[go: up one dir, main page]

JPS6128372B2 - - Google Patents

Info

Publication number
JPS6128372B2
JPS6128372B2 JP55069232A JP6923280A JPS6128372B2 JP S6128372 B2 JPS6128372 B2 JP S6128372B2 JP 55069232 A JP55069232 A JP 55069232A JP 6923280 A JP6923280 A JP 6923280A JP S6128372 B2 JPS6128372 B2 JP S6128372B2
Authority
JP
Japan
Prior art keywords
reaction tube
vapor phase
phase growth
gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55069232A
Other languages
Japanese (ja)
Other versions
JPS56166935A (en
Inventor
Hirokazu Myoshi
Masahiro Yoneda
Kazuo Ito
Kazuo Mizuguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6923280A priority Critical patent/JPS56166935A/en
Priority to DE19813118848 priority patent/DE3118848C2/en
Publication of JPS56166935A publication Critical patent/JPS56166935A/en
Publication of JPS6128372B2 publication Critical patent/JPS6128372B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、半導体素子の製造に広く用いられ
ている減圧気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low pressure vapor phase growth apparatus widely used for manufacturing semiconductor devices.

化学気相成長(CVD)は、ガス状物質を半導
体基板等の上に供給してそのガス状物質自身、あ
るいはそれと基板との間に起こる熱分解、加水分
解、酸化等の化学反応を利用して基板上に多結晶
や絶縁皮膜等を堆積させる方法であり、この方法
の実施に用いられる減圧気相成長装置は半導体素
子の製造プロセスにおいて無くてはならない存在
となつている。
Chemical vapor deposition (CVD) is a process in which a gaseous substance is supplied onto a semiconductor substrate, etc., and chemical reactions such as thermal decomposition, hydrolysis, and oxidation that occur between the gaseous substance itself or between it and the substrate are used. This is a method in which polycrystals, insulating films, etc. are deposited on a substrate, and the low pressure vapor phase growth apparatus used to implement this method has become indispensable in the manufacturing process of semiconductor devices.

第1図は従来一般に用いられている減圧気相成
長装置の一例を示す一部断面図である。同図にお
いて反応管1は石英等の耐熱材によつて円筒状に
構成されており、一端に排気管1aを有し、他端
にはロードドア2が装置されている。また外周を
ヒータ4がとりまいており、全体として電気炉が
構成されている。前記ロードドア2は炉を密閉す
るふたとなるものであり、石英やステンレス等の
耐熱材によつて構成されている。このロードドア
2を貫通してガス導入管3が設けられており、バ
ルブ5を介して配管6に接続されている。この配
管6は図示しないガス供給源としてのガスボンベ
に接続されている。前記反応管1の内部にはグラ
フアイト製の支持ボート7が半導体基板としての
シリコンウエハ8を載置した状態で収容されてい
る。
FIG. 1 is a partial sectional view showing an example of a conventional low pressure vapor phase growth apparatus commonly used. In the figure, a reaction tube 1 is made of a heat-resistant material such as quartz and has a cylindrical shape, and has an exhaust pipe 1a at one end and a load door 2 at the other end. Further, a heater 4 surrounds the outer periphery, and an electric furnace is constructed as a whole. The load door 2 serves as a lid that seals the furnace, and is made of a heat-resistant material such as quartz or stainless steel. A gas introduction pipe 3 is provided passing through the load door 2, and is connected to a pipe 6 via a valve 5. This pipe 6 is connected to a gas cylinder (not shown) as a gas supply source. A support boat 7 made of graphite is housed inside the reaction tube 1 with a silicon wafer 8 as a semiconductor substrate placed thereon.

