JPS61286044A - Continuous casting method for clad slabs - Google Patents
Continuous casting method for clad slabsInfo
- Publication number
- JPS61286044A JPS61286044A JP12895085A JP12895085A JPS61286044A JP S61286044 A JPS61286044 A JP S61286044A JP 12895085 A JP12895085 A JP 12895085A JP 12895085 A JP12895085 A JP 12895085A JP S61286044 A JPS61286044 A JP S61286044A
- Authority
- JP
- Japan
- Prior art keywords
- solid material
- molten
- mold
- metal
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000009749 continuous casting Methods 0.000 title claims description 22
- 239000000463 material Substances 0.000 claims abstract description 66
- 239000011343 solid material Substances 0.000 claims abstract description 56
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 11
- 238000005253 cladding Methods 0.000 claims abstract description 7
- 239000012768 molten material Substances 0.000 claims abstract 2
- 239000002648 laminated material Substances 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 abstract description 52
- 229910052751 metal Inorganic materials 0.000 abstract description 52
- 238000005266 casting Methods 0.000 abstract description 15
- 239000002893 slag Substances 0.000 abstract description 11
- 229910045601 alloy Inorganic materials 0.000 abstract description 10
- 239000000956 alloy Substances 0.000 abstract description 10
- 239000011248 coating agent Substances 0.000 abstract description 10
- 238000000576 coating method Methods 0.000 abstract description 10
- 239000010953 base metal Substances 0.000 abstract description 4
- 238000005304 joining Methods 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract description 3
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 206010040844 Skin exfoliation Diseases 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000007769 metal material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/008—Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
「発明の目的」
(産業上の利用分野)
金属材には、所望の強度を有する低廉な普通材質の母材
と、化学工業用、原子カニ業用、海洋工業用9食品工業
用等の用途に通した特殊材質の合せ材とを一体的に接合
させたクラッド金属材がある0本発明は、前記の如きク
ラッド金属材の素材となるクラッド鋳片を連続鋳造によ
って製造する方法に関する。ものである。[Detailed Description of the Invention] "Objective of the Invention" (Industrial Field of Application) The metal material includes a base material of an inexpensive ordinary material having a desired strength, and a base material for the chemical industry, the atomic crab industry, and the marine industry. 9. There is a clad metal material that is integrally bonded with a special material laminate that has been used in the food industry, etc. 0. The present invention is based on continuous casting of a clad slab, which is the raw material for the above-mentioned clad metal material. Relating to a method of manufacturing. It is something.
(従来の連ti*#造方法)
従来、連続鋳造設備のモールド内へ、特殊材質よりなる
帯状の合せ材を送給すると共に、該合せ材と材質の異な
った母材となるべき溶融金属を注入してクラッド鋳片を
製造する方法がある0例えば特開昭51−111458
号公報(以下、先願公報という)に記載されたものはそ
の一例である0M先願公報に記載された技術内容は第2
図に示す如(であり、耐食性材質よりなる帯状の合せ材
り、 Dを鋳造速度に応じてモールドAの長辺内壁に沿
う如く送給しつつ、残るモールドAの内域空間にタンデ
ィツシュBに貯留された母材となるべき普通鋼種の溶&
ICを注入して引き抜き、耐食性材質の合せ材と普通鋼
種の母材とが接合されたクランド鋳片を製造しようとす
るものである。つまり、モールドA内に送給される常温
の合せ材り、、Dは、溶鋼Cと接触する一側面が高温度
の溶鋼熱によって若干融化され、合せ材り、Dと溶GK
Cとが溶着し合う、というものである。(Conventional continuous casting method) Conventionally, a belt-shaped composite material made of a special material is fed into the mold of continuous casting equipment, and molten metal to be a base material of a different material from the composite material is fed into the mold. There is a method of manufacturing clad slabs by injection. For example, JP-A-51-111458
The technical content described in the 0M first application publication is one example.
As shown in the figure, a band-shaped laminate made of a corrosion-resistant material, D, is fed along the inner wall of the long side of the mold A according to the casting speed, and a tundish B is placed in the remaining inner space of the mold A. Melting &
The purpose is to manufacture a crushed slab in which a corrosive resistant material and a base material of ordinary steel are joined by injecting and pulling out IC. In other words, one side of the room-temperature laminate material, D, which is fed into the mold A, is slightly melted by the heat of the high-temperature molten steel, and the laminate material, D, and molten GK
C are welded together.
(発、明が解決しようとする問題点) 前記先願公報の技術において、常温の合せ材り。(The problem that the invention attempts to solve) In the technique of the prior application publication, the laminated material is laminated at room temperature.
Dと溶鋼Cとの溶着が完全且つ強固なものとするために
は、溶鋼は接合相手である常温の合せ材り。In order to make the welding between D and molten steel C complete and strong, the molten steel must be a room-temperature laminate to be welded.
