JPS61284927A - Method for washing semiconductor wafer - Google Patents
Method for washing semiconductor waferInfo
- Publication number
- JPS61284927A JPS61284927A JP12519885A JP12519885A JPS61284927A JP S61284927 A JPS61284927 A JP S61284927A JP 12519885 A JP12519885 A JP 12519885A JP 12519885 A JP12519885 A JP 12519885A JP S61284927 A JPS61284927 A JP S61284927A
- Authority
- JP
- Japan
- Prior art keywords
- flow
- semiconductor wafer
- filter
- washing
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims description 26
- 238000005406 washing Methods 0.000 title abstract description 12
- 235000012431 wafers Nutrition 0.000 claims abstract description 41
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 238000004140 cleaning Methods 0.000 claims description 39
- 230000000694 effects Effects 0.000 abstract description 8
- 239000004809 Teflon Substances 0.000 abstract description 3
- 229920006362 Teflon® Polymers 0.000 abstract description 3
- 239000012530 fluid Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 5
- 238000007654 immersion Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、半導体ウェーハに機能素子ならびに回路を造
り込む製造工程で行う半導体ウェーハの洗滌方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for cleaning a semiconductor wafer during a manufacturing process in which functional elements and circuits are built into the semiconductor wafer.
半導体製品の製造には、ウェーハへの素子や回路を造り
込む前工程と、ペレット単位に分断された素子を組立る
後工程に分けられるが、この後工程の自動化が先行して
いるのに対して、前工程はプロセスの複雑さや極端にゴ
ミを嫌う作業環境のため自動化が困難とされてきた。The manufacturing of semiconductor products can be divided into a front-end process, in which elements and circuits are built onto wafers, and a back-end process, in which the elements are assembled into pellets. However, it has been considered difficult to automate the front-end process due to the complexity of the process and the work environment, which is extremely dust-averse.
一方、増大する半導体製品の需要に応じるために、生産
性の高い製造ラインをどのように造るかが、大きな問題
となっており、その−環としてウェーハサイズは大口径
化の方向にある。現在100mφ、125nmφならび
に150mmφが使用されているが、単結晶の引上げは
すでに200nmφまでもが可能となっている。On the other hand, in order to meet the increasing demand for semiconductor products, how to build a highly productive manufacturing line has become a major problem, and as a link to this problem, wafer sizes are trending toward larger diameters. Currently, diameters of 100 mφ, 125 nmφ and 150 mmφ are used, but it is already possible to pull single crystals up to 200 nmφ.
超LSIに代表されるように、最近の半導体素子は高集
積化、高性能化の進歩が著るしく、それに伴って製造プ
ロセスも複雑多岐にわたっており、このため製造ライン
の清浄度が少滴りに与える影響が大きい。Recent semiconductor devices, as exemplified by VLSI, have made remarkable progress in becoming highly integrated and high-performance, and as a result, manufacturing processes have become more complex and diverse, and as a result, the cleanliness of the manufacturing line has become less and less clean. It has a big impact.
このラインの清浄度に加え、製造プロセス中に半導体ウ
ェーハに被着する異物除去即ち、洗滌工程もその重要性
を増している。前述のように、生産効率の向上を目積し
て、被洗滌半導体ウェーハの1回当りの枚数も増大の傾
向にある。In addition to the cleanliness of this line, the removal of foreign matter that adheres to semiconductor wafers during the manufacturing process, that is, the cleaning process, is becoming increasingly important. As mentioned above, with the aim of improving production efficiency, the number of semiconductor wafers to be cleaned at one time is also increasing.
