JPS61286537A - Gas turbine exhaust temperature control method - Google Patents
Gas turbine exhaust temperature control methodInfo
- Publication number
- JPS61286537A JPS61286537A JP12613485A JP12613485A JPS61286537A JP S61286537 A JPS61286537 A JP S61286537A JP 12613485 A JP12613485 A JP 12613485A JP 12613485 A JP12613485 A JP 12613485A JP S61286537 A JPS61286537 A JP S61286537A
- Authority
- JP
- Japan
- Prior art keywords
- water
- gas turbine
- flow rate
- temperature
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000000446 fuel Substances 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 27
- 238000010586 diagram Methods 0.000 description 14
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 239000000567 combustion gas Substances 0.000 description 12
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、水又は蒸気噴射式のガスタービン制御に係シ
、排気m度を制御するとき水(又#′i蒸気)噴射流量
を制御パラメータとして燃焼器温度を正確に予測するこ
とを特徴とし九ガスタービン制御方法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to water or steam injection type gas turbine control. This invention relates to nine gas turbine control methods characterized by accurately predicting combustor temperature.
ガスタービンの出力は、燃焼ガス温度が高くなる程上昇
するが、高温燃焼ガスに対する、高温部材(燃焼器、タ
ービン動、静翼)の耐性によシ、燃焼ガス温度がある許
容値を越えると、高温部材の寿命が、実用として使えな
い水準πまで低下する。従って、ガスタービンの最高出
力制御を、燃焼ガス最高(許容)温度で制御すれば良い
ことになるが、直接燃焼ガス温度を測定しても測定部で
の燃焼ガス温度の分布が大きくばらつく(一般に100
C以上)ため、平均的な燃焼温度を測定することは困難
である。従来技術では、この最高温度制御として、ター
ビン排気温度と圧縮機吐出圧力とを検知し、これにより
、間接的に燃焼ガス温度を求め、許容値に達した時には
、出方を抑制する制御となっている。The output of a gas turbine increases as the combustion gas temperature increases, but due to the resistance of high-temperature components (combustor, turbine rotor, stationary blades) to high-temperature combustion gas, if the combustion gas temperature exceeds a certain tolerance value, , the lifespan of high-temperature components decreases to a level π that cannot be used for practical purposes. Therefore, the maximum output of the gas turbine can be controlled using the maximum (allowable) temperature of the combustion gas, but even if the combustion gas temperature is directly measured, the distribution of the combustion gas temperature at the measuring part will vary widely (generally 100
C), it is difficult to measure the average combustion temperature. In conventional technology, this maximum temperature control involves detecting the turbine exhaust temperature and compressor discharge pressure, indirectly determining the combustion gas temperature, and controlling the output when the permissible value is reached. ing.
一方、最近公害対策(排出NOx規制等)あるいは、出
力増大対策として、燃焼器内に水、又は、蒸気を噴射す
る水(又は蒸気)噴射式のガスタービンが実用化されて
いるが、最高温産制一方式については、従来方式と同様
であるため次の問題が生じる。On the other hand, water (or steam) injection type gas turbines, which inject water or steam into the combustor, have recently been put into practical use as a measure against pollution (e.g. NOx emission regulations) or to increase output. Since the one-way production system is the same as the conventional system, the following problem arises.
第5図に、ガスタービン発電所の主要機器構成を示す。Figure 5 shows the main equipment configuration of the gas turbine power plant.
大気よシ流入した空気は、圧縮機IVcよ芦で圧縮され
、燃焼器2vc導かれる。ここで、燃料調整弁6よシ導
かれた流量を点火し燃焼させる。The air flowing in from the atmosphere is compressed by a compressor IVc and led to a combustor 2vc. Here, the flow rate guided through the fuel regulating valve 6 is ignited and combusted.
公害規制等で付加された水(又は蒸気)は水(蒸気)噴
射調整弁7を介して燃焼器6VC導かれ、タービン3で
膨張し、このエネルギは、直結した発電機4に伝えられ
、電気エネルギに変換して、しゃ断器5を介して系統へ
送電される。又、ガスタービン制御の概要を第6図に示
す。制御は、ガスタービンの起動から定格速度に至るま
での制御を行う起動側−と、負荷運転時の制御を行う速
度・負価制−1及び、ガスタービンが燃焼ガス温度許容
値範囲内で運転するよう保護的要素をもつ排気温度制御
の三つの制御要素を持ち、これらの制御モードを選択す
る制御モード切換を介して、燃料調整弁6を制御する。Water (or steam) added due to pollution regulations, etc. is guided to the combustor 6VC via the water (steam) injection regulating valve 7, expanded by the turbine 3, and this energy is transmitted to the directly connected generator 4, which generates electricity. It is converted into energy and transmitted to the grid via the circuit breaker 5. Furthermore, an overview of gas turbine control is shown in FIG. Control consists of a startup side that controls the gas turbine from startup to rated speed, a speed/negative control that controls during load operation, and a control system that controls the gas turbine so that it operates within the combustion gas temperature tolerance range. The fuel regulating valve 6 is controlled through a control mode switch that selects the three control modes.
