular inclined groove 30 inclined with respect to the axial direction of the slurry supply port, and the gap is communicated with the inclined groove. There is.
従って、スラリー供給口からスラリーを前記傾斜溝に供
給して、スリーブの回動(及び前進)によってスラリー
を前記空隙及び口型を経て押し出すと共に、スリーブ内
の支持体をも口型と同軸に押し出すことによって、スラ
リー31が支持体上に口型の断面形状に応じた断面形状
にて付着した支持体28を得ることができる。この支持
体上の環状のスラリーを前述したように加熱乾燥して環
状のグリーン体を得、これを支持体上で押出方向に切開
して平板状とした後、加熱焼成すれば、口型の断面形状
に応じて、均一な厚み分布を有する板状の成形物、又は
規則的な厚み分布によって所定の断面形状を有する板状
の成形物を得ることができる。Therefore, slurry is supplied from the slurry supply port to the inclined groove, and as the sleeve rotates (and moves forward), the slurry is pushed out through the gap and the mouth mold, and the support inside the sleeve is also pushed out coaxially with the mouth mold. By doing so, it is possible to obtain the support 28 on which the slurry 31 is adhered on the support in a cross-sectional shape corresponding to the cross-sectional shape of the mouth mold. The annular slurry on the support is heated and dried as described above to obtain an annular green body, which is cut in the extrusion direction on the support to form a flat plate, and then heated and baked to form a mouth-shaped green body. Depending on the cross-sectional shape, a plate-shaped molded product having a uniform thickness distribution or a plate-shaped molded product having a predetermined cross-sectional shape with a regular thickness distribution can be obtained.
(発明の効果)
以上のように本発明の方法によれば、その面積や厚みに
よらずに、均一な厚み分布を有し、又は規則的な厚み分
布を有する平板状の成形物を容易且つ確実に得ることが
できる。特に、従来の方法によれば、当初より板状に成
形して、これを加熱乾燥し、更に、加熱焼成するので、
例えば、押出法による場合であれば、スラリーは押出時
に波打ちを起こすのみならず、加熱乾燥の段階において
曲がりや変形を生じることが避は難かったが、本発明の
方法によれば、スラリーを支持体と共に押出し、且つ、
支持体上で加熱乾燥するので、この段階で曲がりや変形
を生じることがない。更に、本発明の方法においては、
用いる押出機も構造が簡単であるので、製造費用も低度
である。(Effects of the Invention) As described above, according to the method of the present invention, a flat molded product having a uniform thickness distribution or a regular thickness distribution can be easily and easily produced regardless of its area or thickness. You can definitely get it. In particular, according to the conventional method, it is first formed into a plate shape, then heated and dried, and then heated and fired.
For example, when using an extrusion method, the slurry not only becomes wavy during extrusion, but also bends and deforms during the heating and drying stage, but according to the method of the present invention, the slurry is supported. extruded with the body, and
Since it is heated and dried on the support, no bending or deformation occurs at this stage. Furthermore, in the method of the present invention,
Since the extruder used has a simple structure, the manufacturing cost is also low.
(実施例)
以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例によって何ら限定されるものではない。尚、
以下において、部は重量部を示す。(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way. still,
In the following, parts indicate parts by weight.
実施例1
ニッケル微粉末(平均粒径2.5μm) 60部水
30部可
望剤 1部解膠剤
3部ポリビニルアルコー
ルとポリエチレン
グリコールの混合物(バインダー) 6部とから
なる混合物を十分に混合攪拌して、25°Cにおいて粘
度5000cpsのスラリーを調製した。Example 1 Fine nickel powder (average particle size 2.5 μm) 60 parts water
30 parts deflocculating agent 1 part deflocculant
A mixture of 3 parts polyvinyl alcohol and 6 parts polyethylene glycol (binder) was thoroughly mixed and stirred to prepare a slurry having a viscosity of 5000 cps at 25°C.
