JPS61285286A - Carbonization of coal - Google Patents
Carbonization of coalInfo
- Publication number
- JPS61285286A JPS61285286A JP12617285A JP12617285A JPS61285286A JP S61285286 A JPS61285286 A JP S61285286A JP 12617285 A JP12617285 A JP 12617285A JP 12617285 A JP12617285 A JP 12617285A JP S61285286 A JPS61285286 A JP S61285286A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- group
- compound
- control agent
- coke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003245 coal Substances 0.000 title claims abstract description 76
- 238000003763 carbonization Methods 0.000 title description 10
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 43
- 239000000571 coke Substances 0.000 claims abstract description 35
- 239000000945 filler Substances 0.000 claims abstract description 19
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 150000001491 aromatic compounds Chemical class 0.000 claims abstract description 14
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000010000 carbonizing Methods 0.000 claims abstract description 10
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 claims abstract description 5
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims abstract description 4
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 claims abstract description 4
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 claims abstract description 3
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 19
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 claims description 7
- 239000006227 byproduct Substances 0.000 claims description 6
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 claims description 4
- 125000001145 hydrido group Chemical group *[H] 0.000 claims description 4
- UMAPFAAAQBMYNJ-UHFFFAOYSA-N 1-n,2-n-dimethylbenzene-1,2-diamine Chemical compound CNC1=CC=CC=C1NC UMAPFAAAQBMYNJ-UHFFFAOYSA-N 0.000 claims description 2
- PEXGTUZWTLMFID-UHFFFAOYSA-N 2-phenyldiazenylphenol Chemical compound OC1=CC=CC=C1N=NC1=CC=CC=C1 PEXGTUZWTLMFID-UHFFFAOYSA-N 0.000 claims description 2
- QPQKUYVSJWQSDY-UHFFFAOYSA-N 4-phenyldiazenylaniline Chemical compound C1=CC(N)=CC=C1N=NC1=CC=CC=C1 QPQKUYVSJWQSDY-UHFFFAOYSA-N 0.000 claims description 2
- -1 secondary amino compound Chemical class 0.000 abstract description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 20
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 230000009257 reactivity Effects 0.000 description 9
- 239000004079 vitrinite Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000004939 coking Methods 0.000 description 6
- 238000002309 gasification Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000011269 tar Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000004484 Briquette Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 239000011338 soft pitch Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012954 diazonium Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 101000845005 Macrovipera lebetina Disintegrin lebein-2-alpha Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002864 coal component Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004058 oil shale Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002683 reaction inhibitor Substances 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Coke Industry (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、石炭を乾留してコークスやその副産物を製造
するコークス製造業において、コークス化性の劣る石炭
を多最に配合した装入炭を使用し、これに粘結性補填剤
と共に少量のラジカル制御剤を添加して良質の高炉用コ
ークスを製造したり、副産物を有利に製造するための方
法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is used in the coke manufacturing industry, which carbonizes coal to produce coke and its by-products. The present invention relates to a method for producing high-quality blast furnace coke or advantageously producing by-products by adding a small amount of radical control agent together with a caking filler.
高炉用コークスの品質としては、ドラム強度(DI:J
ISに2151 )すなわち環装強度が高いと同時に、
高温での炭酸ガスによるC02反応性(CRI:コーク
スサーキュラー、録、 82(1974))が低く、ま
た、小型C02反応反応度(C8R:コークスサーキュ
ラー、η、 82(1974))が高いことが要求され
ている。The quality of blast furnace coke is determined by drum strength (DI: J
IS 2151) In other words, the ring strength is high and at the same time,
It is required that the C02 reactivity due to carbon dioxide gas at high temperatures (CRI: Coke Circular, Record, 82 (1974)) is low, and the small C02 reaction reactivity (C8R: Coke Circular, η, 82 (1974)) is high. has been done.
この目的を達成する方法として、装入炭の炭種と配合を
調整する方法、湿度調節、粘度調整、乾留温度等の操業
条件を調整する方法、さらには粘結性補填剤を添加した
り成型炭を配合する方法等積々の手段が講じられてきた
。Methods to achieve this purpose include adjusting the coal type and blend of charging coal, adjusting operating conditions such as humidity control, viscosity control, and carbonization temperature, and adding caking fillers and molding. A number of methods have been taken, including methods of blending charcoal.
しかしながら、上記いずれの方法も製造コストが高くな
ったり、あるいは設備上の問題が生じて必ずしも満足し
得るものではなかった。However, none of the above-mentioned methods were necessarily satisfactory due to increased manufacturing costs or equipment problems.