次に、ガスタービンの熱力学的サイクルを第7図に示す
。吸気された大気■は、圧縮されることによシ上昇し■
へ移行する。燃焼器で爆発したガスは、高温高圧ガスと
なり■へ移行し、タービンで膨張したガスは■で排気さ
れる。従って、■から■への移行量がガスタービンの仕
事量(出力)となシ、許容燃焼温度T3が高いほど出力
が増加することになる。この時、吸気(大気)温度がA
→B→Cと低下するにつれ、■から■への移行量(出力
)が増加することになる。Next, FIG. 7 shows the thermodynamic cycle of the gas turbine. The inhaled air is compressed and rises.
Move to. The gas that explodes in the combustor becomes high-temperature, high-pressure gas and moves to ■, and the gas expanded in the turbine is exhausted in ■. Therefore, the amount of transition from ■ to ■ is the amount of work (output) of the gas turbine, and the output increases as the allowable combustion temperature T3 increases. At this time, the intake air (atmosphere) temperature is A
As →B →C decreases, the amount of transition (output) from ■ to ■ increases.
次に、従来技術である圧縮機吐出圧力P2と排気設定温
度T4gとの関係を第8図に示す。吸気温度によりガス
タービンの熱力学的サイクルは変わるため、大気の変化
を圧縮機吐出圧力を検知することによってパラメータと
して許容燃焼温度T。Next, FIG. 8 shows the relationship between compressor discharge pressure P2 and exhaust temperature setting T4g according to the prior art. Since the thermodynamic cycle of the gas turbine changes depending on the intake air temperature, the permissible combustion temperature T is determined by detecting atmospheric changes in the compressor discharge pressure as a parameter.
を一定として、第7図よシ排気温度T4を求めた%性が
l/rJB図である。従って第8図よ〕、圧縮機吐出圧
力p、に対して排気温度を設定し、これを越えないよう
に制御するのが、第6図に示す排気温度制御である。The ratio of the exhaust gas temperature T4 determined in FIG. 7 is shown in the l/rJB diagram, assuming that T4 is constant. Therefore, in the exhaust gas temperature control shown in FIG. 6, the exhaust temperature is set with respect to the compressor discharge pressure p (see FIG. 8) and controlled so as not to exceed this temperature.
第9図、第10図に水(又は蒸気)の噴射量を次第に増
加させた場合の最大許容燃焼ガス温度での圧縮機吐出圧
力及び排気温度の変化を示す。FIGS. 9 and 10 show changes in compressor discharge pressure and exhaust temperature at the maximum allowable combustion gas temperature when the amount of water (or steam) injected is gradually increased.
第9図において、大気温度Bの時水(又は蒸気)の噴射
量を■→@→Oと増すと圧縮機吐出圧力P!が■′→@
′→θ′のように上昇し、排気温度T4がの“→σ′→
a′のように下降する。これは、燃焼器内に噴射された
水が、水蒸気化され燃焼ガスに混合されるため、結果的
VCは、燃焼ガス流量が増大し、これが吐出圧力の増大
(■′→■′→θ′)をもたらすことによる。大気Bの
とき得られた■’ 、 o/、θ′及びσ、α′、θ“
の各点を第8図にあてはめ、又、同様にして、大気温度
人及びBの場合の各点を第8図VCあてはめたのが第1
0図である。In Fig. 9, when the water (or steam) injection amount is increased as ■→@→O when the atmospheric temperature is B, the compressor discharge pressure P!が■′→@
'→θ', and the exhaust temperature T4 increases as '→σ'→
It descends like a'. This is because the water injected into the combustor is vaporized and mixed with the combustion gas, resulting in an increase in the combustion gas flow rate and an increase in the discharge pressure (■'→■'→θ' ) by bringing about. ■', o/, θ' and σ, α', θ'' obtained in atmosphere B
The points in Figure 8 are applied to Figure 8, and in the same way, each point in the case of atmospheric temperature human and B is applied to Figure 8 VC.