ところで、この洗滌に当っては複数枚の半導体ウェーハ
即ち10ツトを収容するキャリアを洗滌槽内に浸漬して
処理するが、この洗滌液に強制対流を起す方法と、一定
時間放置する方法が知られている。この強制対流を発生
する具体的方法としては、この洗滌液を加温することに
よって撹拌効果をもたらす手段と、洗滌容器に撹拌翼を
設置して強制的に撹拌効果を発揮させる手段と、この両
手段を併用する手法が知られている。この洗滌に当って
、半導体ウェーハはキャリアに収容して洗滌液を充填し
た洗滌容器内に浸漬されるが、このキャリアは第5図に
示すように、相対抗して配置した板体(21) (21
)端の中央部分にこれらを一体化して接続する差渡し部
(22)を設け、この板体にはその厚さ方向を貫通した
複数の溝(23)・・・を一定ピツチで形成してこNに
半導体ウェーハを設置するのが一般的な手法である。Incidentally, in this cleaning process, a carrier containing a plurality of semiconductor wafers, that is, 10 wafers, is immersed in a cleaning tank, but there are methods known to cause forced convection in the cleaning solution and methods to leave it for a certain period of time. It is being Specific methods for generating this forced convection include means for producing a stirring effect by heating the cleaning liquid, means for installing stirring blades in the cleaning container to forcefully produce a stirring effect, and methods for both. A method of using a combination of means is known. During this cleaning, the semiconductor wafer is accommodated in a carrier and immersed in a cleaning container filled with a cleaning solution.As shown in FIG. (21
) A connecting part (22) is provided at the center of the end to integrate and connect these parts, and a plurality of grooves (23) passing through the thickness of the plate are formed at a constant pitch. A common technique is to place a semiconductor wafer on the N.
被洗滌部品である半導体ウェーハ寸法は大口径化の傾向
にあることは前述の通りであるが、洗滌液と接触する半
導体ウェーハ表面は平坦な面だけで構成される場合と、
各種のプロセスによりかなりの段差を持つ場合がある。As mentioned above, there is a tendency for semiconductor wafers, which are parts to be cleaned, to have larger diameters.
There may be considerable differences in level due to various processes.
この洗滌工程では、半導体ウェーハ表面の汚染物を含ん
だ溶液を清浄な洗滌液と可及的早く置換しなければなら
ない。しかし1強制対流が形成されていても、表面にか
なりの凹凸が存在する半導体ウェーハではその全面に均
一な洗滌効果を得ることが仲々困難である。In this cleaning step, the solution containing contaminants on the surface of the semiconductor wafer must be replaced with a clean cleaning solution as quickly as possible. However, even if one forced convection is formed, it is difficult to obtain a uniform cleaning effect over the entire surface of a semiconductor wafer whose surface has considerable irregularities.
と言うのは、強制対流による乱流が起きていても、その
循環が洗滌容器の隅々まで行き渡らないために、被洗滌
物の位置により洗滌力に勾配が生じ、具体的には半導体
ウェーハのキャリア接触部附近と中央部の洗滌効果が不
均一となり、各半導体ウェーハ間でも同様な差ができる
。This is because even when turbulent flow occurs due to forced convection, the circulation does not reach every corner of the cleaning container, resulting in a gradient in cleaning power depending on the location of the object to be cleaned. The cleaning effect near the carrier contact area and the central area becomes non-uniform, and similar differences occur between each semiconductor wafer.
生産性効率の向上が要求される現在では被洗滌ウェーハ
数の増大に伴うキャリアの溝ピツチ縮少、ならびに半導
体ウェーハの大口径化による被洗滌面積の増大等により
洗滌効率の不均一性は深刻な問題となっている。In today's world where there is a demand for improved productivity efficiency, unevenness in cleaning efficiency is becoming serious due to the shrinking groove pitch of the carrier due to the increase in the number of wafers to be cleaned, and the increase in the area to be cleaned due to the larger diameter of semiconductor wafers. This has become a problem.
この目的を達成するために、本発明方法では洗滌容器の
対称的な位置に洗滌液流入口及び取出口を設け、この方
向に沿って半導体ウェーハ面を配置する。更に、この流
入口にはフィルタを、流入口ならびに流出口間にはポン
プを配置して流入口及び流出口間の洗滌液流速をポンプ
圧力により調整する手法を採用した。In order to achieve this object, in the method of the present invention, a cleaning liquid inlet and an outlet are provided at symmetrical positions in the cleaning container, and the semiconductor wafer surface is arranged along these directions. Furthermore, a method was adopted in which a filter was placed at the inlet, a pump was placed between the inlet and the outlet, and the flow rate of the cleaning liquid between the inlet and the outlet was adjusted by the pump pressure.
即ち、環流した清浄な洗滌液を使用すると共に、被洗部
ウェーハ面をこの洗滌液の流れる方向に配置して、複数
の半導体ウェーハ間の洗滌液コンダクタンスを一定とす
るように配慮することによって、一定の洗滌効率が継続
して得られる。That is, by using a clean circulating cleaning solution and arranging the surface of the wafer to be cleaned in the direction in which the cleaning solution flows, consideration is given to keeping the conductance of the cleaning solution constant between the plurality of semiconductor wafers. Constant cleaning efficiency can be achieved continuously.
