[go: up one dir, main page]

JPS61286610A - Control device of control type radial magnetic bearing - Google Patents

Control device of control type radial magnetic bearing

Info

Publication number
JPS61286610A
JPS61286610A JP12772685A JP12772685A JPS61286610A JP S61286610 A JPS61286610 A JP S61286610A JP 12772685 A JP12772685 A JP 12772685A JP 12772685 A JP12772685 A JP 12772685A JP S61286610 A JPS61286610 A JP S61286610A
Authority
JP
Japan
Prior art keywords
signal
circuit
phase
control circuit
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12772685A
Other languages
Japanese (ja)
Inventor
Saburo Ooshima
三郎 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP12772685A priority Critical patent/JPS61286610A/en
Publication of JPS61286610A publication Critical patent/JPS61286610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To restrain runout of a rotary shaft near the natural frequency by superposing a signal of a position sensor, the phase of which is advanced 90 deg., and advancing the phase of control force to obtain phase margin. CONSTITUTION:Runout detected by a Y-axis position sensor 25 is output from a filter 10, with the phase thereof advanced a little. The displacement output is added to an output through an X-axis control circuit, the phase of which is delayed 90 deg. with respect to the Y-axis, and the power of the total output is amplified to excite a Y-axis electromagnet. Accordingly, the X-axis control output is similar to that of the case where a differentiating circuit is added in parallel in the frequency, so that phase margin is given to restrain runout round a rotary shaft.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、回転軸の半径方向の位置を位置センサによ
り検出し、その信号をフィードバック信号として制御回
路に入力して電磁石の電磁力を制御し、軸の半径方向位
置を定位置に保持する制御式ラジアル磁気軸受の制御装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention detects the radial position of a rotating shaft using a position sensor, and inputs the signal as a feedback signal to a control circuit to control the electromagnetic force of an electromagnet. The present invention relates to a control device for a controlled radial magnetic bearing that maintains the radial position of a shaft at a fixed position.

〔従来の技術〕[Conventional technology]

最近の工作機械用主軸、あるいはターボファン等では性
能向上若しくは小型化のための7駆動部等の軸の回転速
度として数百乃至10数万回転/分のものが使用される
ようになっており、今後さらに高速化が望まれているっ
このような高速回転に使用される軸受の1つとして非接
触式の磁気軸受装置がある。
In recent machine tool spindles or turbo fans, etc., rotational speeds of shafts such as 7 drive parts have come to be in the range of several hundred to over 100,000 revolutions per minute to improve performance or downsize. There is a non-contact type magnetic bearing device as one of the bearings used for such high-speed rotation, which is expected to increase even further in the future.

か\る磁気軸受装置の制御回路は、一般に回転軸に垂直
な同一平面内で回転中心に対して互いに直交する2つの
軸方向の各々の制御方向に対して独立に、回転軸の半径
方向の位置を検出する位置センブと、その検出信号の回
転軸基準位置信号からの偏差信号を増幅する偏差増幅器
と、その出力信号の位相を補償するPID調節器と、こ
のPID調節器の出力信号により電磁石への電流を制御
する電力増幅器とを設けて成る。
The control circuit of such a magnetic bearing device generally operates in the radial direction of the rotating shaft independently for each control direction in two axial directions mutually orthogonal to the center of rotation within the same plane perpendicular to the rotating shaft. A position sensor that detects the position, a deviation amplifier that amplifies the deviation signal of the detection signal from the rotation axis reference position signal, a PID adjuster that compensates the phase of the output signal, and an electromagnet by the output signal of the PID adjuster. and a power amplifier for controlling the current to.