そこで、本発明者は、先に装入炭に各種の反応抑制剤(
又はラジカル制御剤)を少量添加し、コークス化性の劣
る石炭を使用した場合であっても高炉用コークスとして
要求される品質を達成し得る石炭の乾留方法を提案した
く特願昭58−248.323号及び特願昭59−22
0.564号〉。このラジカル制御剤を添加する方法は
、石炭の乾留中に発生してコークスの生成に重大な影響
を及ぼすラジカルの種類及びその発生量を人為的にコン
トロールすることにより、コークス化性の劣る石炭を比
較的多聞に配合した装入炭を使用して良質の高炉用コー
クスを製造したり、副産物を有利に製造しようとするも
のである。Therefore, the present inventor first added various reaction inhibitors (
Patent Application No. 58-248 to propose a coal carbonization method that can achieve the quality required for blast furnace coke even when using coal with poor coking properties by adding a small amount of a small amount of a radical control agent). .323 and patent application 1982-22
No. 0.564>. This method of adding a radical control agent artificially controls the type and amount of radicals that are generated during carbonization of coal and has a significant effect on coke production, thereby reducing coal that has poor coking properties. The aim is to produce high-quality coke for blast furnaces and to advantageously produce by-products using charging coal mixed with a relatively large amount.
しかしながら、このラジカル制御剤を添加する方法によ
ると、適当な薬品を選択するだけで特別な設備を要せず
、製造コストが安価であるという長所があるが、各種の
炭種について調べてみると、炭種によっては効果が顕著
であったり、あるいは不足したり、また、場合によって
は負の効果が生じることもあり、実際にコークス炉に装
入している装入炭が種々の石炭を配合したものであるこ
とから、装入炭がどのような石炭をどのような割合で配
合したかによってコークス性状の改善効果がばらつくと
いう問題が生じた。However, this method of adding a radical control agent has the advantage that it requires no special equipment by simply selecting the appropriate chemical, and the manufacturing cost is low. However, when investigating various types of coal, Depending on the type of coal, the effect may be significant or insufficient, and in some cases negative effects may occur. As a result, a problem arose in that the effect of improving coke properties varied depending on what kind of coal was mixed in the charging coal and in what proportion.
そこで、本発明者は、ラジカル制御剤を添加する方法に
おいて、コークス性状の改善効果がばらつくという問題
が生じる原因究明のために、以下の基礎実験を行った。Therefore, the present inventor conducted the following basic experiment in order to investigate the cause of the problem that the effect of improving coke properties varies in the method of adding a radical control agent.
すなわち、先ずある特定の装入炭に各種のラジカル制御
剤を一定量添加し、小型電気乾留炉を使用して一定の条
件下でコークスを製造したところ、いずれのラジカル制
御剤もコークス性状、すなわちD I 150/15、
CRI、C8R、マイクロ強度(MS I ; JIS
H0104、J、 Iron and 5teel
In5t、 136.49(1937))及びCO2ガ
ス化反応性(R1; JIS K 2151)に対する
改善効果に顕著な差異がないことが判明した。In other words, first, a certain amount of various radical control agents was added to a particular charged coal, and coke was produced under certain conditions using a small electric carbonization furnace. D I 150/15,
CRI, C8R, micro strength (MS I; JIS
H0104, J, Iron and 5teel
In5t, 136.49 (1937)) and CO2 gasification reactivity (R1; JIS K 2151).
次に、各種の石炭化度の単味炭についてコークス化性と
密接な関係のあるギーゼラーブラストメータによる流動
痕測定における軟化溶融温度範囲の幅(m度範囲℃)を
測定し、各種のラジカル制御剤を0.1重量%添加した
時と無添加の時との差を求め、この差の値を縦軸に、ま
た、石炭化度(指標としてごトリニットの反射率R8を
使用)を横軸としてプロットし、得られたグラフ図(第
1図)から使用したラジカル制御剤の種類や石炭化度が
ラジカル制御剤を添加する効果に及ぼす影響を調べた。Next, we measured the width of the softening and melting temperature range (m degree range ℃) in flow trace measurements using a Gieseler blast meter, which is closely related to coking ability, for single coals with various degrees of coalification. The difference between when 0.1% by weight of the agent was added and when it was not added was calculated, and the value of this difference is plotted on the vertical axis, and the degree of coalification (using Gotrinit reflectance R8 as an index) is plotted on the horizontal axis. The effect of the type of radical control agent used and the degree of coalification on the effect of adding the radical control agent was investigated from the obtained graph (Figure 1).
結果は、第1図から明らかなように、使用したラジカル
制御剤の種類にはあまり関係がなく、使用した石炭の石
炭化度に大きく依存しており、石炭化度の指標として使
用したビトリニットの反射率(R6)0.8〜1.35
(揮発分33〜22%)の範囲、すなわち流動性成の
範囲で軟化溶融範囲が拡大し、それ以外の範囲では負の
効果であることが判明した。なお、石炭化度の指標とし
て使用したご、トリニットの反射率(Ro)は、石炭成
分中のビトリニットの光学的反射率であり、従来の工業
分析による揮発分や元素分析による炭素量とも密接な相
関関係を示し、近年石炭化度の表示方法として広く使用
されているものである。As is clear from Figure 1, the results have little to do with the type of radical control agent used, but are largely dependent on the degree of coalification of the coal used. Reflectance (R6) 0.8-1.35
It was found that the softening and melting range expands in the range of (33 to 22% volatile content), that is, the range of fluidity, and that the effect is negative in other ranges. The reflectance of vitrinite (Ro) used as an index of the degree of coalification is the optical reflectance of vitrinite in coal components, and is closely related to the volatile content determined by conventional industrial analysis and the carbon content determined by elemental analysis. It shows a correlation and has been widely used in recent years as a method of expressing the degree of coalification.
