JPS61287234A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS61287234A JPS61287234A JP13010985A JP13010985A JPS61287234A JP S61287234 A JPS61287234 A JP S61287234A JP 13010985 A JP13010985 A JP 13010985A JP 13010985 A JP13010985 A JP 13010985A JP S61287234 A JPS61287234 A JP S61287234A
- Authority
- JP
- Japan
- Prior art keywords
- laser light
- laser
- reaction
- light
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052782 aluminium Inorganic materials 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 238000006073 displacement reaction Methods 0.000 abstract 1
- 238000002310 reflectometry Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 238000001182 laser chemical vapour deposition Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、レーザー光を反応のエネルギー源として用い
た半導体装置の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device using laser light as an energy source for a reaction.
従来の技術
従来、レーザー光を反応エネルギー源として用いた半導
体装置の製造方法として、レーザーCVD、レーザーア
ニール、し基板の表i態にかかわりなく半導体基板全面
に対しJポ24ン、アニール、エツチング等の処理を行
なうものである。例えば、ある部分のみに窒化シリコン
膜を形成する場合には、まず全面に窒化シリコン膜を堆
積し、その後ホI・リングラフィ工程等によりて必要部
分以外の膜をエツチングするというような複数の工程を
用いて特定部分のみに膜を残している。Conventional technology Conventionally, as a manufacturing method for semiconductor devices using laser light as a reaction energy source, laser CVD, laser annealing, J-polymerization, annealing, etching, etc. are applied to the entire surface of a semiconductor substrate regardless of the surface condition of the substrate. This process performs the following processing. For example, when forming a silicon nitride film only on a certain part, multiple steps are required, such as first depositing the silicon nitride film on the entire surface, and then etching the film in areas other than the necessary parts using a hole/phosphorography process, etc. The film is left only in specific areas using
発明が解決しようとする問題点
以上のように従来の技術では特定の部分のみを選択的に
処理することができず、複数の工程を組み合わせること
により選択的な膜形成、エツチング等が可能であっても
目的の場所からのずれや処理工程の複雑さが問題となる
。Problems to be Solved by the Invention As mentioned above, conventional techniques cannot selectively process only specific parts, and selective film formation, etching, etc. can be performed by combining multiple steps. However, deviation from the target location and complexity of the processing process pose problems.
本発明はレーザー光を用いて選択的に処理する際、選択
すべき位置の検出を基板からの反射光を用いて行ない、
簡易で位置ずれのない選択的な処理を行なうものである
。In the present invention, when selectively processing using laser light, the position to be selected is detected using reflected light from the substrate,
It is simple and performs selective processing without positional deviation.
問題点を勢決するための手段
本発明は上記問題点を解決するため、反応に用 ゛
いるレーザー光または他に設ける表面状態検出用レーザ
ー光の半導体基板による反射光の強度を検出する機構を
持つ。Means for Resolving Problems In order to solve the above-mentioned problems, the present invention has a mechanism for detecting the intensity of the reflected light from the semiconductor substrate of the laser light used in the reaction or the laser light provided for surface condition detection. .
また、検知した反射光強度変化をもとに反応に用いるレ
ーザー光の半導体基板照射強度を変化させ、選択的に反
応せしめる機能を持つものである。It also has the function of changing the irradiation intensity of the laser beam used for the reaction on the semiconductor substrate based on the detected change in the reflected light intensity, thereby causing a selective reaction.
°作用
光の反射率は物質によって異なるので、半導体基板表面
での光の反射強度を検知すれば、光を照射している部分
の表面の材質がわかる。半導体基板の表面の材質に応じ
て、反応に用いるレーザー光の照射強度を変化させれば
反応量も変化し、特定の材質の部分のみで選択的に他と
異なる量の反応を起こすことができる。Since the reflectance of acting light differs depending on the material, by detecting the intensity of reflection of light on the surface of a semiconductor substrate, the material of the surface of the area irradiated with light can be determined. Depending on the material of the surface of the semiconductor substrate, the amount of reaction can be changed by changing the irradiation intensity of the laser light used for the reaction, making it possible to selectively cause a different amount of reaction only in a specific material part. .
実施例 以下に図面を用いて本発明の詳細な説明する。Example The present invention will be described in detail below using the drawings.