第1図乃至第4図により本発明を詳述するが、第1図は
本発明に係る洗滌装置の断面図、第2図はその上面図、
第3図は半導体ウェーハを保持するキャリア斜視図であ
る。The present invention will be explained in detail with reference to FIGS. 1 to 4, in which FIG. 1 is a sectional view of a washing device according to the present invention, FIG. 2 is a top view thereof,
FIG. 3 is a perspective view of a carrier holding a semiconductor wafer.
第3図に示すように、本発明に係る洗滌容器内に収納さ
れるキャリアはテフロン等の合成樹脂で作られるが、流
体即ち洗滌液の流通が自在となるように周囲に壁がない
はり枠体ので形成され、更に設置される半導体ウェーハ
■を固定するのに便利なようにMnと本体座に分離可能
とする。As shown in FIG. 3, the carrier housed in the cleaning container according to the present invention is made of synthetic resin such as Teflon, but it is made of a beam frame with no walls around it so that the fluid, that is, the cleaning liquid, can freely flow. The main body seat can be separated into Mn and the main body seat for convenience in fixing the semiconductor wafer (2) to be further installed.
このキャリア旦は図示するように、上面からみるとほぼ
四角形であり、その角部には枠体の・・・が配置され、
それらを接続する支持体0・・・により一体化される。As shown in the figure, this carrier is almost square when viewed from the top, and the frame... is placed at the corner.
They are integrated by a support 0... that connects them.
一方、蓋■にも同様に、枠体■・・・ならびに支持体面
により構成され、対向する支持体■0及び■(ハ)には
同一のピッチで溝■・・・を設け、こ\に半導体に半導
体ウェーハ■を係止する。On the other hand, the lid (2) is similarly composed of the frame (2)... and the support surface, and the opposing supports (20 and (C)) are provided with grooves (2) at the same pitch. Lock the semiconductor wafer ■ to the semiconductor.
一方、洗滌液を収容する容器(10)には流入口(11
)流出口(12)を設け、この流入口(11)にはフィ
ルタ(13)を付設する。このフィルタはテフロン製で
あり、直径0.2μs位の細管を束ねて、形成され、こ
のフィルタを付設した流入口(11)ならびに流出口(
12)は図示しないパイプによって連結されており、そ
の中間には流速をポンプ圧で抑制可能とする外、洗滌液
な環流させるポンプ(図示せず)を付設する。On the other hand, the container (10) containing the cleaning liquid has an inlet (11).
) An outflow port (12) is provided, and a filter (13) is attached to this inflow port (11). This filter is made of Teflon and is formed by bundling thin tubes with a diameter of about 0.2 μs.The filter is attached to an inlet (11) and an outlet (
12) are connected by a pipe (not shown), and a pump (not shown) is installed between them to suppress the flow rate with pump pressure and to circulate the cleaning liquid.
更に、洗滌容器(10)底部にはヒータ(14)を設け
る外、半導体ウェーハ0面は第2図に示すように流入口
(11)及び流出口(12)を結ぶ面に沿って配置する
。このように、本発明方法にあっては、循環機構を備え
ているので、洗滌済の流体はフィルタ(13)を介して
清浄化されると共に、半導体ウェーハ■面に沿って洗滌
液が流れることになる。Further, a heater (14) is provided at the bottom of the cleaning container (10), and the 0th surface of the semiconductor wafer is arranged along the plane connecting the inlet (11) and the outlet (12) as shown in FIG. As described above, since the method of the present invention is equipped with a circulation mechanism, the cleaned fluid is cleaned through the filter (13), and the cleaning liquid flows along the surface of the semiconductor wafer. become.
本発明方法による洗滌効果を塩酸、過酸化水素混合液で
検討した結果を第4図に示す。試料は同一条件で汚染さ
れた半導体ウェーハを使用し、洗滌効果の指標として残
存微粒子(0,3−以上)数を用いた。流速(Oam/
5ec)での残存微粒子数は、従来手段として浸漬方法
を採用した場合に対応する。FIG. 4 shows the results of examining the cleaning effect of the method of the present invention using a mixed solution of hydrochloric acid and hydrogen peroxide. A semiconductor wafer contaminated under the same conditions was used as a sample, and the number of remaining fine particles (0.3- or more) was used as an index of the cleaning effect. Flow velocity (Oam/
The number of remaining fine particles at 5ec) corresponds to the case where the immersion method was adopted as a conventional means.