上記構成の制御回路を有する磁気軸受の制御装置は、軸
の機械的な固有振動数以下、例えば固有振動数の約75
〜80%付近の回転数で使用される場合が多い。従って
、従来の磁気軸受装置は、例えば約3万乃至4万回転/
分を上限の使用回転数として使用されることが多い。
A control device for a magnetic bearing having a control circuit having the above-mentioned configuration has a vibration frequency lower than the mechanical natural frequency of the shaft, for example, approximately 75% of the natural frequency.
It is often used at a rotation speed of around 80%. Therefore, the conventional magnetic bearing device rotates around 30,000 to 40,000 revolutions per minute, for example.
Minutes are often used as the upper limit of rotation speed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かNる従来の磁気軸受装置を軸の曲げ固有振動数を超え
てさらに高回転数、例えば数10万回転/分の高速で使
用したい場合、軸の固有振動を通過する際に問題が生じ
る。即ち、軸の回転速度が軸の曲げ固有振動数付近に上
昇し、危険速度に近づくと、軸は軸の固有振動数で共振
する。しがるに、前述したように従来の磁気軸受装置は
一般に軸の固有振動数の75〜80%以下の回転数で使
用するように設計されているため、その制御回路の一巡
伝達関数におけるクロスオーバ周波数は軸の曲げ固有振
動に対してかなり低く設定されており、このクロスオー
バ周波数において所定の位相余有が得られるように制御
系のゲイン、位相が設定がされている。従って、軸の曲
げ固有振動数又はこれを超える周波数に対しては位相余
有がなく、減衰力を持たない。そのため軸の曲げ固有振
動数を超えて軸を回転させることができない。
When it is desired to use a conventional magnetic bearing device at a higher rotational speed than the natural bending frequency of the shaft, for example, at a high speed of several hundred thousand revolutions per minute, a problem arises when passing through the natural vibration of the shaft. That is, when the rotational speed of the shaft increases near the bending natural frequency of the shaft and approaches a critical speed, the shaft resonates at the natural frequency of the shaft. However, as mentioned above, conventional magnetic bearing devices are generally designed to be used at rotational speeds below 75 to 80% of the natural frequency of the shaft, so the cross in the loop transfer function of the control circuit is The over frequency is set considerably low with respect to the bending natural vibration of the shaft, and the gain and phase of the control system are set so as to obtain a predetermined phase margin at this crossover frequency. Therefore, there is no phase margin at or above the bending natural frequency of the shaft, and there is no damping force. Therefore, the shaft cannot be rotated beyond the bending natural frequency of the shaft.

この発明は、上記現状に鑑みてなされたものであり、そ
の目的は軸の曲げ固有振動数を越えてさらに高速度で回
転し得る磁気軸受の制御装置を提供するにある。
The present invention has been made in view of the above-mentioned current situation, and its purpose is to provide a control device for a magnetic bearing that can rotate at a higher speed than the natural bending frequency of the shaft.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための手段として、この発明では
回転軸に垂直な同一面内で回転中心に対して互いに直交
するX軸方向及びY軸方向における同軸方向の電磁石に
対してそれぞれ制御回路を設け、各制御回路が位置セン
サと、その出力信号の設定位置信号からの偏差信号を増
幅し1位相補償してこれをもう一万の制御回路からの入
力信号と加算した後その合出力を増幅する回路と、前記
位置センサの偏差増幅信号を回転軸の機械的な固有振動
数よりも中心周波数がわずかに高く設定された帯域通過
フィルタを介して出力する回路とから成り、一方の制御
回路の上記位置センサの検知信号を前記帯域通過フィル
タを有する回路を介して各電磁石の同軸方向に対して回
転方向に90°位相の進んだ位置にあるもう一万の制御
回路に加算し、このもう一方の制御回路の位置センサの
検知信号を前記一方の制御回路に同様に加算するという
構成を採用したのである。
As a means for solving the above problems, in the present invention, control circuits are provided for electromagnets in coaxial directions in the X-axis direction and the Y-axis direction, which are mutually orthogonal to the rotation center within the same plane perpendicular to the rotation axis. Each control circuit amplifies the deviation signal of the position sensor and its output signal from the set position signal, compensates for one phase, adds this to the input signals from another 10,000 control circuits, and then amplifies the combined output. and a circuit that outputs the deviation amplified signal of the position sensor through a bandpass filter whose center frequency is set slightly higher than the mechanical natural frequency of the rotating shaft. The detection signal of the position sensor is added to another 10,000 control circuit located at a position 90 degrees out of phase in the rotational direction with respect to the coaxial direction of each electromagnet via the circuit having the bandpass filter. A configuration is adopted in which the detection signal of the position sensor of the control circuit is similarly added to the one control circuit.