(第1の実施例)
第1図に示すように、反応用レーザー光1(例えばAr
Fエキシマレーザ−)が、si 層8.8102層7、
アルミ層6からなる半導体基板の表面を照らす部分つま
り反応域を、表面状態検出用レーザー光2(9’lJえ
ばHeNe レーザー)で照射するように設定する。表
面状態検出用レーザー光2の半導体基板による反射光3
を検光器4で検知する。半導体基板を可動ステージ9に
よって紙面に対し垂直または左右方向に移動させ、半導
体基板表面全面をレーザー光で走査する。走査する際に
反応域にある半導体基板表面の材質によって反射光30
強度が変化し、検光器4の出力信号に変化が生じる。検
光器4の出力信号を用いて、半導体基板のレーザー光に
よって照射されている部分が処理を要する領域か否かを
判断し、シャッター6の開閉を行なう。(First Example) As shown in FIG. 1, reaction laser beam 1 (for example, Ar
F excimer laser) is Si layer 8.8102 layer 7,
A portion of the surface of the semiconductor substrate made of the aluminum layer 6, that is, a reaction region, is set to be irradiated with a laser beam 2 for surface state detection (for example, a HeNe laser). Reflection light 3 of laser light 2 for surface condition detection by semiconductor substrate
is detected by the analyzer 4. The semiconductor substrate is moved by a movable stage 9 perpendicularly or in the left-right direction with respect to the plane of the paper, and the entire surface of the semiconductor substrate is scanned with a laser beam. When scanning, the reflected light 30 depending on the material of the semiconductor substrate surface in the reaction area
The intensity changes, causing a change in the output signal of the analyzer 4. Using the output signal of the analyzer 4, it is determined whether the portion of the semiconductor substrate irradiated by the laser beam is an area that requires processing, and the shutter 6 is opened or closed.
第1図に示した半導体基板は多層配線工程における第1
層アルミ配線後の状態を表しており、表面はアルミ配線
6とS L02層了でおおわれているとする。この表面
全面をレーザー光で走査する際、アルミ層6が表面状態
検出用レーザー光2によって照射されると、アルミニウ
ムは5IO2に比べ反射率が高いので、強い反射光3が
検光器4によって検知される。反射光3が強いときのみ
シャッター5を閉じることにより、アルミ配線部以外を
選択的に処理できる。これをレーザーCVDに適用した
場合、常に半導体基板を照射している検出用レーザー2
にHeNeのように反応に関係しないレーザー光を選べ
ば、シャッター6を閉じている間つまりアルミ配線上に
は膜は堆積せず、アルミ配線部以外に選択的に膜を堆積
でき、半導体基板表面の平坦化が行なえる。平坦化後の
様子を第2図に示す。アルミ6上にはCVD膜はつかず
、SiO2層7上のみにSi○2膜10全10するため
平坦な表面となる。The semiconductor substrate shown in Figure 1 is the first step in the multilayer wiring process.
This figure shows the state after layered aluminum wiring, and assumes that the surface is covered with aluminum wiring 6 and the SL02 layer. When scanning the entire surface with a laser beam, when the aluminum layer 6 is irradiated with the laser beam 2 for surface condition detection, a strong reflected light 3 is detected by the analyzer 4 because aluminum has a higher reflectance than 5IO2. be done. By closing the shutter 5 only when the reflected light 3 is strong, areas other than the aluminum wiring portion can be selectively processed. When this is applied to laser CVD, the detection laser 2 that constantly irradiates the semiconductor substrate
If you choose a laser beam that is not related to the reaction, such as HeNe, the film will not be deposited on the aluminum wiring while the shutter 6 is closed, and the film can be selectively deposited on areas other than the aluminum wiring, allowing the film to be deposited selectively on the semiconductor substrate surface. can be flattened. Figure 2 shows the state after flattening. No CVD film is formed on the aluminum 6, and a SiO2 film 10 is formed only on the SiO2 layer 7, resulting in a flat surface.
以上のように、本方法を用いることにより平坦化が行な
え、しかも表面の材質を検知して位置決めしているため
、選択部分がずれることもない。As described above, by using this method, flattening can be performed, and since positioning is performed by detecting the material of the surface, the selected portion does not shift.
また、反応用レーザー光1として例えば炭酸ガスレーザ
ーを用い、レーザーアニールに本方法を適用すれば、選
択アニールも行なえる。つまり、融点の低いアルミニウ
ムを除いた部分のみをアニールすることが、容易に位置
ずれなく行なうことができる。Furthermore, selective annealing can also be performed by using, for example, a carbon dioxide gas laser as the reaction laser beam 1 and applying this method to laser annealing. In other words, it is possible to easily anneal only the portion excluding the aluminum having a low melting point without positional deviation.
(第2の実施例2)
第3図で示す例は、表面状態検出用レーザー光2を反応
用レーザー光1(例えば炭酸ガスレーザー)で兼た例で
ある。反応用レーザー光10半導体基板表面での反射光
3を実施例1と同様に検光器4で検知する。反応用レー
ザー光1の光強度制御機構として実施例1のシャッター
7にかえてチョッパー11を用い、チョッパー11の回
転数を変化させることにより反応量を変化させる。反応
を起こす必要のない領域では、レーザー光1が半導体基
板表面を照射する時間を、基板表面の情報検出に必要な
時間より長くかつ生じる反応の量を無視できる程度に短
かくする。(Second Embodiment 2) The example shown in FIG. 3 is an example in which the laser beam 1 for reaction (for example, a carbon dioxide laser) serves as the laser beam 2 for surface state detection. The reaction laser beam 10 and the reflected light 3 on the surface of the semiconductor substrate are detected by the analyzer 4 in the same manner as in Example 1. As a light intensity control mechanism for the reaction laser beam 1, a chopper 11 is used instead of the shutter 7 of Example 1, and the amount of reaction is changed by changing the rotational speed of the chopper 11. In areas where it is not necessary to cause a reaction, the time for which the laser beam 1 irradiates the semiconductor substrate surface is made longer than the time required to detect information on the substrate surface, and short enough to ignore the amount of reaction that occurs.