尚2曲線(イ)は被洗滌半導体ウェーハ表面がぼり平滑
な場合であり、曲線(ロ)は半導体ウェーハ表面に深さ
0.4μs巾2μsの溝が形成された場合であり、曲線
(ハ)は、深さ1μs巾2pの溝を形成した半導体ウェ
ーハの測定値である。曲線(イ)では残存微粒子数とそ
のバラツキは流速10(am/5ee)付近から小さく
なり始め、25((!l/116C)で下限に達してお
り。Curve 2 (A) is the case when the surface of the semiconductor wafer to be cleaned is smooth and round, curve (B) is the case when a groove with a depth of 0.4 μs and a width of 2 μs is formed on the surface of the semiconductor wafer, and curve (C) is the case when the semiconductor wafer surface is smooth. is a measured value of a semiconductor wafer in which a groove having a depth of 1 μs and a width of 2p was formed. In curve (A), the number of remaining fine particles and their dispersion begin to decrease around a flow rate of 10 (am/5ee), and reach the lower limit at 25 ((!l/116C)).
又一枚のウェーハ上でのバラツキも同様に減少している
。Also, the variation on a single wafer is similarly reduced.
これに対して半導体表面に中程度及び大程度の凹凸が残
在する場合に相当する試料は曲線(ロ)(ハ)であり、
(ロ)では流速0 (am/5ee)で37個程度であ
ったものが、流速15〜20(CIl/86c)までは
ほぼ一定値であり、こNから減少程度が大きくなり30
(am/5ee)ではジ飽和する。これに対して、(ハ
)では流速0(a++/5ac)では49個から流速2
0〜25 (cm/5ac)でより減少し始め、35〜
4Q(am/5ee)で飽和する。On the other hand, curves (B) and (C) correspond to samples where medium and large degree of unevenness remain on the semiconductor surface.
In (b), the number of particles was about 37 at a flow rate of 0 (am/5ee), but it remained almost constant at a flow rate of 15 to 20 (CIl/86c), and the degree of decrease became larger from this N
(am/5ee) is disaturated. On the other hand, in (c), at flow rate 0 (a++/5ac), from 49 pieces to flow rate 2
It starts to decrease more from 0 to 25 (cm/5ac), and from 35 to
It is saturated at 4Q (am/5ee).
図中、流速0(am/5ac)は何れも、従来手段とし
て浸漬方法を採用した数値を示したものであるが。In the figure, the flow rate of 0 (am/5ac) indicates the value obtained when the immersion method was used as a conventional method.
これに比較して本発明方法では優れた値を示している。In comparison, the method of the present invention shows an excellent value.
半導体ウェーハ表面がはゾ平滑な場合即ち曲線(イ)で
は、洗滌液が半導体ウェーハ面に沿って流れ、即ち層流
が形成されていると想定され、各ウェーハ間の洗滌液コ
ンダクタンスは一定と思われる。一方、曲線(ロ)なら
びに(ハ)では残存微粒子数がかなり減少し始める流速
が、曲l1A(イ)より速く、飽和するのもより大きい
流速である。即ち半導体表面に凹凸が存在する場合は、
洗滌し難いことを意味しており、又この凹凸部では乱流
が発生していると判断されるが、洗滌後の残存微粒子数
は、従来の浸漬法に対して6倍程度改善された。When the semiconductor wafer surface is very smooth, that is, curve (A), it is assumed that the cleaning liquid flows along the semiconductor wafer surface, that is, a laminar flow is formed, and the cleaning liquid conductance between each wafer is assumed to be constant. It will be done. On the other hand, in curves (b) and (c), the flow velocity at which the number of remaining fine particles begins to decrease considerably is faster than in curve l1A (a), and saturation is achieved at a higher flow velocity. In other words, if there are irregularities on the semiconductor surface,
This means that it is difficult to wash, and it is considered that turbulent flow occurs in these uneven parts, but the number of remaining fine particles after washing was improved by about 6 times compared to the conventional immersion method.