〔作用〕[Effect]

上記構成の制御装置では、軸の回転数が軸の曲げ固有振
動数の75〜80チ以下である間は、各制御回路の位置
センサによる検知信号の所定位置からの偏差増幅信号は
、もう一方の制御回路の蓄域通過フィルタの特性により
その出力信号がこのフィルタでしゃ断されるから、その
出力は号と加算されることなくその制御回路を通ら電磁
石の励磁力を制御する。
In the control device with the above configuration, while the rotational speed of the shaft is 75 to 80 degrees below the bending natural frequency of the shaft, the deviation amplified signal from the predetermined position of the detection signal by the position sensor of each control circuit is Due to the characteristics of the bandpass filter of the control circuit, the output signal is cut off by this filter, so the output passes through the control circuit without being added to the signal and controls the excitation force of the electromagnet.

軸の回転数が軸の曲げ固有振動数付近に達すると、前記
偏差増幅信号はその制御回路の軸方向から軸の回転方向
に見て90°位相の進んだもう一万の制御回路の位置セ
ンサの偏差増幅信号がその帯域通過フィルタを介して加
算され、その合出力によって電磁石は励磁される。その
結果一方の制御出力にとっては前記回転数において微分
回路が並列に加わったと類似の効果、即ちダンピング効
果を現わし、振動減衰力が十分確保され、厄除速度を超
えてさらに高速度で回転できるようになる。
When the rotational speed of the shaft reaches around the bending natural frequency of the shaft, the deviation amplified signal is transmitted to the position sensor of another 10,000 control circuit whose phase is advanced by 90 degrees when viewed from the axial direction of the control circuit in the rotational direction of the shaft. The deviation amplified signals of are added through the bandpass filter, and the electromagnet is excited by the combined output. As a result, for one control output, an effect similar to that obtained when a differential circuit is added in parallel at the above rotation speed, that is, a damping effect appears, and a sufficient vibration damping force is ensured, allowing rotation at an even higher speed beyond the evil speed. become.

〔実施例〕〔Example〕

以下この発明の実施例について添付図を参照して詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図はこの実施例による制御式ラジアル磁気軸受の制
御装置の全体回路図をブロック線図で示す図である。
FIG. 1 is a block diagram showing the overall circuit diagram of a control device for a controlled radial magnetic bearing according to this embodiment.

図において、1は回転軸、2X 、2YはX軸方向、X
軸方向の位置センサ、3X 、3YはX軸方向、X軸方
向の位置設定部、 4 、4’は加算器、5は偏差増幅
器、6は位相補償回路、7は電力増幅器、8は電磁石、
9はコイル、10は帯域通過フィルタ、11は反転回路
である。
In the figure, 1 is the rotation axis, 2X, 2Y are the X-axis directions,
Axial position sensor, 3X and 3Y are X-axis direction and X-axis position setting section, 4 and 4' are adders, 5 is a deviation amplifier, 6 is a phase compensation circuit, 7 is a power amplifier, 8 is an electromagnet,
9 is a coil, 10 is a band pass filter, and 11 is an inverting circuit.