さらに、各種石炭化度の単味炭にラジカル制御剤として
ハイドロキノンとアゾベンゼンを夫々0゜1重量%添加
して乾留し、得られたコークスのマイクロ強度(MS
I )及びCO2ガス化反応性(R1)とを測定し、無
添加で製造したコークスのMSI及びR1との差の値を
求め、この差を縦軸に、また、横軸には石炭化度として
ビトリニットの反射率(Ro)及び揮発分(VM)をと
ってプロットし、第2図に示すグラフ図を得た。Furthermore, hydroquinone and azobenzene were added in an amount of 0.1% by weight each as a radical control agent to single coals of various degrees of coalification and carbonized, and the microstrength (MS) of the coke obtained was
I) and CO2 gasification reactivity (R1), and find the difference between MSI and R1 of coke produced without additives.This difference is plotted on the vertical axis, and the degree of coalification is plotted on the horizontal axis. The reflectance (Ro) and volatile content (VM) of vitrinite were plotted and the graph shown in FIG. 2 was obtained.
この第2図の結果から、揮発分(VM)32〜21%又
はビトリニットの反射率(Ro)0.90〜1゜35の
範囲ではMSIの向上とR1の低下が認められ、他の範
囲では認められないことが判明した。From the results shown in Figure 2, an improvement in MSI and a decrease in R1 are observed in the range of volatile content (VM) of 32 to 21% or reflectance of vitrinite (Ro) of 0.90 to 1°35, while in other ranges, It turned out to be unacceptable.
従って、上記各実験結果から、■ラジカル制御剤を添加
する効果は、使用する装入炭が同じであれば、使用する
ラジカル制御剤の種類にかかわりなくほぼ同様に発現す
る、■ラジカル制御剤を添加した場合における軟化溶融
温度範囲に対する効果は、使用する装入炭の石炭化度に
より影響され、ビトリニットの反射率(Ro)0.8〜
1.35の範囲(揮発分33〜22%の範囲)で向上し
、それ以外の範囲ではむしろ低下する、■ラジカル制御
剤を添加した場合におけるマイクロ強度(MSI)及び
CO2ガス化反応性(R1)に対する効果は、使用する
装入炭の石炭化度により影響され、ビトリニットの反射
率(Ro)0.9〜1゜35の範囲(揮発分32〜21
%の範囲)で向上し、それ以外の範囲ではむしろ低下す
る、という知見が得られた。Therefore, from the above experimental results, it can be concluded that (1) the effect of adding a radical control agent is almost the same regardless of the type of radical control agent used as long as the charged coal is the same; The effect on the softening and melting temperature range when added is influenced by the degree of coalification of the charging coal used, and the reflectance (Ro) of vitrinite is 0.8 to
The micro strength (MSI) and CO2 gasification reactivity (R1 ) is affected by the degree of coalification of the charging coal used, and the reflectance (Ro) of vitrinite ranges from 0.9 to 1°35 (volatile content: 32 to 21°).
% range), and in other ranges it actually decreased.
ところで、石炭に添加されるラジカル制御剤の作用につ
いては、不明な点があるが、通常の高分子有機化合物で
使用されている酸化防止剤、重合禁止剤、重合開始剤等
のように常温又は200℃以下の比較的低温の条件で使
用される場合と異なり、高温の条件下で使用されるので
種々の別個の反応が生じていると思われるが、i)自ら
に含まれている活性な水素を石炭に与えるドナーとして
の役割をする水素供与作用、ii)隣接した分子中の水
素を取入れて再度石炭中の水素受容能の高い部分に移動
させる媒介を行う水素移動作用、1ii)石炭固有又は
熱分解で発生したラジカルによる重合を停止させるラジ
カルインヒビター、iv)水素を引抜かれた制御剤又は
加熱中に分解して生じたラジカルが寄与する重合開始又
は重合促進作用、が考えられ、実際にはこれらの各作用
が同時に又は逐次に起っているものと思われる。By the way, there are some unknown points about the action of radical control agents added to coal, but like antioxidants, polymerization inhibitors, polymerization initiators, etc. used in ordinary polymeric organic compounds, they can be added to coal at room temperature or at room temperature. Unlike when it is used at a relatively low temperature of 200°C or less, it is used at a high temperature, so it seems that various separate reactions occur. ii) Hydrogen transfer action, which acts as a donor to give hydrogen to coal; ii) Hydrogen transfer action, which mediates the taking of hydrogen from adjacent molecules and transferring it to a portion of coal with high hydrogen-accepting capacity; 1ii) Coal-specific action. or a radical inhibitor that stops polymerization due to radicals generated during thermal decomposition, and iv) a polymerization initiation or polymerization acceleration effect contributed by a control agent from which hydrogen has been extracted or radicals generated by decomposition during heating. It seems that each of these effects occurs simultaneously or sequentially.