Dに熱を分与して、その表面を融化温度以上に昇温させ
なければならない、従って溶鋼Cの鋳込み温度はかなり
高温としておく必要がある。しかも溶llCとの接触に
よって常温の合せ材り、Dの表面が融化するまでには一
定の伝熱時間を必要とする。この伝熱時間は、合せ材り
、Dの厚みによって象徴される熱容量の増大に伴って長
くなり、鋳造速度もまた必然的に遅延化するから、合せ
材り。Heat must be distributed to D to raise the temperature of its surface above the melting temperature. Therefore, the casting temperature of molten steel C must be kept quite high. Moreover, it takes a certain amount of heat transfer time for the surface of the room-temperature laminate D to melt due to contact with the molten C. This heat transfer time becomes longer with the increase in heat capacity symbolized by the thickness of the laminate D, and the casting speed is also inevitably retarded.
Dの厚みには自ら1jJIaが伴う、また、伝熱時間を
短縮しようとして溶鋼Cの鋳込み温度を更に高温にする
と、凝固までに要する時間が増大するから、この場合も
鋳造速度は遅延化し、鋳造能率の減退を招来する。この
ように、先願公報の技術には、強固な接合状態を特徴と
する要請と鋳造能率を向上させようとする要請とが矛盾
して存在するために、その実施は操業上極めて困難であ
った。The thickness of D is accompanied by 1jJIa. Also, if the casting temperature of molten steel C is made higher in order to shorten the heat transfer time, the time required for solidification will increase, so in this case as well, the casting speed will be delayed and the casting This leads to a decrease in efficiency. As described above, the technology disclosed in the prior application contradicts the requirement of having a strong bonded state and the requirement of improving casting efficiency, making it extremely difficult to implement the technology from an operational point of view. Ta.
ところで、一般にモールドA内に注入された溶wiC+
上面には被覆スラグが浮遊形成されている。By the way, generally the molten wiC+ injected into mold A
A covering slag is formed floating on the upper surface.
該被覆スラグは、溶11ict中より浮上してくる不純
物や非金属介在物の吸収、溶鋼CI上面からの熱の散逸
防止、モールドAと鋳片Zとの間の潤滑等を目的とする
ものであるから、連続鋳造にとって極めて重要である。The purpose of the coating slag is to absorb impurities and non-metallic inclusions floating from the molten steel, prevent heat dissipation from the top surface of the molten steel CI, and provide lubrication between the mold A and the slab Z. Therefore, it is extremely important for continuous casting.
しかし合せ材り、Dは、前述した如く熔@C1と接触し
て初めて昇温されるものであるから、前記被覆スラグと
接触する時点では未だ常温に雰囲気温度が加味された程
度の温度となっているにすぎない。表面温度の低い合せ
材り。However, as mentioned above, the temperature of the laminated material D is raised only when it comes into contact with the molten C1, so when it comes into contact with the coating slag, it is still at room temperature plus the ambient temperature. It's just that. Laminated material with low surface temperature.
Dには当然のことながら被覆スラグが付着し易くなり、
合せ材り、D、!:熔&IC+との接合部分には被覆ス
ラグの非金属介在物等が混入して不健全な偏析層が生成
されてしまう。従って合せ材り、Dと溶鋼CIの凝固に
よって得られる母材C,とは仮令熔着し合っているよう
に見えても強固な接合状態には至っていない。このよう
な不健全で脆弱な接合状態は、合せ材り、 Dの線膨
張係数と母材C1の線膨張係数との間に著しい差異があ
る場合において特に甚だしい、!pち、冷却過程中に合
せ材り、 Dと溶1iCtとの接合界面へ両者間の前記
収縮差による剪断力が作用して、合せ材り、Dと母材C
8とが剥離してしまうという深刻な欠点を有していた。Naturally, coating slag tends to adhere to D,
Laminating material, D,! : Non-metallic inclusions of the coating slag are mixed into the joint with the melt & IC+, resulting in the formation of an unhealthy segregation layer. Therefore, even though the laminate material D and the base material C obtained by solidifying the molten steel CI appear to be temporarily welded to each other, a strong bond has not been reached. Such an unhealthy and brittle joint state is particularly serious when there is a significant difference between the linear expansion coefficient of the laminate D and that of the base material C1! During the cooling process, the shearing force due to the shrinkage difference between the laminate D and the base metal C acts on the bonding interface between the laminate D and the base material C.
This had a serious drawback in that the parts 8 and 8 would peel off.