This is figure 0.
第10図によると、水(又は蒸気)噴射量か■→@→θ
と増大すると、排気設定温度T4s&’;t、高くなる
。According to Figure 10, the water (or steam) injection amount is ■→@→θ
When the temperature increases, the exhaust temperature setting temperature T4s&';t becomes higher.
従来の排気温度制御のように、水(又は蒸気)流量がな
い時の制御では、例えば、■で設定した場合、水(又は
蒸気)噴射量が@又はOであっても■の制御線で制御さ
れることになセ、ガスタービンの最高燃焼温度に達する
fUC1燃料が抑制されることになる欠点があった。In conventional exhaust temperature control, when there is no water (or steam) flow rate, for example, if you set ■, even if the water (or steam) injection amount is @ or O, the ■ control line Even though it is controlled, there is a drawback that the fUC1 fuel that reaches the maximum combustion temperature of the gas turbine is suppressed.
本発明の目的は、水(又は蒸気)噴射量のいかんにかか
わらず、燃焼器ガス温度を正確に予測しガスタービンの
出力増加をはかる制御方法を提供することにある。An object of the present invention is to provide a control method that accurately predicts combustor gas temperature and increases the output of a gas turbine regardless of the amount of water (or steam) injected.
本発明の要点は、水(又は蒸気]噴射時、吐出圧力が上
昇するため、見かけ上、燃焼器ガス温度が上昇すること
による最大出力降下を防止するため、水(又は蒸気)噴
射量と入口空気量との比によシ、あるいけ、水(又は蒸
気)流量と燃量流量の比により、吐出圧力を補正し、燃
焼器ガス温度を算出することにある。The key point of the present invention is that when water (or steam) is injected, the discharge pressure increases, so in order to prevent a drop in maximum output due to an apparent increase in combustor gas temperature, the water (or steam) injection amount and inlet The purpose is to calculate the combustor gas temperature by correcting the discharge pressure depending on the ratio to the air amount or the ratio between the water (or steam) flow rate and the fuel flow rate.
本発明では、水(又は蒸気)噴射流量をバラメ−夕とし
て、従来の排気温度圧を補正し、最大許容燃焼ガス温度
を算出し、実際の燃焼ガス温度が最大許容値を超えない
で、最大出力運転を可能とする側脚方式である実施例に
ついて第1図に基づいて説明する。In the present invention, the conventional exhaust gas temperature and pressure are corrected using the water (or steam) injection flow rate as a parameter, and the maximum allowable combustion gas temperature is calculated. An embodiment of the side leg system that enables output operation will be described based on FIG. 1.
空気流量検出器8で検出された信号MWと、水(又は蒸
気)噴射流量検出器11で検出された信号MAを演算器
12で
の演算を行い、圧縮機吐出圧力検出器9より検出された
信号P、を演算器13で
f (pt)
の演算を行って、掛算器14で圧縮材吐出圧力信号の補
正を行い設定値とする。また、排気温度検出器10より
検出された信号を加算器12でフィードバックし、比例
積分演算器16で、燃料流量調整弁の制御信号とする。The signal MW detected by the air flow rate detector 8 and the signal MA detected by the water (or steam) injection flow rate detector 11 are calculated by the calculator 12, and the signal MW detected by the compressor discharge pressure detector 9 is calculated. A calculation unit 13 calculates f (pt) for the signal P, and a multiplier 14 corrects the compressed material discharge pressure signal and uses it as a set value. Further, the signal detected by the exhaust temperature detector 10 is fed back by the adder 12, and is used by the proportional integral calculator 16 as a control signal for the fuel flow rate regulating valve.
この時、掛算器14の出力信号A(設定値)とフィード
バック信号との制@特性図を第2図に示す。圧縮機吐出
圧力P。At this time, a control characteristic diagram of the output signal A (set value) of the multiplier 14 and the feedback signal is shown in FIG. Compressor discharge pressure P.
に対して、水(又は蒸気)噴射流量MWと空気流量MA
との比によシ、バイアスで補正をすることにより、水(
又は蒸気)噴射流量増大によシ圧縮機吐出圧力が増大し
ても、排気温度設定T41は、その比に応じて高くなシ
、最高出力制御が可能となる。For, water (or steam) injection flow rate MW and air flow rate MA
By correcting the ratio with bias, water (
Even if the compressor discharge pressure increases due to an increase in the injection flow rate (or steam), the exhaust temperature setting T41 remains high in accordance with the ratio, making it possible to control the maximum output.