このような構成を有する減圧気相成長装置によ
る化学反応は通常600〜900℃の高温、0.1〜
1.0Torrの減圧状態下で行なわれる。シリコンウ
エハ8上に例えば窒化シリコン皮膜を成長させる
場合、反応管1の内部をヒータ4によつて加熱す
ると共に排気管1aから排気して750℃、0.5Torr
の高温減圧状態にし、ここにジクロールシランと
アンモニアをキヤリアガスと共にガス導入管3か
ら導入する。導入されたガスはウエハ8の載置さ
れている熱反応部において化学反応を起こし、該
ウエハ上に窒化シリコン皮膜を生成する。
Chemical reactions in a reduced pressure vapor phase growth apparatus with such a configuration are usually carried out at high temperatures of 600 to 900°C and temperatures of 0.1 to
The test is carried out under reduced pressure of 1.0 Torr. For example, when growing a silicon nitride film on a silicon wafer 8, the inside of the reaction tube 1 is heated by the heater 4 and exhausted from the exhaust pipe 1a to 750° C. and 0.5 Torr.
dichlorosilane and ammonia are introduced from the gas introduction pipe 3 together with a carrier gas. The introduced gas causes a chemical reaction in the thermal reaction section where the wafer 8 is placed, forming a silicon nitride film on the wafer.

このように従来の減圧気相成長装置においては
反応が、ヒータ4によつて外部から反応管1の熱
反応部に与えられる熱のみに負つているため長時
間を要し、また非常に高い温度を加える必要があ
るために半導体基板が熱的損傷を受ける可能性も
大きかつた。更にガスが、実際に所望の気相成長
が行なわれるウエハの載置個所(熱反応部)まで
未反応のまま流入するので均一性にも問題があつ
た。更に、これらの減圧気相成長装置の構造上、
生成物質はウエハ上のみならず反応管内壁等の反
応管内のあらゆる場所に付着し、回を重ねるうち
に堆積してガスの流れを阻害したり、小片状に剥
落して塵埃の原因となつたりする。そのため定期
的に反応管を交換しなければならない欠点があつ
た。
As described above, in the conventional reduced pressure vapor phase growth apparatus, the reaction depends only on the heat applied from the outside to the thermal reaction part of the reaction tube 1 by the heater 4, so it takes a long time and the temperature is extremely high. There was also a high possibility that the semiconductor substrate would be thermally damaged. Furthermore, since the gas flows unreacted to the wafer placement area (thermal reaction area) where the desired vapor phase growth is actually performed, there is also a problem in uniformity. Furthermore, due to the structure of these reduced pressure vapor phase growth devices,
The generated substances adhere not only to the wafer but also to all parts of the reaction tube, such as the inner walls of the reaction tube, and over time, they accumulate and obstruct gas flow, or flake off in small pieces, causing dust. or Therefore, there was a drawback that the reaction tube had to be replaced periodically.

この発明の目的は、均一な皮膜を効率良く生成
することのできる減圧気相成長装置を提供するこ
とにある。
An object of the present invention is to provide a reduced pressure vapor phase growth apparatus that can efficiently produce a uniform film.

この発明の他の目的は、反応管のクリーニング
が容易に行なえる減圧気相成長装置を提供するこ
とにある。
Another object of the present invention is to provide a reduced pressure vapor phase growth apparatus in which the reaction tube can be easily cleaned.

このような目的を達成するためにこの発明によ
る減圧気相成長装置は、ウエハを載置した熱反応
部よりもガス導入側にプラズマ発生装置を設け、
反応管に導入されるガスを予めプラズマ化して活
性度を高め、続いて行なわれる気相成長反応を容
易にし、また、エツチングガスを導入して反応管
内壁等に付着した不要生成物をプラズマエツチン
グできるようにしたものである。以下、図面を用
いてこの発明による減圧気相成長装置を詳細に説
明する。
In order to achieve such an object, the reduced pressure vapor phase growth apparatus according to the present invention is provided with a plasma generating device on the gas introduction side of the thermal reaction section on which the wafer is placed.
The gas introduced into the reaction tube is turned into plasma in advance to increase its activity, facilitating the subsequent vapor phase growth reaction, and etching gas is introduced to plasma-etch unnecessary products attached to the inner walls of the reaction tube, etc. It has been made possible. Hereinafter, the reduced pressure vapor phase growth apparatus according to the present invention will be explained in detail using the drawings.