殊に引抜き形態が弯曲型である連続鋳造設備にあって、
合せ材り、Dと母材已とを二層に接合したクラッド鋳片
を引き抜き、続いて真直矯正する場合には、両者の間で
一方の層には引張応力が作用し他方の層には圧縮応力が
作用するため、前記剪断力は更に助勢され、両者間の剥
離の発生は回避し難いものであった。そしてこのような
致命的欠点は、合せ材りの断面積が大きい程甚だしいも
のがある。Especially in continuous casting equipment where the drawing form is curved,
When pulling out a clad slab made of two layers of laminated material D and the base material, and subsequently straightening it, tensile stress acts on one layer between the two and causes stress on the other layer. Since compressive stress acts, the shearing force is further amplified, making it difficult to avoid the occurrence of peeling between the two. These fatal defects become more serious as the cross-sectional area of the laminate increases.
なおまた、先願公報の技術は、合せ材り、Dを常温固体
とし、母材C1となるべきものを溶融状態で供給する場
合には実施可能であるが、これが逆の場合には殆ど実施
不可能である。Additionally, the technique disclosed in the earlier application can be implemented when the laminated material D is solid at room temperature and the base material C1 is supplied in a molten state, but in the opposite case, it is almost impossible to implement it. It's impossible.
本発明は、上記の如き事情に鑑みてなされたものであっ
て、第1には常温固体の合せ材を用いる場合でもその厚
みに制限されず、第2にはモールド内に被覆スラグを浮
遊させても合せ材と母材との接合界面に非金属介在物等
′0:)混入による不健全偏析層が生成されず、第3に
は母材を常温固体とし合せ材を溶融状態で供給する場合
でも実施可能であり、しかも合せ材と母材とは強固に接
合されて剥離のおそれがなく、且つ高能率にクラッド鋳
片を製造することができる連続鋳造方法(以下、本件連
続鋳造方法という)の提供を目的とする。The present invention has been made in view of the above-mentioned circumstances. Firstly, even when using a laminate material that is solid at room temperature, the thickness is not limited, and secondly, the coating slag is suspended in the mold. Even if the bonding interface between the bonding material and the base material is mixed with non-metallic inclusions, an unhealthy segregation layer will not be generated, and thirdly, the base material is solid at room temperature and the bonding material is supplied in a molten state. The continuous casting method (hereinafter referred to as the "Continuous Casting Method") is a method that can be carried out even in cases where the cladding material and the base material are firmly joined, so there is no risk of peeling, and that clad slabs can be manufactured with high efficiency. ).
「発明の構成」
(問題点を解決するための手段)
本件連続鋳造方法の要旨とするところは、互いに材質の
異なる母材と合せ材のうち、いずれか一方を固体状態で
モールド内へ連続的に送給し、他方を溶融状態で前記モ
ールド内壁と前記固体材との間へ連続的に注入すること
により両者が接合したクラッド鋳片を製造するに際して
、前記モールド内へ送給される固体材の表面を溶融池材
と金属学的に接合し得る温度に加熱することである。"Structure of the Invention" (Means for Solving the Problems) The gist of the present continuous casting method is to continuously inject one of the base material and the laminate material, which are of different materials, into a mold in a solid state. When producing a clad slab in which the two are joined by continuously injecting the other in a molten state between the inner wall of the mold and the solid material, the solid material fed into the mold. The method is to heat the surface of the molten pool to a temperature at which it can be metallurgically bonded to the molten pool material.
(作用)
モールド内に送給される固体材は、その表面が溶融状態
の他社と金属学的に接合し得る温度に加熱されるから、
母材と合せ材のいずれかが固体状態で、いずれかが溶融
状態であるとを問わず、両者の金属分子は接合界面にお
いて互いに交差し、また固体材の表面が高温となるので
その表面に被覆スラグが付着することもないから、接合
界面に非金属介在物の層が生成されずに、母材と合せ材
との金属組成に対して親和性の優れた合金層が形成され
ることになる。このように本件連続鋳造方法によって製
造されたクラッド鋳片は、母材金属と合せ材金属とが強
固に接合しているから、仮に夫々の金属の線膨張係数が
著しく異なるような場合であっても、その収縮過程にお
いて剥離が生じることはない、勿論、引恢き形態が弯曲
型の連続鋳造設備であっても剥離は生じない。従って、
本件連続鋳造方法においては、固体状態で供給されるも
のはそれが合せ材になるものであると母材になるもので
あるとを問わず、外形寸法が制限されることはない。ま
た、モールド内へ供給される固体材の表面が加熱されて
いるので、溶融状態の金属から固体材への熱移動量及び
伝熱時間は減少され、鋳込み速度を上昇させることが可
能となっている。(Function) The solid material fed into the mold is heated to a temperature at which its surface can be metallurgically bonded to other companies in a molten state.