石炭に添加されるラジカル制御剤のこのような作用と上
記実験によって得られた知見とを併せ考察してみると、
上記石炭化度の範囲、すなわちビトリニットの反射率(
Ro)0.8〜1.35又は揮発分33〜21%の範囲
の流動性粘結炭以外の石炭では水素供与能力に比べて水
素受容能力が大きくなり、石炭の乾留時に添加し付ラジ
カル制御剤中の水素が引抜かれて活性なラジカルを発生
し、このラジカルが望ましくない重合反応を促進し、こ
の結果、ラジカル制御剤を添加して石炭の乾留を行う際
におけるコークス性状の改善効果がばらつくものと考え
られる。If we consider this effect of the radical control agent added to coal together with the knowledge obtained from the above experiment, we will find that:
The above range of coalification degree, that is, the reflectance of vitrinite (
Ro) Coal other than fluid caking coal in the range of 0.8 to 1.35 or volatile content of 33 to 21% has a larger hydrogen accepting capacity than hydrogen donating capacity, and is added during carbonization of coal to control radicals. Hydrogen in the agent is extracted and active radicals are generated, and these radicals promote undesirable polymerization reactions.As a result, the effect of improving coke properties when carbonizing coal by adding a radical control agent varies. considered to be a thing.
〔問題点を解決するための手段及び作用〕本発明は、か
かる観点に鑑みて創案されたもので、ラジカル制御剤を
添加して石炭の乾留を行う際に、使用する装入炭が有す
る水素供与能力を補うことのできる粘結性補填剤を所定
の割合で併用添加することにより、石炭の乾留時にラジ
カル制御剤を添加する効果を確実に引出し、また、生成
コークスの品質を飛躍的に改善し、また、副産物を有利
に製造し得る石炭の乾留方法を提供するものである。[Means and effects for solving the problem] The present invention was devised in view of this point of view, and when carbonizing coal with the addition of a radical control agent, the hydrogen contained in the charged coal to be used is reduced. By adding a caking filler at a predetermined ratio that can supplement the supply capacity, the effect of adding a radical control agent during carbonization of coal is reliably brought out, and the quality of coke produced is dramatically improved. The present invention also provides a method for carbonizing coal that can advantageously produce by-products.
すなわち、本発明は、装入炭にラジカル制御剤を添加し
て乾留しコークス及び/又はその副産物を製造する方法
において、上記ラジカル制御剤としてヒドロ基、2級ア
ミノ基、アゾ基及び/又はジアゾ基を有する芳香族化合
物又はナフテン系化合物から選択された1種又は2種以
上の混合物を使用すると共に粘結性補填剤を併用添加し
、上記ラジカル制御剤を上記装入炭に対して1〜0.0
05重量%又は上記粘結性補填剤に対して10〜0.0
5重量%の範囲で使用する石炭の乾留方法である。That is, the present invention provides a method for producing coke and/or its by-products by adding a radical control agent to charged coal and carbonizing it, in which a hydro group, a secondary amino group, an azo group, and/or a diazo group is added as the radical control agent. One type or a mixture of two or more selected from aromatic compounds having a group or naphthenic compounds is used, and a caking filler is added in combination, and the radical control agent is added to the charged coal in an amount of 1 to 10%. 0.0
05% by weight or 10 to 0.0 based on the above caking filler
This is a carbonization method for coal used in a range of 5% by weight.
本発明で使用するラジカル制御剤としては、ハイドロキ
ノンやt−ブチルカテコールのようなヒドロ基を有する
芳香族化合物、フェニル−α−ナフチルアミン、フェニ
ル−β−ナフチルアミン又はN、N’−ジメチルフェニ
レンジアミンのような2級アミン基を有する芳香族化合
物、アゾベンゼン、アミノアゾベンゼン又はヒドロキシ
アゾベンゼンのようなアゾ基を有する芳香族化合物、ア
ゾイックジアゾ塩のようなジアゾ基を有する芳香族化合
物、デカリン又はテトラリンのようなナフテン系化合物
等を挙げることができ、これらは単独で使用できるほか
、2種以上を組合せて使用することもできる。これらの
ラジカル制御剤については、必ずしもそれ自体が水素供
与性である必要はないが、雰囲気又は隣接した分子から
水素を引抜いて石炭に与えるキャリヤーとしての能力、
すなわち水素移動能力を有することが必要である。これ
らのラジカル制御剤は、装入炭の炭種とその配合割合や
このラジカル制御剤を使用する目的、すなわちコークス
のDIやC8R等の改善を目的にするか、あるいは、タ
ールの歩留や特性の改善を目的にするか等により適宜選
択される。The radical control agents used in the present invention include aromatic compounds having a hydro group such as hydroquinone and t-butylcatechol, phenyl-α-naphthylamine, phenyl-β-naphthylamine, or N,N'-dimethylphenylenediamine. aromatic compounds having a secondary amine group, aromatic compounds having an azo group such as azobenzene, aminoazobenzene or hydroxyazobenzene, aromatic compounds having a diazo group such as azoic diazo salts, aromatic compounds having a diazo group such as decalin or tetralin. Examples include naphthenic compounds, which can be used alone or in combination of two or more. These radical control agents are not necessarily hydrogen-donating per se, but have the ability to act as a carrier to extract hydrogen from the atmosphere or adjacent molecules and provide it to the coal;
In other words, it is necessary to have hydrogen transfer ability. These radical control agents are used to improve the coal type and blending ratio of charged coal, the purpose of using this radical control agent, i.e., to improve coke DI and C8R, or to improve the yield and characteristics of tar. It is selected as appropriate depending on whether the purpose is to improve or not.