第2図はこの発明による減圧気相成長装置の一
実施例を示す一部断面図であり、第1図と同一部
分は同一記号を用いて詳細説明を省略してある。
本実施例においてはロードドア2は電気絶縁性の
石英板によつて構成され、第3図に示すように板
面に支持部材9の一端が固着されると共に給電コ
ネクタ10が植設されている。支持部材9の他端
にプラズマ発生用電極11が保持されている。該
支持部材は導電体によつて形成され前記給電コネ
クタ10および導線12と共に電気的接続部材を
構成している。これらの電気的接続部材を通して
外部電源からプラズマ発生用電極11に高周波電
力が供給される。以下、上記構成による減圧気相
成長装置の動作を詳細に説明する。
FIG. 2 is a partial sectional view showing an embodiment of the reduced pressure vapor phase growth apparatus according to the present invention, and the same parts as in FIG. 1 are designated by the same symbols and detailed explanations are omitted.
In this embodiment, the load door 2 is made of an electrically insulating quartz plate, and as shown in FIG. 3, one end of a support member 9 is fixed to the plate surface and a power supply connector 10 is implanted therein. . A plasma generation electrode 11 is held at the other end of the support member 9 . The support member is made of a conductor, and together with the power supply connector 10 and the conductive wire 12 constitutes an electrical connection member. High frequency power is supplied from an external power source to the plasma generation electrode 11 through these electrical connection members. Hereinafter, the operation of the reduced pressure vapor phase growth apparatus having the above configuration will be explained in detail.

先ず、反応管1の内部を、ヒータ4によつて加
熱すると共に排気管1aから排気して高温減圧状
態に保つ。またプラズマ発生用電極11に、外部
電源から給電コネクタ10、導線12および支持
部材9を通して高周波電力を供給しておく。ここ
でガス導入管3から例えばモノシランとキヤリア
ガスとしての窒素とを導入する。反応管1内に導
入されたガスは、ウエハ8が載置されている熱反
応部に到達する以前に電極11間で放電を起こし
てプラズマ状態となる。プラズマ化したガスは続
いて高温状態にある熱反応部において熱反応を起
こし、シリコンウエハ8上に多結晶シリコンの皮
膜を成長させる。プラズマ化によつてガスの活性
度が高められているために、ガス供給源から供給
されるガスをはじめから外部より与える熱のみに
依つて反応させる場合に比べて反応が容易にな
り、効率的に所望の皮膜を成長させることができ
る。また、外部から反応管内に導入されるガス
が、所望の気相成長が行なわれる熱反応部に到達
する以前に一旦プラズマ化されているため、直接
熱反応部に流入する場合に比べて均一性が向上
し、半導体基板が多数であつても均一な皮膜を成
長させることができる。以上、半導体基板に所望
の皮膜を成長させる場合の動作を説明した。
First, the inside of the reaction tube 1 is heated by the heater 4 and exhausted from the exhaust pipe 1a to maintain a high temperature and reduced pressure state. Further, high frequency power is supplied to the plasma generation electrode 11 from an external power supply through the power supply connector 10, the conductive wire 12, and the support member 9. Here, for example, monosilane and nitrogen as a carrier gas are introduced from the gas introduction pipe 3. The gas introduced into the reaction tube 1 generates a discharge between the electrodes 11 and becomes a plasma before reaching the thermal reaction section where the wafer 8 is placed. The plasma-turned gas then causes a thermal reaction in a thermal reaction section at a high temperature, and a polycrystalline silicon film is grown on the silicon wafer 8. Because the activity of the gas is increased by plasma formation, the reaction is easier and more efficient than when the gas supplied from the gas source is reacted from the beginning only with heat applied from outside. A desired film can be grown. In addition, since the gas introduced into the reaction tube from the outside is turned into plasma before it reaches the thermal reaction zone where the desired vapor phase growth occurs, it is more uniform than when it directly flows into the thermal reaction zone. It is possible to grow a uniform film even if there are a large number of semiconductor substrates. The operation for growing a desired film on a semiconductor substrate has been described above.