X軸方向及びX軸方向位置センサ2X 、2Yは、回転
軸1の軸線と直角な平面内で互いに直交するX軸及びX
軸方向で軸1の半径方向への変位を検出するように回転
軸1と電磁石8の間の所定位置にそれぞれ配設されてい
る。以下の説明でX軸方向の制御回路はX軸方向の制御
回路と一部を除きその構成ははゾ同じであるから、主と
してX軸方向の制御回路について説明する。
The X-axis direction and X-axis direction position sensors 2X and 2Y are connected to the X-axis and
They are respectively arranged at predetermined positions between the rotary shaft 1 and the electromagnet 8 so as to detect displacement of the shaft 1 in the radial direction in the axial direction. In the following explanation, the X-axis direction control circuit is the same in configuration as the X-axis direction control circuit except for a part, so the X-axis direction control circuit will be mainly explained.

図示の回路図から明らかなように、X軸方向の制御回路
は、X軸方向の電磁石8.−t−の励磁力を制御するた
め前記X軸方向の位置センサ2Yと、この位置センサか
らのフィードバック入力とY方向位置設定部3Yからの
信号の減算をする加算器4と、この加算器による偏差信
号を増幅する偏差増幅器5と、増幅された偏差信号の位
相を補償する位相補償回路と、位相補償された前記信号
を、X軸方向制御回路の帯域通過フィルタ10からの入
力信号と加算するもう1つの加算器4′と、この加算器
4′の信号によりX軸方向の電磁石8.今助界磁電流を
制御する電力増幅器7とを備え、さらに偏差増幅器5で
増幅された信号を所定周波数帯域について通過させてこ
れをX軸方向の制御回路に対してその回路中の位相を調
整するために送る帯域通過フィルタ10を備えている。
As is clear from the illustrated circuit diagram, the control circuit for the X-axis direction includes the electromagnets 8 and 8 for the X-axis direction. In order to control the excitation force of A deviation amplifier 5 that amplifies the deviation signal, a phase compensation circuit that compensates for the phase of the amplified deviation signal, and adds the phase-compensated signal to the input signal from the bandpass filter 10 of the X-axis direction control circuit. Another adder 4' and an electromagnet 8. A power amplifier 7 for controlling the current in the auxiliary field is further provided, and the signal amplified by the deviation amplifier 5 is passed through in a predetermined frequency band, and the phase in the circuit is adjusted with respect to the control circuit in the X-axis direction. It is equipped with a bandpass filter 10 for transmitting data.

この帯域通過フィルタ10はその中心周波数が軸の固有
振動数よりわずかに高い周波数に設定されている。
The center frequency of this bandpass filter 10 is set to a frequency slightly higher than the natural frequency of the shaft.

X軸方向の制御回路は、X軸方向の制御回路とはゾ同じ
であるが、X軸方向の制御回路に対する帯域通過フィル
タ10の回路にその洒号の位相全反転させるための反転
回路11が設けられている点だけが異なっている。
The control circuit for the X-axis direction is the same as the control circuit for the X-axis direction, but an inversion circuit 11 is included in the circuit of the band-pass filter 10 for the control circuit for the X-axis direction to completely invert the phase of the bandpass filter 10. The only difference is in the way it is set up.

上記のように構成したこの実施例による磁気軸受の制御
装置の作用について以下説明する。
The operation of the magnetic bearing control device according to this embodiment configured as described above will be explained below.

第1図の回転軸1についてその直交するX、Y軸の方向
を図示のようにX−X’、Y−Y’とする。
The directions of the X and Y axes that are perpendicular to each other with respect to the rotating shaft 1 in FIG. 1 are designated as X-X' and Y-Y' as shown.

この図において、軸の固有振動数に等しい回転数で軸を
回転させた場合、軸の振動は軸のふれまわりとして各位
置センサに現われる。このふれまわりはX軸方向の位置
センサに対してはYの位置において90°位相が進んだ
変位として検出される。
In this figure, when the shaft is rotated at a rotational speed equal to the natural frequency of the shaft, the vibration of the shaft appears on each position sensor as the whirling of the shaft. This whirling is detected by the position sensor in the X-axis direction as a displacement whose phase is advanced by 90° at the Y position.