また、上記ラジカル制御剤と併用添加する粘結性補填剤
としては、石炭の粘結性を補填し得るものであればよく
、乾留中に石炭に対して水素を供与し得るものが望まし
い。このような粘結性補填剤としては、例えば、石炭系
のタール、ピッチ、各種タール蒸溜残渣、タールスラッ
ジ等や、石炭液化による重質油、ピッチ等や、石油系の
ピッチ、重質油、各種蒸溜残渣、分解残油等や、石油精
製により派生するエチレンボトム、エチレンタール、ス
チレンタール等や、タールサンド油やオイルシェールの
重質残渣油、ピッチ等の瀝青物を挙げることができる。Further, the caking filler to be added in combination with the radical control agent may be any one that can compensate for the caking properties of coal, and preferably one that can donate hydrogen to coal during carbonization. Such caking fillers include, for example, coal-based tar, pitch, various tar distillation residues, tar sludge, etc., heavy oil from coal liquefaction, pitch, etc., petroleum-based pitch, heavy oil, Examples include various distillation residues, cracked residual oils, etc., ethylene bottoms, ethylene tar, styrene tar, etc. derived from petroleum refining, heavy residual oils of tar sand oil and oil shale, and bituminous materials such as pitch.
上記ラジカル1ilJfll剤や粘結性補填剤の添加方
法については特に制限はない。例えば、ラジカル制御剤
の添加方法については、それが粘結性補填剤に溶解する
ものであればこの粘結性補填剤に溶解して添加してもよ
く、また、粘結性補填剤に溶解し難いものであれば、粉
状にして混合するか、あるいは、他の溶媒に溶解して液
状にして添加する。There are no particular restrictions on the method of adding the radical agent or caking filler. For example, regarding the method of adding the radical control agent, if it dissolves in the caking filler, it may be added after being dissolved in the caking filler; If it is difficult to prepare, mix it in powder form or dissolve it in another solvent to make it into a liquid and add it.
また、粘結性補填剤の添加方法については、これを単純
に装入炭と混練して添加混合してもよく、成型炭と粉炭
とを混合装入する成型炭一部装入法や成型炭のみを乾留
して成型コークスとする方法により石炭の乾留を行う場
合には上記成型炭を製造する際に使用する成型用バイン
ダーとしであるいはその一部として添加してもよく、さ
らには、乾燥炭装入の際に防塵対策として防塵用バイン
ダーが使用される場合にはその一部あるいは全部として
添加してもよい。In addition, regarding the method of adding the caking filler, it may be simply kneaded with the charged coal and mixed. Alternatively, a briquette partial charging method in which briquette coal and powdered coal are mixed and charged, or When carbonizing coal by carbonizing only charcoal to produce molded coke, it may be added as a molding binder or as a part of the molding binder used in producing the molded coal, and furthermore, drying When a dustproof binder is used as a dustproof measure during charging of coal, it may be added as part or all of it.
上記ラジカル制御剤の添加量については、通常使用する
装入炭に対して1〜0.005重量%、好ましくは0.
1〜0.01重重最又は上記粘結性補填剤に対して10
〜0.051量%、好ましくは1〜0.1重量%の範囲
で使用する。このラジカル制御剤の添加mが多すぎると
コストが高くなるだけでなく、これによって周囲から石
炭に移行すべき水素が不足すると重合促進作用が生じて
逆効果になり、また、少なすぎると反応速度が遅くなっ
てコークス化の時間内で所定の効果を発揮させることが
できなくなる。The amount of the radical control agent added is 1 to 0.005% by weight, preferably 0.005% by weight, based on the normally used charged coal.
1 to 0.01 weight maximum or 10 to the above caking filler
It is used in an amount of 0.051% by weight, preferably 1% to 0.1% by weight. If too much of this radical control agent is added, not only will the cost increase, but if there is not enough hydrogen to be transferred from the surroundings to the coal, it will promote polymerization and have the opposite effect, and if it is too little, the reaction rate will be reduced. As a result, the desired effect cannot be achieved within the coking time.
以下、実施例に基づいて本発明方法を具体的に説明する
。Hereinafter, the method of the present invention will be specifically explained based on Examples.