又、第3図に示すように、補正のパラメータとして、水
(又は蒸気)噴射流量MWと燃量流量検出器17よ量検
出された信号MPを演算器18での演算を行い、圧縮機
吐出圧力P、の補正を行うことによっても、最高出力制
御が可能となる。Further, as shown in FIG. 3, as correction parameters, the water (or steam) injection flow rate MW and the signal MP detected by the fuel flow rate detector 17 are calculated in the calculator 18, and the compressor discharge is adjusted. Maximum output control is also possible by correcting the pressure P.
この時、掛算器14の出力信号B(設定値)とフィード
バック信号との制御特性図を第4図に示す。At this time, a control characteristic diagram of the output signal B (set value) of the multiplier 14 and the feedback signal is shown in FIG.
本発明によれば、水(又は蒸気)噴射量にかかわらず、
燃焼m度が最大許容値となるため、ガスタービンの出力
を最大限引きだすことができる。According to the present invention, regardless of the water (or steam) injection amount,
Since the combustion degree is the maximum allowable value, the maximum output of the gas turbine can be extracted.
第1図は本発明の第一の実施例を示す制御ブロック図、
第2図は第1図の制御特性を示す補足説明図、第3図は
本発明の第二の実施例を示す制御ブロック図、第4図は
第3図の側脚%性を示す補足説明図、第5図はガスター
ビン発電所の主要機器構成図、Wc6図はガスタービン
の制御の概要図、第7図はガスタービンの熱力学的サイ
クルの説明図、第8図は従来の排気温度制御図、第9図
は従来の排気温度側脚における大気温度変化時の制御図
、第1O図は第5図の補足説明図である。
8・・・空気流量検出器、9・・・圧縮機吐出圧力検出
器、10・・・排気温度検出器、11・・・水(蒸気)
噴射流量検出器、12.13・・・演算器、14・・・
掛算器、第30
躬50
エンタルピ(S)
第8図
圧縮轡吐巳圧力(Px)
某9図
エンタルピ (S)FIG. 1 is a control block diagram showing a first embodiment of the present invention;
Fig. 2 is a supplementary explanatory diagram showing the control characteristics of Fig. 1, Fig. 3 is a control block diagram showing a second embodiment of the present invention, and Fig. 4 is a supplementary explanatory diagram showing the side leg percentage characteristics of Fig. 3. Figure 5 is a diagram of the main equipment configuration of a gas turbine power plant, Figure Wc6 is a schematic diagram of gas turbine control, Figure 7 is an explanatory diagram of the thermodynamic cycle of the gas turbine, and Figure 8 is a diagram of the conventional exhaust temperature. The control diagram, FIG. 9 is a control diagram when the atmospheric temperature changes in the conventional exhaust temperature side leg, and FIG. 10 is a supplementary explanatory diagram of FIG. 5. 8...Air flow rate detector, 9...Compressor discharge pressure detector, 10...Exhaust temperature detector, 11...Water (steam)
Injection flow rate detector, 12.13... Arithmetic unit, 14...
Multiplier, No. 30 50 Enthalpy (S) Figure 8 Compression pressure (Px) Certain Figure 9 Enthalpy (S)
Claims (1)
タービンにおいて、 燃焼濃度を間接的に制御するための排気温度の設定値を
水または蒸気の流量の関数とすることを特徴とするガス
タービン排気温度制御方法。 2、特許請求の範囲第1項において、前記水または蒸気
流量の関数として水または蒸気の流量と圧縮機入口空気
流量の比をパラメータとすることを特徴とするガスター
ビン排気温度制御方法。 3、特許請求の範囲第1項において、前記水または蒸気
流量の関数として、水または蒸気流量と燃料流量の比を
パラメータとすることを特徴とするガスタービン排気温
度制御方法。[Claims] 1. In a gas turbine equipped with a device for injecting water or steam into the combustor, the set value of the exhaust temperature for indirectly controlling the combustion concentration is made a function of the flow rate of water or steam. A gas turbine exhaust temperature control method characterized by: 2. A gas turbine exhaust temperature control method according to claim 1, characterized in that the ratio of the water or steam flow rate to the compressor inlet air flow rate is used as a parameter as a function of the water or steam flow rate. 3. A gas turbine exhaust temperature control method according to claim 1, characterized in that the ratio of the water or steam flow rate to the fuel flow rate is used as a parameter as a function of the water or steam flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12613485A JPS61286537A (en) | 1985-06-12 | 1985-06-12 | Gas turbine exhaust temperature control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12613485A JPS61286537A (en) | 1985-06-12 | 1985-06-12 | Gas turbine exhaust temperature control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61286537A true JPS61286537A (en) | 1986-12-17 |
Family