第1図は本発明方法に使用する装置の断面図、第2図は
その装置側面図、第3図はキャリア斜視図、第4図は縦
軸に残存微粒子数横軸に流速を示し両者の関係を示す曲
線図、第5図は従来のキャリア斜視図である。Figure 1 is a sectional view of the apparatus used in the method of the present invention, Figure 2 is a side view of the apparatus, Figure 3 is a perspective view of the carrier, and Figure 4 shows the number of residual particles on the vertical axis and the flow rate on the horizontal axis. A curve diagram showing the relationship, and FIG. 5 is a perspective view of a conventional carrier.
Claims (1)
口間に沿って、所定間隔で複数の半導体ウェーハ面を配
置し、この流入口に取り着けるフィルタからの環流洗滌
液によりこの半導体ウェーハを洗滌することを特徴とす
る半導体ウェーハの洗滌方法。A plurality of semiconductor wafer surfaces are arranged at predetermined intervals along the cleaning liquid inlet and outlet openings formed symmetrically in the hollow cleaning container, and the semiconductor wafers are cleaned by the circulating cleaning liquid from the filter attached to the inlet. A method for cleaning semiconductor wafers, the method comprising cleaning the semiconductor wafers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12519885A JPS61284927A (en) | 1985-06-11 | 1985-06-11 | Method for washing semiconductor wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12519885A JPS61284927A (en) | 1985-06-11 | 1985-06-11 | Method for washing semiconductor wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61284927A true JPS61284927A (en) | 1986-12-15 |
Family
ID=14904339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12519885A Pending JPS61284927A (en) | 1985-06-11 | 1985-06-11 | Method for washing semiconductor wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61284927A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5791357A (en) * | 1996-06-06 | 1998-08-11 | Shin-Etsu Handotai Co., Ltd. | Support jig for thin circular objects |
US5791358A (en) * | 1996-11-20 | 1998-08-11 | Sandia Corporation | Rinse trough with improved flow |
US5868150A (en) * | 1994-11-14 | 1999-02-09 | Yieldup International | Ultra-low particle semiconductor cleaner |
US5958146A (en) * | 1994-11-14 | 1999-09-28 | Yieldup International | Ultra-low particle semiconductor cleaner using heated fluids |
-
1985
- 1985-06-11 JP JP12519885A patent/JPS61284927A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5868150A (en) * | 1994-11-14 | 1999-02-09 | Yieldup International | Ultra-low particle semiconductor cleaner |
US5932027A (en) * | 1994-11-14 | 1999-08-03 | Yieldup International | Cleaning and drying photoresist coated wafers |
US5958146A (en) * | 1994-11-14 | 1999-09-28 | Yieldup International | Ultra-low particle semiconductor cleaner using heated fluids |
US5791357A (en) * | 1996-06-06 | 1998-08-11 | Shin-Etsu Handotai Co., Ltd. | Support jig for thin circular objects |
US5791358A (en) * | 1996-11-20 | 1998-08-11 | Sandia Corporation | Rinse trough with improved flow |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5556479A (en) | Method and apparatus for drying semiconductor wafers | |
JP2912538B2 (en) | Immersion type substrate processing equipment | |
US7208858B2 (en) | Ultrasonic cleaning tank | |
US5017236A (en) | High frequency sonic substrate processing module | |
US5875804A (en) | Substrate treating apparatus | |
US6273107B1 (en) | Positive flow, positive displacement rinse tank | |
JPS61284927A (en) | Method for washing semiconductor wafer | |
JP2005064530A (en) | Wafer cassette and cleaning apparatus using the same | |
CN118645460A (en) | An adjustable cleaning basket for wafer etching processing | |
US6372051B1 (en) | Positive flow, positive displacement rinse tank | |
JP2920165B2 (en) | Overflow tank for single wafer cleaning | |
JP2004014642A (en) | Cleaning method and cleaning equipment | |
JP3386892B2 (en) | Wash tank | |
JPH07115080A (en) | Cleaning tank | |
JPH06179976A (en) | Chemical plating vessel | |
CN215965212U (en) | Groove type process system for single-chip wet treatment process | |
JPH05166793A (en) | Dipping type substrate treatment apparatus | |
JPS6239016A (en) | Developing device | |
JPS60113433A (en) | Washing equipment of thin plate | |
JP2528111Y2 (en) | Wafer holding holder | |
JPS59179788A (en) | Chemical etching device | |
JPS6340867B2 (en) | ||
KR0125239Y1 (en) | Treating bath of semiconductor wafer | |
JPS6142917A (en) | Washing apparatus | |
JPS6043834A (en) | Washing device for semiconductor wafer |