X軸方向の制御回路に対してはX軸方向の位置センサ2
x出力のX方向位置設定信号からの偏差分が偏差増幅器
5において増幅されるが、同時に90゜位相の進んだX
軸方向位置センサ2Yの偏差増幅信号がX軸方向の制御
回路の帯域通過フィルタ10を介してX軸方向制御回路
の加算器4′においてX軸方向の出力に加算され、その
合出力が電力増幅器7において電力増幅されてX軸方向
の電磁石8゜今を励磁する。
For the control circuit in the X-axis direction, position sensor 2 in the X-axis direction
The deviation of the x output from the X direction position setting signal is amplified in the deviation amplifier 5, but at the same time the
The deviation amplified signal of the axial position sensor 2Y is added to the output of the X-axis direction in the adder 4' of the X-axis direction control circuit via the bandpass filter 10 of the X-axis direction control circuit, and the combined output is sent to the power amplifier. The power is amplified at 7 to excite the electromagnet 8° in the X-axis direction.

前述したように、帯域通過フィルタ10はその中心周波
数が軸の固有振動数よりわずかSこ高い周波数に設定さ
れており、その位相−ゲイン特性を第2図に示す。
As mentioned above, the center frequency of the bandpass filter 10 is set at a frequency slightly S higher than the natural frequency of the shaft, and its phase-gain characteristics are shown in FIG.

上述のような中心周波数及び特性を有する帯域通過フィ
ルタ10を備えた制御回路では、軸の固有振動数付近の
回転数において、X軸方向の変位出力の偏差成分はこの
帯域通過フィルタ10を経ることにより変位の位相が多
少進んだ形で出力される。即ち、X軸方向位置センサ2
Yで検出されたふれまわりは位相が多少進んだ状態で前
記フィルタ10から出方される。この変位出方がX軸方
向に対して90°位相の遅れているX軸制御回路を経た
出力に加算され、その合出方が電力増幅されてX軸方向
電磁石8.参を励磁する。その結果、X軸方向の制御出
力にとっては同上周波数において微分回路が並列に加わ
った場合と類似の効果、即ちダンピング効果を現わすこ
とになる。他の回転数においては、帯域通過フィルタ1
0の特性によりその出力が無視出来、X軸制御回路を経
た出力のみによって制御されることになる。
In a control circuit equipped with a bandpass filter 10 having the center frequency and characteristics as described above, the deviation component of the displacement output in the X-axis direction passes through the bandpass filter 10 at a rotation speed near the natural frequency of the shaft. Therefore, the displacement is output with a somewhat advanced phase. That is, the X-axis direction position sensor 2
The wobbling detected in Y is outputted from the filter 10 with a somewhat advanced phase. This displacement output is added to the output through the X-axis control circuit whose phase is delayed by 90 degrees with respect to the X-axis direction, and the resulting output is power amplified and the X-axis direction electromagnet 8. Energize the reference. As a result, for the control output in the X-axis direction, an effect similar to that obtained when differentiating circuits are added in parallel at the same frequency, that is, a damping effect appears. At other rotational speeds, the bandpass filter 1
Due to the characteristics of 0, its output can be ignored and it is controlled only by the output that has passed through the X-axis control circuit.

Y軸方向の制御回路についてもはゾ同じ構成。The control circuit in the Y-axis direction has the same configuration.

作用をとるが、Y軸に対してX軸方向位置センサ2xは
90°位相が遅れているため、帯域通過フィルタ10を
出たX軸方向位置センサ2Xの出口は反転回路を通し、
位相を1800ずらせておく必要がある。このような回
路を構成することにより、軸の固有振動数での回転にお
いて振動減衰力が十分確保され危険速度を通過して回転
させることが可能となる。
However, since the phase of the X-axis position sensor 2x is delayed by 90 degrees with respect to the Y-axis, the output of the X-axis position sensor 2X from the bandpass filter 10 passes through an inversion circuit.
It is necessary to shift the phase by 1800 degrees. By configuring such a circuit, sufficient vibration damping force is ensured when the shaft rotates at its natural frequency, making it possible to rotate the shaft past the critical speed.