次に反応管をクリーニングする際の動作につい
て説明する。上述したような気相成長工程におい
て生成する多結晶シリコンは所望のシリコンウエ
ハ上のみならず、反応管内のあらゆる場所に付着
する。従つて気相成長工程を繰り返すうちに反応
管内壁等に堆積した皮膜は次第に厚みを増し、放
置すればガスの流れを阻害したり小片状に剥落し
て塵埃の原因となつたりするため、定期的に反応
管をクリーニングする必要が生じる。そのために
例えば数十回の気相成長工程に1回程度の割合
で、半導体基板を取り出した状態の反応管にCF4
等のフロロカーボン系のエツチングガスをガス導
入管から導入する。導入されたエツチングガスは
高周波電圧のかけられたプラズマ発生用電極11
間で放電を起こして活性なプラズマ状態となり、
反応管内壁等に堆積した不要の多結晶シリコンの
皮膜をプラズマエツチングする。従つて反応管を
装置から取り外す等の面倒な作業を必要とせず
に、反応管内を容易にクリーニングすることがで
きる。
Next, the operation when cleaning the reaction tube will be explained. Polycrystalline silicon produced in the above-described vapor phase growth process adheres not only to the desired silicon wafer but also everywhere within the reaction tube. Therefore, as the vapor phase growth process is repeated, the film deposited on the inner walls of the reaction tube gradually increases in thickness, and if left untreated, it can obstruct the flow of gas or flake off into small pieces, causing dust. It becomes necessary to periodically clean the reaction tube. For this purpose, for example, once every several dozen vapor phase growth steps, CF4 is added to the reaction tube from which the semiconductor substrate has been removed.
A fluorocarbon-based etching gas such as fluorocarbon etching gas is introduced from the gas introduction pipe. The introduced etching gas passes through the plasma generation electrode 11 to which a high frequency voltage is applied.
A discharge occurs between the two, creating an active plasma state.
The unnecessary polycrystalline silicon film deposited on the inner wall of the reaction tube is plasma etched. Therefore, the inside of the reaction tube can be easily cleaned without requiring troublesome work such as removing the reaction tube from the apparatus.

上述したように、プラズマ発生用電極11は支
持部材9により、反応管1の本体ではなく、取り
外し可能なロードドア2に支持される構造である
ため、組み付けやその後の保守上の取り扱いも容
易である。のみならず、次のような構成も可能で
ある。
As mentioned above, since the plasma generation electrode 11 is supported by the support member 9 not by the main body of the reaction tube 1 but by the removable load door 2, it is easy to assemble and handle for subsequent maintenance. be. In addition, the following configuration is also possible.

第4図はこの発明による減圧気相成長装置の他
の実施例を示す一部断面図、第5図はそのプラズ
マ発生装置部を示す斜視図であり、第2図および
第3図と同一部分は同一記号を用いてその詳細説
明を省略してある。同図においてロードドア2は
導電体部分2a,2bと絶縁体部分2cとから構
成されている。導電体部分2a,2bとプラズマ
発生用電極11を固定する支持部材9とは共に該
電極11に高周波電力を供給するための電気的接
続部材の一部をも兼ねており、これらロードドア
の導電体部分2a,2bと支持部材9およびプラ
ズマ発生用電極11とは一体的に構成されてい
る。ロードドア自体は導電体と絶縁体との複合構
成となるが給電コネクタや導線などを別に設ける
必要がなく、構造が単純化して堅牢となる。反応
管内に入るガスを熱反応部に至る前にガス供給側
で活性なプラズマ状態にすることによつて気相成
長を容易にし、またエツチングガスを導入してプ
ラズマ化することによつて気相成長工程において
反応管内に付着した不要な皮膜を除去する効果は
第2図および第3図に示す実施例と全く同様に得
ることができる。
FIG. 4 is a partial cross-sectional view showing another embodiment of the reduced pressure vapor phase growth apparatus according to the present invention, and FIG. 5 is a perspective view showing the plasma generator section thereof, showing the same parts as FIGS. The same symbols are used and detailed explanation thereof is omitted. In the figure, the load door 2 is composed of conductor parts 2a, 2b and an insulator part 2c. The conductor portions 2a, 2b and the support member 9 that fixes the plasma generation electrode 11 also serve as a part of the electrical connection member for supplying high frequency power to the electrode 11, and these load door conductors The body parts 2a, 2b, the support member 9, and the plasma generation electrode 11 are integrally constructed. The load door itself has a composite structure of a conductor and an insulator, but there is no need to separately provide a power supply connector or conductor, making the structure simpler and more robust. By converting the gas entering the reaction tube into an active plasma state on the gas supply side before it reaches the thermal reaction section, vapor phase growth is facilitated, and by introducing etching gas and turning it into plasma, the vapor phase growth is facilitated. The effect of removing unnecessary films deposited inside the reaction tube during the growth process can be obtained in exactly the same manner as in the embodiments shown in FIGS. 2 and 3.