Regardless of whether either the base material or the laminate is in a solid state or the other is in a molten state, the metal molecules of both will cross each other at the bonding interface, and the surface of the solid material will be at a high temperature, so Since coating slag does not adhere, a layer of non-metallic inclusions is not generated at the bonding interface, and an alloy layer with excellent affinity for the metal composition of the base material and laminate is formed. Become. As described above, in the clad slab manufactured by the present continuous casting method, the base metal and the laminated metal are strongly bonded, so even if the coefficients of linear expansion of the respective metals are significantly different, However, no peeling occurs during the shrinking process. Of course, no peeling occurs even in continuous casting equipment where the drawing form is curved. Therefore,
In the present continuous casting method, there are no restrictions on the external dimensions of the material supplied in a solid state, regardless of whether it is used as a laminate or as a base material. In addition, since the surface of the solid material fed into the mold is heated, the amount of heat transfer from the molten metal to the solid material and the heat transfer time are reduced, making it possible to increase the casting speed. There is.
(実施例)
以下本発明を、その実施例を示す図面に基づいて説明す
ると次のとおりである。(Example) The present invention will be described below based on drawings showing examples thereof.
第1図は、本件連続鋳造方法を概略して示す正面断面図
である。FIG. 1 is a front sectional view schematically showing the present continuous casting method.
本実施例は、特殊材質の合せ材11となるべき帯状固体
4をモールド1内の内壁の一側面に沿わせて連続的に送
給し、他方、普通材質の母材13となるべき溶融金属5
をタンディツシュ2からモールド1内へ連続的に注入し
、該モールド1より、合せ材11と母材13とが合金層
12を介して一体的に接合されたクラッド鋳片10を引
き抜く場合のものである。In this embodiment, a strip-shaped solid 4 to be made of a special material laminate 11 is continuously fed along one side of the inner wall in the mold 1, while a molten metal to be made to be a base material 13 made of a normal material is fed continuously. 5
is continuously injected into the mold 1 from the tundish 2, and the clad slab 10 in which the cladding material 11 and the base material 13 are integrally joined via the alloy layer 12 is pulled out from the mold 1. be.
本実施例において最も特徴とする手法は、モールド1内
に送給される合せ材用帯状固体材4の表面を、母材用溶
融金属5と金属学的に接合し得る温度に加熱することで
ある。ここで、帯状固体材4と溶融金属5との金属学的
な接合とは、帯状固体4と溶融金属5との接合部分に相
互の金属分子が混合した合金層12が形成され、この合
金層12が合せ材11と母材13の両者に対して優れた
親和性を有していることをいい、該金属学的に接合し得
る温度とは、帯状固体材4の金属分子と溶融金属5の金
属分子とが相互の間で移動可能な状態となる温度をいい
、帯状固体材4について見れば、それを構成する金属又
は合金の固相線温度乃至液相線温度の範囲(以下、融化
温度域という)である。The most distinctive method of this embodiment is to heat the surface of the band-shaped solid material 4 for the cladding material fed into the mold 1 to a temperature at which it can be metallurgically bonded to the molten metal 5 for the base material. be. Here, the metallurgical joining of the strip-shaped solid material 4 and the molten metal 5 means that an alloy layer 12 in which mutual metal molecules are mixed is formed at the joint portion of the strip-shaped solid material 4 and the molten metal 5, and this alloy layer 12 has an excellent affinity for both the laminating material 11 and the base material 13, and the temperature at which metallurgical bonding is possible means that the metal molecules of the band-shaped solid material 4 and the molten metal 5 This refers to the temperature at which the metal molecules in the band can move between each other.When looking at the band-shaped solid material 4, the range of solidus temperature to liquidus temperature (hereinafter referred to as melting temperature) of the metal or alloy constituting it is the temperature at which the metal molecules of temperature range).
つまり、金属学的接合となり得るためには、帯状固体材
4における少なくとも溶融金属5との接合表面が融化し
ている必要がある。In other words, in order to achieve a metallurgical bond, at least the bonding surface of the band-shaped solid material 4 with the molten metal 5 must be melted.
帯状固体材4の表面を加熱する場合の温度は、基本的に
は高い程好ましい。これはモールド1内の溶融金属5上
面に浮遊形成される被覆スラグが帯状固体材4の表面に
付着するのを防止するためである。しかし実際的には、
帯状固体材4の融化温度域と溶融金属5の鋳込み温度と
の関係において決定される。Basically, the higher the temperature when heating the surface of the band-shaped solid material 4, the better. This is to prevent the coating slag floatingly formed on the upper surface of the molten metal 5 in the mold 1 from adhering to the surface of the band-shaped solid material 4. But in reality,
It is determined based on the relationship between the melting temperature range of the band-shaped solid material 4 and the casting temperature of the molten metal 5.