〔効果〕〔effect〕

以上説明した通り、この発明による制御式ラジアル磁気
軸受の制御装置では、X軸及びY軸方向の制御回路に互
い1こ90°位相の進んだ位置センサの信号を重ね合せ
ることによって固有振動数付近における制御力の位相を
進めて位相余有を得ることができるから、固有振動数付
近での回転軸の振れまわりを押えることが出来、固有振
動数を超えてさらに高速度で回転せしめることができ、
超高速用の磁気軸受として極めて広い用途に用いること
ができる。
As explained above, in the control device for a controlled radial magnetic bearing according to the present invention, the control circuits in the X-axis and Y-axis directions are superimposed with signals from position sensors that are 1-90 degrees ahead of each other in phase, so that signals near the natural frequency are obtained. Since it is possible to obtain a phase margin by advancing the phase of the control force at ,
It can be used in an extremely wide range of applications as a magnetic bearing for ultra-high speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例である制御式ラジアル磁気軸
受の制御装置の全体回路図をブロック線図で表わした図
、第2図は帯域通過フィルタの伝達関数を表わす図、第
3図は上記制御装置の−1の制御回路出力効果を、類似
の効果を持つ一巡伝達関数のボード線図で置き代えた図
である。 1・・・回転軸、2x 、2y・・・位置センサ、3・
・・・位置設定部、4,4′・・・加算器、5・・・偏
差増幅器。
FIG. 1 is a block diagram showing the overall circuit diagram of a control device for a controlled radial magnetic bearing according to an embodiment of the present invention, FIG. 2 is a diagram showing the transfer function of a band-pass filter, and FIG. FIG. 3 is a diagram in which the -1 control circuit output effect of the above control device is replaced with a Bode diagram of a one-loop transfer function having a similar effect. 1...Rotation axis, 2x, 2y...position sensor, 3.
...Position setting section, 4, 4'... Adder, 5... Deviation amplifier.

Claims (2)

【特許請求の範囲】[Claims] (1)回転軸の半径方向の位置を位置センサにより検出
し、その信号をフィードバック信号として制御回路に入
力して電磁石の電磁力を制御し、軸の半径方向位置を定
位置に保持する制御式ラジアル磁気軸受の制御装置にお
いて、回転軸に垂直な同一面内で回転中心に対して互い
に直交するX軸方向及びY軸方向における同軸方向の電
磁石に対してそれぞれ制御回路を設け、各制御回路が位
置センサと、その出力信号の設定位置信号からの偏差信
号を増幅し、位相補償してこれをもう一方の制御回路か
らの入力信号と加算した後その合出力を増幅する回路と
、前記位置センサの偏差増幅信号を回転軸の機械的な固
有振動数よりも中心周波数がわずかに高く設定された帯
域通過フィルタを介して出力する回路とから成り、一方
の制御回路の上記位置センサの検知信号を前記帯域通過
フィルタを有する回路を介して各電磁石の同軸方向に対
して回転方向に90°位相の進んだ位置にあるもう一方
の制御回路に加算し、このもう一方の制御回路の位置セ
ンサの検知信号を前記一方の制御回路に同様に加算する
ことを特徴とする制御式ラジアル磁気軸受の制御装置。
(1) A control method that detects the radial position of the rotating shaft using a position sensor, inputs the signal as a feedback signal to the control circuit, controls the electromagnetic force of the electromagnet, and maintains the radial position of the shaft at a fixed position. In a control device for a radial magnetic bearing, control circuits are provided for coaxial electromagnets in the X-axis direction and the Y-axis direction, which are mutually orthogonal to the rotation center within the same plane perpendicular to the rotation axis, and each control circuit a position sensor, a circuit that amplifies a deviation signal of its output signal from a set position signal, compensates for the phase, adds this to an input signal from another control circuit, and then amplifies the combined output; and the position sensor. It consists of a circuit that outputs the deviation amplified signal of The signal is added to the other control circuit located at a position 90° in phase in the rotational direction with respect to the coaxial direction of each electromagnet through the circuit having the band-pass filter, and the position sensor of this other control circuit is detected. A control device for a controlled radial magnetic bearing, characterized in that a signal is similarly added to one of the control circuits.
(2)各電磁石の同軸方向に対して回転方向に90°位
相の進んだ位置にある前記もう一方の制御回路の帯域通
過フィルタを有する回路にその出力を反転する反転回路
を設けたことを特徴とする特許請求の範囲第1項に記載
の制御式ラジアル磁気軸受の制御装置。
(2) An inverting circuit for inverting the output of the other control circuit, which is located at a position 90 degrees out of phase in the rotational direction with respect to the coaxial direction of each electromagnet, is provided in the circuit having the bandpass filter. A control device for a controlled radial magnetic bearing according to claim 1.
JP12772685A 1985-06-11 1985-06-11 Control device of control type radial magnetic bearing Pending JPS61286610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12772685A JPS61286610A (en) 1985-06-11 1985-06-11 Control device of control type radial magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12772685A JPS61286610A (en) 1985-06-11 1985-06-11 Control device of control type radial magnetic bearing