ID=14927511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12613485A Pending JPS61286537A (en) | 1985-06-12 | 1985-06-12 | Gas turbine exhaust temperature control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61286537A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09125984A (en) * | 1995-10-31 | 1997-05-13 | Kawasaki Heavy Ind Ltd | Steam injection gas turbine and its control method |
WO1999060308A1 (en) * | 1998-05-14 | 1999-11-25 | Bayer Aktiengesellschaft | Device and method for monitoring the air-fuel ratio in steam generators |
JP2008051013A (en) * | 2006-08-25 | 2008-03-06 | Hitachi Ltd | High humidity gas turbine plant and control method thereof |
US8416415B2 (en) | 2009-04-27 | 2013-04-09 | General Electric Company | Gas turbine optical imaging system |
US10801361B2 (en) | 2016-09-09 | 2020-10-13 | General Electric Company | System and method for HPT disk over speed prevention |
US11236676B2 (en) | 2017-02-06 | 2022-02-01 | Mitsubishi, Power, Ltd. | Humid air turbine |
-
1985
- 1985-06-12 JP JP12613485A patent/JPS61286537A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09125984A (en) * | 1995-10-31 | 1997-05-13 | Kawasaki Heavy Ind Ltd | Steam injection gas turbine and its control method |
JP3551215B2 (en) * | 1995-10-31 | 2004-08-04 | 川崎重工業株式会社 | Steam injection gas turbine and its control method |
WO1999060308A1 (en) * | 1998-05-14 | 1999-11-25 | Bayer Aktiengesellschaft | Device and method for monitoring the air-fuel ratio in steam generators |
JP2008051013A (en) * | 2006-08-25 | 2008-03-06 | Hitachi Ltd | High humidity gas turbine plant and control method thereof |
US8416415B2 (en) | 2009-04-27 | 2013-04-09 | General Electric Company | Gas turbine optical imaging system |
US10801361B2 (en) | 2016-09-09 | 2020-10-13 | General Electric Company | System and method for HPT disk over speed prevention |
US11236676B2 (en) | 2017-02-06 | 2022-02-01 | Mitsubishi, Power, Ltd. | Humid air turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8141369B2 (en) | Method of regulation of the temperature of hot gas of a gas turbine | |
EP1231369B1 (en) | Gas turbine control system compensating water content in combustion air | |
JP5905119B2 (en) | Gas component control in gas turbine generators using flue gas recirculation. | |
DE60114987D1 (en) | REGULATION OF A VACUUM BURNER WITH VARIABLE TURBINE GEOMETRY BY MEASURING THE EXHAUST GAS PRESSURE | |
EP0590829B1 (en) | Apparatus and method of automatic NOx control for a gas turbine | |
US4733527A (en) | Constant NOx control for gas turbine | |
JPS61286537A (en) | Gas turbine exhaust temperature control method | |
Hohloch et al. | Analysis of Operational Strategies of a SOFC/MGT Hybrid Power Plant | |
JP7461201B2 (en) | Gas turbine control device, gas turbine control method, and gas turbine control program | |
US11643977B2 (en) | Gas turbine control device, gas turbine control method, and program | |
Rowen | Operating characteristics of heavy-duty gas turbines in utility service | |
CN114088409B (en) | Partial load performance test method for gas-steam combined cycle single-shaft unit | |
CN100379958C (en) | Method for regulating hot flue gas temperature of gas turbine | |
JP2509022B2 (en) | Gas turbine control device | |
JPS5926779B2 (en) | Method for controlling nitrogen oxide emissions in gas turbine plants | |
US5699267A (en) | Hot gas expander power recovery and control | |
JPS6278437A (en) | Gas turbine exhaust temperature control method | |
JPH0932508A (en) | Combined cycle plant | |
ITMI20090766A1 (en) | DEVICE AND METHOD TO CHECK THE TEMPERATURE AT THE DISCHARGE OF A GAS TURBINE OF AN ENERGY PRODUCTION PLANT | |
JP2692978B2 (en) | Start-up operation method of combined cycle plant | |
JPH07301128A (en) | Gas turbine exhaust gas temperature control device | |
JPS6335814B2 (en) | ||
JPS627933A (en) | Supercharger control device | |
JP2021095854A (en) | Steam injection gas turbine | |
JPS6293405A (en) | speed control device |