ここで、仮に帯状固体材4の融化温度域よりも溶融金属
5の鋳込み温度の方が高い場合を考えてみる。つまり、
溶融金属5は、自己の有する熱を帯状固体材4へ分与し
てその表面を融化させるに充分な状態に保持されている
のであるから、このときの加熱温度は、帯状固体材4の
表面4aが融化温度域に達するまでの伝熱時間を極力短
縮することに留意して設定すればよい。具体的には帯状
固体材4の融化温度域よりも僅かに低い程度である。Here, let us consider a case where the casting temperature of the molten metal 5 is higher than the melting temperature range of the band-shaped solid material 4. In other words,
Since the molten metal 5 is maintained in a state sufficient to distribute its own heat to the band-shaped solid material 4 and melt its surface, the heating temperature at this time is equal to the surface of the band-shaped solid material 4. The temperature may be set with consideration given to shortening the heat transfer time until 4a reaches the melting temperature range as much as possible. Specifically, it is slightly lower than the melting temperature range of the band-shaped solid material 4.
従って帯状固体材4は、溶融金属5と接触することによ
って昇温しで融化し、帯状固体材4と溶融金属5とが金
属学的に接合した後、モールド1から受ける冷却作用に
よって溶融金属5の凝固と共に凝固する。Therefore, the band-shaped solid material 4 is heated and melted by coming into contact with the molten metal 5, and after the band-shaped solid material 4 and the molten metal 5 are metallurgically joined, the molten metal 5 is heated by the cooling action received from the mold 1. coagulates with the coagulation of
また上記の場合とは反対に、帯状固体材4の融化温度域
が溶融金属5の鋳込み温度よりも高い場合を考えてみる
。即ち、帯状固体材4は溶融金属5からの熱の分与を期
待することができないばかりでなく、帯状固体材4の熱
が溶融金属5の方へ放出されて、ときには冷却作用を受
けることも考えられる。従ってこのときの加熱温度は、
帯状固体材4がモールド1内に送給される以前に既に融
化温度域以上の温度に達するようにしておく必要がある
。かといって、帯状固体材4が融化され過ぎては溶融金
属5との合金層12が必要以上に厚くなって所定のクラ
ッド比が保てなくなるおそれがあるため、具体的には帯
状固体材4の融化温度域よりも僅かに高い程度に留めて
お(のが望ましい。Also, in contrast to the above case, consider a case where the melting temperature range of the band-shaped solid material 4 is higher than the casting temperature of the molten metal 5. That is, not only cannot the band-shaped solid material 4 be expected to receive heat from the molten metal 5, but also the heat of the band-shaped solid material 4 is released toward the molten metal 5, and sometimes receives a cooling effect. Conceivable. Therefore, the heating temperature at this time is
Before the strip-shaped solid material 4 is fed into the mold 1, it is necessary to ensure that the temperature reaches the melting temperature range or higher. However, if the band-shaped solid material 4 is melted too much, the alloy layer 12 with the molten metal 5 may become thicker than necessary, making it impossible to maintain a predetermined cladding ratio. It is desirable to keep the melting temperature slightly higher than the melting temperature range.
また、帯状固体材4における溶融金属5との接合表面4
aのみを融化温度域以上に熱することも可能である。従
って帯状固体材4は、溶融金属5と接触した瞬間から冷
却凝固されはじめ、溶融金IE5との接合部分では金属
学的に接合している。Further, the bonding surface 4 of the band-shaped solid material 4 with the molten metal 5
It is also possible to heat only a to a temperature higher than the melting temperature range. Therefore, the band-shaped solid material 4 begins to cool and solidify from the moment it comes into contact with the molten metal 5, and is metallurgically joined at the joint portion with the molten metal IE5.
前記第1図に示すように、本実施例において帯状固体材
4の加熱は、高周波誘導コイルよりなる加熱装置3を用
いてモールド1の直上位置で加熱するようにした。しか
し、前述した如(、帯状固体材4における溶融金属5と
の接合表面4aのみを加熱するような場合にあっては、
ガスバーナー(図示省略)等を用いて加熱するものであ
ってもよい、なお、直接帯状固体材4に通電し加熱する
ようにしてもよい。As shown in FIG. 1, in this embodiment, the band-shaped solid material 4 was heated at a position directly above the mold 1 using a heating device 3 consisting of a high-frequency induction coil. However, as mentioned above (in the case where only the joining surface 4a of the band-shaped solid material 4 with the molten metal 5 is heated),
Heating may be performed using a gas burner (not shown) or the like, or heating may be performed by directly applying electricity to the band-shaped solid material 4.
なお、図中符号6は電磁攪拌装置を示す。該電磁攪拌装
置6は、モールド1内を囲繞するように埋設されており
、溶融金属5の成分組成と温度とを均質化すると共に、
帯状固体材4の融化表面との金属学的接合を促進させて
剥離等の発生を防止しようとするものである。なお、帯
状固体材4の線膨張係数と溶融金属50線膨張係数とが
近似している場合、例えば母材13となる溶融金属5の
材質が5S41等の一般構造用炭素鋼であり、合せ材1
1となる帯状固体材4の材質が特殊用途炭素鋼、フェラ
イト系ステンレス鋼等である場合は、前記電磁攪拌装置
6を省略することが可能である。Note that the reference numeral 6 in the figure indicates an electromagnetic stirring device. The electromagnetic stirring device 6 is embedded so as to surround the inside of the mold 1, and homogenizes the composition and temperature of the molten metal 5.