実施例1
高炉用コークスの製造には不適当とされている劣質炭3
0重世%を含む原料粉炭に粘結性補填剤として石炭系軟
ピツチ(SOP)6重量%と各種のラジカル制御剤、無
添加(No、 1、SOPのみ)、フェニル−β−ナフ
チルアミン(NO,2) 、フェノール系酸化防止剤(
チバガイギー社製商品名ニイルガノックス>50重量%
と【−ブチルカテコール25重量%とハイドロキノン2
5重量%との混合物(No、3) 、アゾ染料(No、
4) 、アゾイックジアゾニウムクロライド50重量%
とアゾイックジアゾニウムサル777650重ffi%
との混合物(N。Example 1 Poor quality coal 3 which is considered unsuitable for producing coke for blast furnaces
Coal powder containing 0% heavy weight coal, 6% by weight of coal-based soft pitch (SOP) as a caking filler, various radical control agents, no additives (No, 1, SOP only), phenyl-β-naphthylamine (NO ,2), phenolic antioxidant (
Ciba Geigy product name Nilganox>50% by weight
and [-butylcatechol 25% by weight and hydroquinone 2
5% by weight mixture (No. 3), azo dye (No.
4) 50% by weight of azoic diazonium chloride
and azoic diazonium sal 777,650 ffi%
A mixture with (N.
、5)、デカリン(No、6)をこの石炭系軟ピツチに
対して2重量%(対炭0.03重石%)添加して成型炭
を製造し、上記原料粉炭にこの成型炭25重量%を配合
して装入炭を調製し、この装入炭80 Kgを装入量8
0Ky/チヤージの小型電気乾留炉に装入して最^温度
1050℃で乾留し、得られたコークスについてそのコ
ークス性状、ドラム強度(D I 150/15) 、
小型C02反応後強度(C8R)、CO2反応性(CR
I ) 、マイクロ強度(MSI)及びCo2ガス化反
応性(R1)を測定した。結果を第1表に示す。, 5), 2% by weight of Decalin (No. 6) is added to this coal-based soft pitch (0.03% of weight based on coal) to produce briquette coal, and 25% by weight of this briquette coal is added to the raw material powder coal. A charging amount of 80 kg of this charging coal was prepared by blending 80 kg of charging coal.
The coke was charged into a small electric carbonization furnace of 0 Ky/charge and carbonized at a maximum temperature of 1050°C, and the coke properties, drum strength (DI 150/15),
Small C02 post-reaction strength (C8R), CO2 reactivity (CR)
I), microintensity (MSI) and Co2 gasification reactivity (R1) were measured. The results are shown in Table 1.
第1表
この第1表の結果から明らかなように、ラジカル制御剤
を添加したことにより、機械的強度、DI及びMSIは
ほとんど変化しないのに対し、COガス化反応性(RI
)は低下し、CO2反応後強度(C8R)は著しく向上
した。高炉用コークスの品質評価指標としては、実用的
には専らDIとC8Rとが使用されているが、このよう
にDIがあまり変化せず、C8Rのみが向上したことは
他の条件が一定で化学的性質のみが変化し向上したこと
を示す。また、このことは、得られたコークスの顕微鏡
観察によって認められたコークスの光学的異方性組織の
変化によっても確認された。Table 1 As is clear from the results in Table 1, the mechanical strength, DI and MSI hardly change due to the addition of the radical control agent, whereas the CO gasification reactivity (RI
) decreased, and the strength after CO2 reaction (C8R) significantly improved. Practically speaking, DI and C8R are exclusively used as quality evaluation indicators for blast furnace coke, but the fact that DI did not change much and only C8R improved means that other conditions remain constant and the chemical This shows that only the physical properties have changed and improved. This was also confirmed by changes in the optically anisotropic structure of the coke observed by microscopic observation of the coke obtained.
実施例2
粘結性補填剤として石油系プロパン脱がアスファルト(
石油系PDA)8重量%を使用し、ラジカル制御剤とし
て無添加(NO,1、石油系PDAのみ)、フェニル−
β−ナフチルアミン(No、 2 )、ハイドロキノン
(No、7) 、アゾベンゼン(No、 8 )及びテ
トラリン(SO19)を使用し、これらのラジカル制御
剤を石油系PDAに対して5重量%(対決0.1重量%
)使用した以外は上記実施例1と同様にしてコークスを
製造し、そのコークス性状を調べた。結果を第2表に示
す。Example 2 As a caking filler, petroleum-based propane was removed from asphalt (
(petroleum-based PDA) 8% by weight, no additives as radical control agents (NO, 1, petroleum-based PDA only), phenyl-
β-naphthylamine (No. 2), hydroquinone (No. 7), azobenzene (No. 8) and tetralin (SO19) were used, and these radical control agents were added at 5% by weight (vs. 0.0%) based on petroleum-based PDA. 1% by weight
) Coke was produced in the same manner as in Example 1 above, except that coke was used, and the properties of the coke were examined. The results are shown in Table 2.