なお、上記した実施例ではいずれもプラズマ発
生用電極をロードドアに取り付けていたが、半導
体基板が載置され所望の気相成長が行なわれる熱
反応部よりもガス導入側であれば、反応管内の他
の個所、例えば反応管内壁等に支持してもよい。
また給電コネクタを取り付ける場所もロードドア
に限られず例えば反応管内壁であつてもよいこと
は当然である。更に、プラズマ発生装置は反応管
の外部にあつてもよい。例えばロードドアの外側
に出ているガス導入管の一部分を拡張してその内
部に配置することができる。このように反応管外
部に設けた場合には内部に設けた場合のように高
温雰囲気中でないために、熱的損傷が少なくて済
む利点がある。
In all of the above embodiments, the plasma generation electrode was attached to the load door, but if it is on the gas introduction side of the thermal reaction section where the semiconductor substrate is placed and the desired vapor phase growth is performed, it can be attached to the inside of the reaction tube. It may also be supported at other locations, such as on the inner wall of the reaction tube.
Furthermore, it goes without saying that the location for attaching the power supply connector is not limited to the load door, but may be, for example, the inner wall of the reaction tube. Furthermore, the plasma generator may be located outside the reaction tube. For example, a portion of the gas introduction pipe protruding from the outside of the load door can be expanded and placed inside the door. When provided outside the reaction tube in this manner, unlike when provided inside the reaction tube, the reaction tube is not exposed to a high temperature atmosphere, so there is an advantage that thermal damage can be reduced.

以上説明したように、この発明による減圧気相
成長装置によれば、反応管内の、ウエハが載置さ
れ所望の気相成長が行なわれる熱反応部とガス導
入口との間に位置するプラズマ発生用電極を備え
たプラズマ発生装置を設けたことにより、ガス供
給源から供給されるガスを反応管の熱反応部に到
達する以前に予めプラズマ化して活性を高めるこ
とができるため、外部から与えられる熱のみに負
つていた場合に比べてより効率的に気相成長を行
なうことができ、またガス供給源から供給された
ばかりの全く未反応のガスを直接熱反応部に導入
する場合に比べて生成される皮膜の均一性を向上
させることができる。更にエツチングガスを導入
してプラズマ化し、反応管内壁等に付着堆積した
反応生成物をプラズマエツチングすることができ
るため、反応管内のクリーニングが極めて容易と
なる等の種々優れた効果を有する。
As explained above, according to the reduced pressure vapor phase growth apparatus according to the present invention, plasma is generated in the reaction tube between the thermal reaction section where the wafer is placed and desired vapor phase growth is performed, and the gas inlet. By providing a plasma generator equipped with a plasma electrode, the gas supplied from the gas supply source can be turned into plasma before reaching the thermal reaction part of the reaction tube, increasing its activity. Vapor phase growth can be performed more efficiently than when relying only on heat, and compared to when completely unreacted gas just supplied from the gas supply source is directly introduced into the thermal reaction zone. The uniformity of the produced film can be improved. Furthermore, since it is possible to introduce an etching gas and turn it into plasma, and to plasma-etch the reaction products deposited on the inner wall of the reaction tube, etc., it has various excellent effects such as extremely easy cleaning of the inside of the reaction tube.