This is intended to promote metallurgical bonding with the melted surface of the band-shaped solid material 4 and prevent the occurrence of peeling and the like. In addition, when the linear expansion coefficient of the strip-shaped solid material 4 and the linear expansion coefficient of the molten metal 50 are approximate, for example, the material of the molten metal 5 serving as the base material 13 is general structural carbon steel such as 5S41, and the laminated material is 1
When the material of the band-shaped solid material 1 is special-purpose carbon steel, ferritic stainless steel, etc., the electromagnetic stirring device 6 can be omitted.
上記の如くにして帯状固体材4と溶融金Wk5とは完全
な金属学的接合が行われ、溶融金属5はモールド1の内
壁に最寄りの層から次第に凝固が進行する。そしてモー
ルド1から引き抜かれる段階では、芯部になお未凝固部
が残存するとしても、帯状固体材4は合せ材11となり
、溶融金属5は母材13となり、両者は合金層12を介
して一体的に接−合されたクラッド鋳片10となる。As described above, the band-shaped solid material 4 and the molten gold Wk5 are completely metallurgically joined, and the molten metal 5 gradually solidifies starting from the layer closest to the inner wall of the mold 1. At the stage of being pulled out from the mold 1, even if an unsolidified portion remains in the core, the band-shaped solid material 4 becomes the laminate material 11, the molten metal 5 becomes the base material 13, and the two are integrated through the alloy layer 12. This results in a clad slab 10 that is symmetrically joined.
本発明者は、本件連続鋳造方法によってクラッド鋳片を
製造したので、そのときの製造条件に関する具体的な数
値をく表〉中の賦香1〜4に示す。The present inventor manufactured a clad slab by the present continuous casting method, and specific numerical values regarding the manufacturing conditions at that time are shown in Fragrances 1 to 4 in the table below.
また、前記賦香1〜4と同様な材質の帯状固体材を用い
て、該帯状固体材を加熱しない場合の比較例を製造した
ので、この比較例に関する具体的数値を同く表〉中にお
ける賦香5〜8に併記した。In addition, a comparative example in which the band-shaped solid material was not heated was manufactured using a band-shaped solid material similar to the above-mentioned fragrances 1 to 4, so the specific numerical values regarding this comparative example are shown in the same table. It is also listed in fragrances 5 to 8.
く表〉によって明らかなように、「界面剪断強度」にお
ける各データから、本件連続鋳造方法によって製造した
クラッド鋳片は、帯状固体材を加熱しない場合と比較に
ならない程に強固な接合力を備えていることが分かる。As is clear from the table below, the clad slab produced by the continuous casting method has an incomparably strong bonding strength compared to the case where the solid strip material is not heated, based on the data on "interfacial shear strength". I can see that
これに対して比較例の特に賦香5及び7では、鋳片とし
て引き抜いた際に既に剥離が発生し、そもそもクラ、ド
鋳片を製造することができないものもあった。また、鋳
造速度について本件連続鋳造方法のものと比較例のもの
とを比べると、本件連続鋳造方法が比較例の2倍以上の
製造能率を図れることがわかる。そのうえ本件連続鋳造
方法では、帯状固体材を加熱することで溶融金属の温度
を可能な限り低(抑えることができ、該溶融金属が冷却
して凝固する時間を早める結果にもなる。また、〈表〉
には記載しないが、本発明者は、特殊材質の合せ材とな
るべき帯状固体材2条をモールドの対向二壁に沿うよう
に夫々送給し、該両帯状固体付相互間に普通材質の母材
となるべき溶融金属を注入して両面クラッド鋳片を製造
することにも成功している。また、前記実施例とは反対
に、普通材質の母材となるべきものを帯状固体として送
給し、特殊材質の合せ材となるべきものを溶融状態で注
入してクラッド鋳片を製造する場合をも実施した。つま
り、モールドの中央部へ母材となるべき厚手の帯状固体
材を送給しつつ、該厚手帯状固体材の相反両面とモール
ド内壁との各間隙に溶融金属を注入して両面クラッド鋳
片を製造する。On the other hand, in Comparative Examples, especially in perfumed slabs 5 and 7, peeling already occurred when they were pulled out as slabs, and some of them were not able to be manufactured into cracked slabs in the first place. Furthermore, when comparing the casting speed between the continuous casting method of the present invention and that of the comparative example, it can be seen that the continuous casting method of the present invention can achieve manufacturing efficiency that is more than twice that of the comparative example. Furthermore, in the present continuous casting method, by heating the strip-shaped solid material, the temperature of the molten metal can be kept as low as possible, which results in a faster time for the molten metal to cool and solidify. table>
Although not described in , the inventor of the present invention feeds two strips of solid material to be made of a special material along two opposing walls of a mold, and inserts a strip of ordinary material between the two strips of solid material. We have also succeeded in manufacturing double-sided clad slabs by injecting molten metal to serve as the base material. In addition, contrary to the above embodiment, when a clad slab is manufactured by feeding a base material made of a normal material as a solid strip and injecting a material made of a special material in a molten state. was also carried out. In other words, while feeding a thick strip-shaped solid material to the center of the mold to serve as the base material, molten metal is injected into each gap between the opposing surfaces of the thick strip-shaped solid material and the inner wall of the mold to form a double-sided clad slab. Manufacture.