Publications (1)

Publication Number Publication Date
JPS61286610A true JPS61286610A (en) 1986-12-17

Family

ID=14967179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12772685A Pending JPS61286610A (en) 1985-06-11 1985-06-11 Control device of control type radial magnetic bearing

Country Status (1)

Country Link
JP (1) JPS61286610A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259217A (en) * 1987-04-17 1988-10-26 Hitachi Ltd Electromagnetic bearing control device for rotating machinery
JPS63181992U (en) * 1987-05-15 1988-11-24
JPH01140315A (en) * 1987-11-27 1989-06-01 Hitachi Ltd semiconductor equipment
KR100629674B1 (en) 2004-04-14 2006-09-28 학교법인 포항공과대학교 Method and device for measuring shaking error of rotating body using two sensors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259217A (en) * 1987-04-17 1988-10-26 Hitachi Ltd Electromagnetic bearing control device for rotating machinery
JPS63181992U (en) * 1987-05-15 1988-11-24
JPH01140315A (en) * 1987-11-27 1989-06-01 Hitachi Ltd semiconductor equipment
KR100629674B1 (en) 2004-04-14 2006-09-28 학교법인 포항공과대학교 Method and device for measuring shaking error of rotating body using two sensors

Similar Documents

Publication Publication Date Title
US4885491A (en) Unstable vibration prevention apparatus for magnetic bearing system
US4839550A (en) Controlled type magnetic bearing device
US4686404A (en) Controlled radial magnetic bearing device
US5973468A (en) Magnetic bearing devices
JPH0510326A (en) Control device for magnetic bearing
US5760511A (en) Magnetic bearing controller
JPS59212519A (en) Control device of magnetic bearing
JPS61286610A (en) Control device of control type radial magnetic bearing
JP3463218B2 (en) Magnetic bearing device
JPS6246016A (en) Control device for control-type radial magnetic bearing
JPS61286609A (en) Control device of control type radial magnetic bearing
JPH0520896Y2 (en)
JPH05157114A (en) Spindle device
JPS61206820A (en) Magnetic bearing control device
JPH03231315A (en) Magnetic bearing controller
JPH03255240A (en) Active bearing rotor support control device
JPH0914265A (en) Magnetic bearing compensating circuit
JPH10299771A (en) Magnetic bearing device
JPS6313918A (en) Attitude control device for rotating shaft of magnetic bearing type turbo-molecular pump
JPH02236018A (en) Controller for magnetic bearing
JPH0534336Y2 (en)
JPH0221025A (en) Magnetic bearing control unit
JP3218653B2 (en) Magnetic bearing control device
JPS61211520A (en) Magnetic bearing control device
JPH05231428A (en) Magnetic bearing control method and control device