このスラリーを第3図に示したような押出機にて、規則
的な凹凸形状にて周縁が形成された回礼状の口型からス
テンレス鋼製支持棒と共に同軸に押出して、上記スラリ
ーが表面に規則的な凹凸形状の厚み分布を有するように
付着した支持棒を得た。この支持棒上のスラリーを支持
棒と共に空気中にて60℃の温度で2時間加熱して、水
を除去して、環状のグリーン体を得た。This slurry is extruded coaxially with a stainless steel support rod through a circumferential mouth mold whose periphery is formed with regular uneven shapes using an extruder as shown in Fig. 3, and the slurry is applied to the surface. A support rod was obtained which was attached so as to have a regular uneven thickness distribution. The slurry on this support rod was heated together with the support rod in air at a temperature of 60° C. for 2 hours to remove water and obtain an annular green body.
次いで、この環状のグリーン体を押出方向に切開し、展
開して板状とした後、空気中にて1000℃の温度で焼
成して、縦横各約315mm、凸部高さ3顛、凹部高さ
11m、凸部及び凹部の幅それぞれ2mの電極板として
の成形板を得た。Next, this annular green body is cut in the extrusion direction, expanded to form a plate shape, and then fired in air at a temperature of 1000°C to form a shape with dimensions of about 315 mm in length and width, a height of 3 convex parts, and a height of concave parts. A molded plate as an electrode plate was obtained, with a length of 11 m and a width of each of the convex portion and the concave portion of 2 m.
比較のために、従来の抽出法にて、上記と同様の断面形
状を有する電極板を製作した。For comparison, an electrode plate having a cross-sectional shape similar to that described above was manufactured using a conventional extraction method.
次に、このようにして本発明の方法及び従来の方法によ
って製作したそれぞれ5枚の電極板の熱的強度を調べる
ために、これらを空気中において流動床式熱疲労試験機
によって、300°Cと650℃との間で10回の熱サ
イクルを与えた。350℃から600℃への昇温時間1
0分、600℃での保持時間15分、600 ’Cから
350℃への降温時間10分とした。Next, in order to examine the thermal strength of each of the five electrode plates produced by the method of the present invention and the conventional method, they were tested in air at 300°C using a fluidized bed thermal fatigue tester. and 650° C. for 10 thermal cycles. Heating time from 350℃ to 600℃ 1
The holding time at 600°C was 15 minutes, and the cooling time from 600'C to 350°C was 10 minutes.
このような熱疲労試験の後、電極板の表面に割れが発生
したかどうかを目視によって調べた。結果を表に示す。After such a thermal fatigue test, whether or not cracks had occurred on the surface of the electrode plate was visually inspected. The results are shown in the table.
本発明の方法による電極板が熱的強度にすぐれることが
明らかである。It is clear that the electrode plate produced by the method of the present invention has excellent thermal strength.
第1図は、支持体上に付着したスラリーの断面形状の一
例を示す断面図、第2図は、本発明の方法によって得ら
れる負極板の一例を示す断面図、第3図は、本発明の方
法を実施するのに好適に用いることができる押出機の一
例を示す断面図である。
11・・・スラリー、12・・・支持体、13・・・板
状成形物、21・・・押出機、23・・・スラリー供給
口、24・・・口型、25・・・リップ、26・・・ニ
ップル、28・・・支持体、29・・・空隙、30・・
・傾斜溝、31・・・スラリー。
第1図
第2図FIG. 1 is a cross-sectional view showing an example of the cross-sectional shape of the slurry deposited on the support, FIG. 2 is a cross-sectional view showing an example of the negative electrode plate obtained by the method of the present invention, and FIG. FIG. 2 is a cross-sectional view showing an example of an extruder that can be suitably used to carry out the method. DESCRIPTION OF SYMBOLS 11... Slurry, 12... Support body, 13... Plate-shaped molded product, 21... Extruder, 23... Slurry supply port, 24... Mold, 25... Lip, 26...Nipple, 28...Support, 29...Gap, 30...
- Inclined groove, 31...Slurry. Figure 1 Figure 2
Claims (3)
において、管又は棒からなる支持体を上記燃料電池構成
要素のための成分粉末を含むスラリーと共に所定の形状
を有する口型から同軸に押出し、上記スラリーが所定の
断面形状にて付着された支持体を得、このスラリーをこ
の支持体上で乾燥させて支持体上に環状のグリーン体を
得、次いで、この環状のグリーン体を支持体上で押出方
向に切開して平板状とした後、加熱焼成することを特徴
とする燃料電池構成要素の製造方法。(1) In a method for manufacturing a plate-shaped molded product as a fuel cell component, a support made of a tube or a rod is coaxially moved from a mouth mold having a predetermined shape together with a slurry containing component powder for the fuel cell component. Extrusion to obtain a support to which the slurry is adhered in a predetermined cross-sectional shape, dry this slurry on this support to obtain an annular green body on the support, and then support this annular green body. 1. A method for manufacturing a fuel cell component, which comprises cutting the body in the extrusion direction to form a flat plate, and then heating and firing the plate.