なお本発明方法は、鋼材以外の非鉄金属よりなるクラッ
ド金属材用鋳片の製造にも通用可能である。また固体材
が帯状以外の棒材、管材その他いかなる形状のものであ
ってもよい、また、第1図に示した如き製造法において
、固体材(4)の内面側、即ち溶融金属(5)と接触す
る側面のみを加熱することによって、固体材(4)をモ
ールドとして代替えさせることができ、当該モールドの
一面を省略することも可能である。Note that the method of the present invention can also be applied to the production of cast slabs for clad metal materials made of non-ferrous metals other than steel materials. Furthermore, the solid material may be of any shape other than a strip, such as a bar or a tube.In addition, in the manufacturing method shown in FIG. 1, the inner surface of the solid material (4), that is, the molten metal By heating only the side surface in contact with the solid material (4), it is possible to replace the solid material (4) as a mold, and it is also possible to omit one side of the mold.
(以下余白)
次頁へ続く
「発明の効果」
以上の説明で明らかなように、本発明に係るクラッド鋳
片の連続鋳造方法によれば、合せ材又は母材となるべき
固体材の表面温度が加熱されていることにより、当該固
体材表面への被覆スラグの付着防止、溶融金属との良好
な金属学的接合、母材及びクラッド鋳片の外形寸法の無
制限化、鋳造速度の能率化、溶鋼温度の抑制化等が可能
となった。勿論、本件連続鋳造方法によって製造された
クラッド鋳片は、特殊材質の金属と普通材質の金属との
接合部分に相互材質の夫々に親和性を有する良好な合金
層が形成されているため、剥離等が発生することは皆無
である。(The following is a blank space) Continued on the next page "Effects of the Invention" As is clear from the above explanation, according to the method for continuous casting of clad slabs according to the present invention, the surface temperature of the solid material to be the clad material or the base material By being heated, the coating slag is prevented from adhering to the surface of the solid material, good metallurgical bonding with the molten metal, unlimited external dimensions of the base material and clad slab, streamlining of casting speed, It has become possible to suppress the temperature of molten steel. Of course, the clad slab produced by this continuous casting method has a good alloy layer formed at the joint between the special metal and the ordinary metal, which has an affinity for each of the materials, so there is no possibility of peeling. etc. will never occur.
第1図は本件連続鋳造方法を概略して示す正面断面図、
第2図は先願公報に記載の技術内容を示す概略断面図で
ある。
1・・・モールド 2・・・タンディツシュ3・
・・加熱装置 4・・・帯状固体材5・・・溶融
金属 7・・・電磁攪拌装置10・・・クラッド
鋳片 11・・・合せ材12・・・合金1iii13
・・・母材特許出願人 住友金屈工業株式会社
代 理 人 弁理士 内1)敏彦
第2図Figure 1 is a front sectional view schematically showing the continuous casting method in question;
FIG. 2 is a schematic sectional view showing the technical content described in the prior application publication. 1...Mold 2...Tandish 3.