この実施例のような方法を用いれば、第1の実施例1に
比べ簡略な構造となり、反応用レーザーと検出用レーザ
ーの照射位置ずれも生じない。If the method of this embodiment is used, the structure will be simpler than that of the first embodiment, and the irradiation positions of the reaction laser and the detection laser will not be misaligned.
発明の効果
本発明は以上で述べたように、半導体基板の特定部分の
みを選択的に加工でき、しかも実際に基板表面の状態を
検知するため位置ず扛が起きない。Effects of the Invention As described above, the present invention can selectively process only a specific portion of a semiconductor substrate, and moreover, since the condition of the substrate surface is actually detected, no positioning or scraping occurs.
このように選択的に加工することにより、不必要な損傷
や複雑さを省くことができる0This selective processing eliminates unnecessary damage and complexity.
第1図は、本発明の第1実施例の半導体装置の製造方法
におけるレーザー照射状態を示す断面図、第2図は第1
実施例によって平坦化を行なった半導体基板の平坦化後
の状態を示す断面図、第3図は第2実施例の方法におけ
るレーザー照射状態を示す断面図である。
1・・・・・・反応用レーザー光、2・・・・・・表面
状態検出用レーザー光、3・・・・・・反射光、4・・
・・・・検光器、5・・・・・・シャッター、6・・・
・・・アルミ層、7・・・・・・5lo2層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図FIG. 1 is a cross-sectional view showing a laser irradiation state in a method for manufacturing a semiconductor device according to a first embodiment of the present invention, and FIG.
FIG. 3 is a sectional view showing the state of the semiconductor substrate after planarization, which was planarized according to the embodiment, and FIG. 3 is a sectional view showing the state of laser irradiation in the method of the second embodiment. 1...Laser light for reaction, 2...Laser light for surface state detection, 3...Reflected light, 4...
...Analyzer, 5...Shutter, 6...
...Aluminum layer, 7...5lo2 layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2
Claims (1)
置を製造するに際し、レーザー光の半導体基板による反
射光の強度の変化を検知することにより、レーザー光照
射領域の前記半導体基板表面の状態を検知し、その情報
により前記レーザー光照射強度を変化させることを特徴
とした半導体装置の製造方法。When manufacturing a semiconductor device using laser light as a reaction energy source, detecting the state of the surface of the semiconductor substrate in the laser light irradiation area by detecting changes in the intensity of the laser light reflected by the semiconductor substrate, A method for manufacturing a semiconductor device, characterized in that the laser beam irradiation intensity is changed based on the information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13010985A JPS61287234A (en) | 1985-06-14 | 1985-06-14 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13010985A JPS61287234A (en) | 1985-06-14 | 1985-06-14 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61287234A true JPS61287234A (en) | 1986-12-17 |
Family
ID=15026164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13010985A Pending JPS61287234A (en) | 1985-06-14 | 1985-06-14 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61287234A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270222A (en) * | 1990-12-31 | 1993-12-14 | Texas Instruments Incorporated | Method and apparatus for semiconductor device fabrication diagnosis and prognosis |
-
1985
- 1985-06-14 JP JP13010985A patent/JPS61287234A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270222A (en) * | 1990-12-31 | 1993-12-14 | Texas Instruments Incorporated | Method and apparatus for semiconductor device fabrication diagnosis and prognosis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5026664A (en) | Method of providing a semiconductor IC device with an additional conduction path | |
US4997518A (en) | Method for forming an electrode layer by a laser flow technique | |
JP2890538B2 (en) | Semiconductor device | |
US6596965B2 (en) | Method and apparatus for marking an identification mark on a wafer | |
JPS61287234A (en) | Manufacture of semiconductor device | |
JPS63144889A (en) | Laser beam processing device | |
JPH06331559A (en) | Foreign object inspection method and foreign object inspection apparatus | |
US20200039004A1 (en) | Cutting device for cutting composite material | |
JP2655666B2 (en) | Wiring formation method | |
JPH03177013A (en) | Manufacturing method of semiconductor device | |
JP3232878B2 (en) | Method for manufacturing semiconductor device | |
JPH07161684A (en) | Method for manufacturing semiconductor device | |
JP2599439B2 (en) | Laser trimming device and trimming method | |
JP3009157B2 (en) | Method and apparatus for forming wiring film | |
JPH0669242A (en) | Formation of t-shaped electrode | |
JP3111615B2 (en) | Method and apparatus for forming transparent film | |
JP2792385B2 (en) | High reflection dielectric mask and method of manufacturing the same | |
JPS61185927A (en) | Manufacture of semiconductor device | |
JPH05267130A (en) | Manufacture of x-ray mask | |
JP2533510B2 (en) | Wiring formation method | |
JPH0217625A (en) | Method and apparatus for manufacturing semiconductor integrated circuit device | |
JPH06334035A (en) | Wafer dicing method | |
JP2700004B2 (en) | Method for manufacturing semiconductor device | |
JPS63136543A (en) | Semiconductor device | |
JPS6074513A (en) | Manufacture of semiconductor device |