本発明によれば、粘結性補填剤と少凶のラジカル制御剤
とを併用使用することにより、劣質炭を多量に配合した
装入炭に対しても、生成したコークスのRIが低下して
C8Rが著しく向上するというコークス性状の向上を図
ることができ、良質の高炉用コークスを得ることができ
る。このことは、高炉用コークスの原料炭として劣質炭
を多量に使用することができることを意味し、良質のコ
ークス用原料炭の産出に乏しい現代においてはその経済
的効果が著しく高いものである。According to the present invention, by using a caking filler and a less aggressive radical control agent in combination, the RI of the produced coke is lowered even for charged coal containing a large amount of poor quality coal. It is possible to improve coke properties such that C8R is significantly improved, and to obtain high quality blast furnace coke. This means that a large amount of inferior quality coal can be used as coking coal for coke for blast furnaces, and its economic effects are extremely high in modern times when production of high quality coking coal for coke is scarce.
第1図は本発明に至った基礎実験の結果であり、各種の
ラジカル制御剤を使用した場合における石炭化度(ビト
リニットの反射率R8)と軟化溶融温度範囲の差(6℃
〉との関係を示すグラフ図、第2図はラジカルIIJt
II剤としてハイドロキノン及びアゾベンゼンを使用し
た場合における石炭化度(ビトリニットの反射pR8及
び揮発分VM)とマイクロ強度の差(ΔMSI)及びC
o2ガス化反応性(ΔR1)との関係を示す第1図と同
様のグラフ図である。
特許出願人 新日鐵化学株式会社代 理 人
弁理士 成 瀬 勝 夫(外2
名)
第1図
石炭LM(ビ゛トνニントら反J!1牟尺0)第2図Figure 1 shows the results of basic experiments that led to the present invention, and shows the difference in degree of coalification (reflectance R8 of vitrinite) and softening and melting temperature range (6°C) when various radical control agents were used.
〉 Figure 2 is a graph showing the relationship between radical IIJt
Difference in coalification degree (vitrinite reflection pR8 and volatile content VM) and micro-intensity (ΔMSI) and C when hydroquinone and azobenzene are used as II agents
FIG. 2 is a graph similar to FIG. 1 showing the relationship with o2 gasification reactivity (ΔR1). Patent applicant Nippon Steel Chemical Co., Ltd. Representative Patent attorney Katsuo Naruse
Figure 1 Coal LM (Bit ν Nint et al. J! 1 square meter 0) Figure 2
Claims (2)
ス及び/又はその副産物を製造する方法において、上記
ラジカル制御剤としてヒドロ基、2級アミノ基、アゾ基
及び/又はジアゾ基を有する芳香族化合物又はナフテン
系化合物から選択された1種又は2種以上の混合物を使
用すると共に粘結性補填剤を併用添加し、上記ラジカル
制御剤を上記装入炭に対して1〜0.005重量%又は
上記粘結性補填剤に対して10〜0.05重量%の範囲
で使用することを特徴とする石炭の乾留方法。(1) In a method of adding a radical control agent to charged coal and carbonizing it to produce coke and/or its by-products, the radical control agent has a hydro group, a secondary amino group, an azo group, and/or a diazo group. One type or a mixture of two or more selected from aromatic compounds or naphthenic compounds is used, and a caking filler is added in combination, and the radical control agent is added at a rate of 1 to 0.005 to the charged coal. A method for carbonizing coal, characterized in that it is used in an amount of 10 to 0.05% by weight based on the caking filler.
又はt−ブチルカテコールであり、2級アミノ基を有す
る芳香族化合物がフェニル−α−ナフチルアミン、フェ
ニル−β−ナフチルアミン又はN,N′−ジメチルフェ
ニレンジアミンであり、アゾ基を有する芳香族化合物が
アゾベンゼン、アミノアゾベンゼン又はヒドロキシアゾ
ベンゼンであり、ジアゾ基を有する芳香族化合物がアゾ
イックジアゾ塩であり、ナフテン系化合物がデカリン又
はテトラリンである特許請求の範囲第1項記載の石炭の
乾留方法。(2) The aromatic compound having a hydro group is hydroquinone or t-butylcatechol, and the aromatic compound having a secondary amino group is phenyl-α-naphthylamine, phenyl-β-naphthylamine or N,N'-dimethylphenylenediamine and the aromatic compound having an azo group is azobenzene, aminoazobenzene or hydroxyazobenzene, the aromatic compound having a diazo group is an azoic diazo salt, and the naphthenic compound is decalin or tetralin. The method for carbonizing coal according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12617285A JPS61285286A (en) | 1985-06-12 | 1985-06-12 | Carbonization of coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12617285A JPS61285286A (en) | 1985-06-12 | 1985-06-12 | Carbonization of coal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61285286A true JPS61285286A (en) | 1986-12-16 |
Family
ID=14928459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12617285A Pending JPS61285286A (en) | 1985-06-12 | 1985-06-12 | Carbonization of coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61285286A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005194358A (en) * | 2004-01-06 | 2005-07-21 | Nippon Steel Corp | Coke strength estimation method |
JP2014043545A (en) * | 2012-03-08 | 2014-03-13 | Jfe Steel Corp | Method for reforming coal and method for producing coke |
JP2015040270A (en) * | 2013-08-23 | 2015-03-02 | Jfeスチール株式会社 | Method for producing coke, coke, modified coal, modified blended coal, and method for modifying coal or blended coal |