... Heating device 4 ... Band-shaped solid material 5 ... Molten metal 7 ... Electromagnetic stirring device 10 ... Clad slab 11 ... Lamination material 12 ... Alloy 1iii13
...Base material patent applicant Sumitomo Kinku Kogyo Co., Ltd. Representative Patent attorney 1) Toshihiko Figure 2
Claims (1)
一方を固体状態でモールド内へ連続的に送給し、他方を
溶融状態で前記モールド内壁と前記固体材との間へ連続
的に注入することにより両者が接合したクラッド鋳片を
製造するに際して、前記モールド内へ送給される固体材
の表面を溶融他材と金属学的に接合し得る温度に加熱す
ることを特徴とするクラッド鋳片の連続鋳造方法。1. Continuously feeding one of the base material and laminate material, which are of different materials, into the mold in a solid state, and continuously feeding the other in a molten state between the inner wall of the mold and the solid material. A cladding characterized by heating the surface of the solid material fed into the mold to a temperature at which it can be metallurgically joined to another molten material when producing a clad slab in which both are bonded by injection. Continuous casting method for slabs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12895085A JPS61286044A (en) | 1985-06-13 | 1985-06-13 | Continuous casting method for clad slabs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12895085A JPS61286044A (en) | 1985-06-13 | 1985-06-13 | Continuous casting method for clad slabs |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61286044A true JPS61286044A (en) | 1986-12-16 |
Family
ID=14997415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12895085A Pending JPS61286044A (en) | 1985-06-13 | 1985-06-13 | Continuous casting method for clad slabs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61286044A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003035305A1 (en) * | 2001-10-23 | 2003-05-01 | Alcoa Inc. | Simultaneous multi-alloy casting |
JP2007523746A (en) * | 2003-06-24 | 2007-08-23 | ノベリス・インコーポレイテッド | Casting method for composite ingot |
WO2020001004A1 (en) * | 2018-06-29 | 2020-01-02 | 宝山钢铁股份有限公司 | Device and method for preparing metal composite board by continuous casting and rolling |
-
1985
- 1985-06-13 JP JP12895085A patent/JPS61286044A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101013405B1 (en) | 2001-10-23 | 2011-02-14 | 알코아 인코포레이티드 | Method of Simultaneous Casting of Multiple Alloys |
US6705384B2 (en) | 2001-10-23 | 2004-03-16 | Alcoa Inc. | Simultaneous multi-alloy casting |
CN1313226C (en) * | 2001-10-23 | 2007-05-02 | 阿尔科公司 | Simultaneous multi-alloy casting |
WO2003035305A1 (en) * | 2001-10-23 | 2003-05-01 | Alcoa Inc. | Simultaneous multi-alloy casting |
US7407713B2 (en) | 2001-10-23 | 2008-08-05 | Alcoa Inc. | Simultaneous multi-alloy casting |
AU2002335126B2 (en) * | 2001-10-23 | 2008-10-23 | Alcoa Inc. | Simultaneous multi-alloy casting |
US7611778B2 (en) | 2001-10-23 | 2009-11-03 | Alcoa Inc. | Simultaneous multi-alloy casting |
EP2801423A1 (en) * | 2001-10-23 | 2014-11-12 | Alcoa Inc. | Simultaneous multi-alloy casting |
JP2007523746A (en) * | 2003-06-24 | 2007-08-23 | ノベリス・インコーポレイテッド | Casting method for composite ingot |
JP4648312B2 (en) * | 2003-06-24 | 2011-03-09 | ノベリス・インコーポレイテッド | Casting method for composite ingot |
US8415025B2 (en) | 2003-06-24 | 2013-04-09 | Novelis Inc. | Composite metal as cast ingot |
JP2010221301A (en) * | 2003-06-24 | 2010-10-07 | Novelis Inc | Casting method for composite ingot |
US8927113B2 (en) | 2003-06-24 | 2015-01-06 | Novelis Inc. | Composite metal ingot |
WO2020001004A1 (en) * | 2018-06-29 | 2020-01-02 | 宝山钢铁股份有限公司 | Device and method for preparing metal composite board by continuous casting and rolling |
US11639538B2 (en) | 2018-06-29 | 2023-05-02 | Baoshan Iron & Steel Co., Ltd. | Device and method for manufacturing metal clad plates in way of continuous casting and rolling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100979670B1 (en) | Simultaneous multi-alloy casting and multi-layered brazing sheet | |
EP2293894B1 (en) | Method for casting a composite ingot | |
Haga et al. | Clad strip casting by a twin roll caster | |
Mittler et al. | Fabrication and processing of metallurgically bonded copper bimetal sheets | |
JP3849092B2 (en) | Method for producing aluminum alloy clad material | |
JPS61286044A (en) | Continuous casting method for clad slabs | |
JP2926228B1 (en) | Method for producing double-layer titanium clad steel sheet by casting method | |
JPS6344461B2 (en) | ||
JPS5910462A (en) | Production of copper or copper alloy clad steel | |
JP5566155B2 (en) | Al alloy cast product and manufacturing method thereof | |
JP3813822B2 (en) | Manufacturing method of clad material with good brazing properties | |
JP2952668B1 (en) | Method for producing double-layer titanium cast clad steel sheet with prevention of melting of titanium | |
JPS61289947A (en) | Continuous casting method and device for clad slabs | |
JPH0724917B2 (en) | Method for manufacturing two-layer clad ingot | |
JPS61266164A (en) | Continuous casting method for clad ingot | |
JP2000117412A (en) | Production of two-layer titanium cast clad steel plate having stripping property | |
JPS60223642A (en) | Manufacturing method of clad steel | |
JPS5912119Y2 (en) | Continuous casting mold | |
JPS6040662A (en) | Production of copper or copper alloy clad steel by melting method | |
JPS58179560A (en) | Production of composite metallic material | |
JPS62203641A (en) | Continuous production for composite billet | |
JPH0413051B2 (en) | ||
JPH0321259B2 (en) | ||
JPS62203640A (en) | Continuous manufacturing method for composite hollow slabs | |
JPS60244459A (en) | Production of clad steel ingot |