分が電極のための金属粉末であることを特徴とする特許
請求の範囲第1項記載の燃料電池構成要素の製造方法。(2) The method for manufacturing a fuel cell component according to claim 1, wherein the fuel cell component is an electrode plate, and the component therefor is a metal powder for the electrode.
の成分が電解質のための炭酸塩粉末であることを特徴と
する特許請求の範囲第1項記載の燃料電池構成要素の製
造方法。(3) The method for manufacturing a fuel cell component according to claim 1, wherein the fuel cell component is an electrolyte plate, and the component therefor is carbonate powder for the electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60130288A JPS61288381A (en) | 1985-06-14 | 1985-06-14 | Manufacture of fuel cell composing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60130288A JPS61288381A (en) | 1985-06-14 | 1985-06-14 | Manufacture of fuel cell composing element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61288381A true JPS61288381A (en) | 1986-12-18 |
Family
ID=15030732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60130288A Pending JPS61288381A (en) | 1985-06-14 | 1985-06-14 | Manufacture of fuel cell composing element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61288381A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1002960C2 (en) * | 1995-04-27 | 1999-02-22 | Inst Gas Technology | Ribbed electrodes for molten carbonate fuel cells. |
-
1985
- 1985-06-14 JP JP60130288A patent/JPS61288381A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1002960C2 (en) * | 1995-04-27 | 1999-02-22 | Inst Gas Technology | Ribbed electrodes for molten carbonate fuel cells. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101703796B1 (en) | Process for producing tubular ceramic structures of non-circular cross section | |
US6379485B1 (en) | Method of making closed end ceramic fuel cell tubes | |
KR20010042564A (en) | Fuel cell tubes and method of making same | |
EP1055261B1 (en) | Method of making straight fuel cell tubes | |
JPS61288381A (en) | Manufacture of fuel cell composing element | |
US6294128B1 (en) | Method of making a supported plurality of electrochemical extruded membranes | |
JPH11283641A (en) | Powder for molten carbonate fuel cell electrolyte plate and manufacture of molten carbonate fuel cell electrolyte plate | |
JP3383400B2 (en) | Method for producing bottomed ceramic tube and mold for production | |
JP2003323903A (en) | Zirconia material containing scandia in form of solid solution, and solid electrolyte fuel cell using the same | |
JPH0437646A (en) | Production of zirconia ceramics film and its calcination method as well as zirconia conductive ceramics produced by this method and solid electrolyte fuel battery utilizing this ceramics | |
JP2003086189A (en) | Cylindrical, vertically-striped fuel cell | |
JPS62147660A (en) | Manufacturing method for fuel cell electrodes | |
JPH08287921A (en) | Fuel electrode for solid electrolyte fuel cell | |
JPS61287452A (en) | Production of lamellar catalyst | |
CN109888308A (en) | It is a kind of using electrolyte layer as fuel cell of matrix and preparation method thereof | |
JPH0740322A (en) | Extrusion molding equipment | |
WO2007069939A2 (en) | Tubular element (variants) for electrochemical device batteries provided with a thin-layer solid electrolyte and a method for the production thereof | |
JP3981718B2 (en) | Method for producing a porous substrate having a dense solid oxide film formed on the surface | |
JP2002231261A (en) | Separator for fuel cell and its manufacturing method | |
JPH03183658A (en) | Production of stabilized zirconia film | |
JPH0498766A (en) | Manufacture of fuel electrode for solid electrolyte fuel cell | |
JPH05290860A (en) | Manufacture of solid electrolyte fuel cell | |
JPS62198057A (en) | Member for fuel cell | |
JPH06116027A (en) | Zirconia thin film sheet by extrusion method and its production | |
JPH06111835A (en) | Manufacture of solid electrolyte type electrolysis cell |