WO2016136191A1 (en) * | 2015-02-25 | 2016-09-01 | Jfeスチール株式会社 | Method of evaluating coal and method of manufacturing coke |
WO2018216373A1 (en) * | 2017-05-24 | 2018-11-29 | 株式会社神戸製鋼所 | Method for producing ashless coal and device for producing ashless coal |
-
1985
- 1985-06-12 JP JP12617285A patent/JPS61285286A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005194358A (en) * | 2004-01-06 | 2005-07-21 | Nippon Steel Corp | Coke strength estimation method |
JP2014043545A (en) * | 2012-03-08 | 2014-03-13 | Jfe Steel Corp | Method for reforming coal and method for producing coke |
JP2015040270A (en) * | 2013-08-23 | 2015-03-02 | Jfeスチール株式会社 | Method for producing coke, coke, modified coal, modified blended coal, and method for modifying coal or blended coal |
WO2016136191A1 (en) * | 2015-02-25 | 2016-09-01 | Jfeスチール株式会社 | Method of evaluating coal and method of manufacturing coke |
JPWO2016136191A1 (en) * | 2015-02-25 | 2017-07-13 | Jfeスチール株式会社 | Coal evaluation method and coke production method |
JP2017125206A (en) * | 2015-02-25 | 2017-07-20 | Jfeスチール株式会社 | Coal evaluation method and coke production method |
RU2675567C1 (en) * | 2015-02-25 | 2018-12-19 | ДжФЕ СТИЛ КОРПОРЕЙШН | Coal assessment method and the coke production method |
US10739285B2 (en) | 2015-02-25 | 2020-08-11 | Jfe Steel Corporation | Evaluating method for coal and producing method for coke |
WO2018216373A1 (en) * | 2017-05-24 | 2018-11-29 | 株式会社神戸製鋼所 | Method for producing ashless coal and device for producing ashless coal |
CN110651027A (en) * | 2017-05-24 | 2020-01-03 | 株式会社神户制钢所 | Method for producing ashless coal and apparatus for producing ashless coal |
KR20200004872A (en) * | 2017-05-24 | 2020-01-14 | 가부시키가이샤 고베 세이코쇼 | Manufacturing method of ashless coal and apparatus for manufacturing ashless coal |
CN110651027B (en) * | 2017-05-24 | 2021-11-05 | 株式会社神户制钢所 | Method for producing ashless coal and apparatus for producing ashless coal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4188279A (en) | Shaped carbon articles | |
US20150041304A1 (en) | Process and apparatus for producing metallurgical coke from petroleum coke obtained in mineral oil refineries by coking in "non-recovery" or "heat-recovery" coking ovens | |
Lu et al. | Evaluation of coal for metallurgical applications | |
Benk et al. | Investigation of resole, novalac and coal tar pitch blended binder for the production of metallurgical quality formed coke briquettes from coke breeze and anthracite | |
CN104232131A (en) | Coke made from Canadian coking coal and coking method | |
Grint et al. | Carbonization of coal blends: mesophase formation and coke properties | |
JPS61285286A (en) | Carbonization of coal | |
KR20160074346A (en) | Coal briquettes, method and apparatus for manufacturing the same | |
Kudo et al. | Characteristic properties of lignite to be converted to high-strength coke by hot briquetting and carbonization | |
SU1087077A3 (en) | Process for preparing from petroleum processing residues of aliphatic type of carbonaceous material for use as sintering component in producing coke and aliphatic oil | |
JP6036411B2 (en) | Coal reforming method and coke manufacturing method | |
Stadelhofer et al. | The manufacture of high-value carbon from coal-tar pitch | |
US4135983A (en) | Method for improving coking property of coal for use in production of cokes | |
CN112322315B (en) | Sulfur component directional removal method for coking by high-sulfur coking coal blending | |
Makgato et al. | The effect of recycling coke oven tar on environmental pollution, coke quality, personnel and process safety | |
US4106996A (en) | Method of improving the mechanical resistance of coke | |
Zhang | Thermal decomposition of coal | |
CN112111292A (en) | Coke matched with waste activated carbon and coking method | |
US2910411A (en) | Production of gases rich in hydrogen | |
US3980525A (en) | Increasing ethylene feedstock gases produced by quenching effluent zone above coke bed with cooling liquid | |
Lu | Utilization parameters of coal for metallurgical applications | |
Grainger et al. | The Carbonisation of Coal | |
JP2003129064A (en) | Coke production method with uniform quality | |
RU2733610C1 (en) | Carbon-containing innovative product and method for production thereof | |
Makgato | Investigating the effect of substituting fractions of imported coals with coke oven tar on coke quality: Pilot plant study |