しかも、上記プラズマ発生用電極はロードドア
に支持されるため、組み付けやその後の取り扱い
が容易であるという利点を有する。
Furthermore, since the plasma generation electrode is supported by the load door, it has the advantage of being easy to assemble and handle thereafter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の減圧気相成長装置を示す一部断
面図、第2図および第3図はこの発明による減圧
気相成長装置の一実施例を示す一部断面図および
そのプラズマ発生装置部を示す斜視図、第4図お
よび第5図はこの発明による減圧気相成長装置の
他の実施例を示す一部断面図およびそのプラズマ
発生装置部を示す斜視図である。 1……反応管、2……ロードドア、4……ヒー
タ、9……支持部材、10……給電コネクタ、1
1……プラズマ発生用電極、12……導線。
FIG. 1 is a partial cross-sectional view showing a conventional low-pressure vapor phase growth apparatus, and FIGS. 2 and 3 are partial cross-sectional views showing an embodiment of the low-pressure vapor phase growth apparatus according to the present invention, and its plasma generator section. FIGS. 4 and 5 are a partial cross-sectional view showing other embodiments of the reduced pressure vapor phase growth apparatus according to the present invention, and a perspective view showing the plasma generator section thereof. DESCRIPTION OF SYMBOLS 1...Reaction tube, 2...Load door, 4...Heater, 9...Support member, 10...Power supply connector, 1
1... Electrode for plasma generation, 12... Conductive wire.

Claims (1)

【特許請求の範囲】 1 ガス供給源と、このガス供給源からガスが導
入される反応管と、この反応管の外周に設けられ
たヒータと、この反応管の一端を閉塞するロード
ドアとを有する減圧気相成長装置において、前記
反応管内の熱反応部とガス導入口との間に位置す
るプラズマ発生用電極と、この電極をロードドア
に支持する支持部材と、上記電極に給電するため
の電気的接続部材とを有するプラズマ発生装置を
備えたことを特徴とする減圧気相成長装置。 2 電気的接続部材は、支持部材と、ロードドア
の一部とを含むことを特徴とする特許請求の範囲
第1項記載の減圧気相成長装置。
[Claims] 1. A gas supply source, a reaction tube into which gas is introduced from the gas supply source, a heater provided on the outer periphery of the reaction tube, and a load door that closes one end of the reaction tube. A reduced pressure vapor phase growth apparatus comprising: a plasma generation electrode located between the thermal reaction part and the gas inlet in the reaction tube; a support member for supporting this electrode on a load door; and a support member for supplying power to the electrode. 1. A reduced pressure vapor phase growth apparatus comprising a plasma generating apparatus having an electrical connection member. 2. The reduced pressure vapor phase growth apparatus according to claim 1, wherein the electrical connection member includes a support member and a part of the load door.
JP6923280A 1980-05-12 1980-05-23 Apparatus for vapor growth under reduced pressure Granted JPS56166935A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6923280A JPS56166935A (en) 1980-05-23 1980-05-23 Apparatus for vapor growth under reduced pressure
DE19813118848 DE3118848C2 (en) 1980-05-12 1981-05-12 Low pressure coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6923280A JPS56166935A (en) 1980-05-23 1980-05-23 Apparatus for vapor growth under reduced pressure

Publications (2)

Publication Number Publication Date
JPS56166935A JPS56166935A (en) 1981-12-22
JPS6128372B2 true JPS6128372B2 (en) 1986-06-30

Family

ID=13396775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6923280A Granted JPS56166935A (en) 1980-05-12 1980-05-23 Apparatus for vapor growth under reduced pressure

Country Status (1)

Country Link
JP (1) JPS56166935A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067673A (en) * 1983-09-22 1985-04-18 Semiconductor Energy Lab Co Ltd Plasma gaseous phase reaction method
US4657616A (en) * 1985-05-17 1987-04-14 Benzing Technologies, Inc. In-situ CVD chamber cleaner
US4786352A (en) * 1986-09-12 1988-11-22 Benzing Technologies, Inc. Apparatus for in-situ chamber cleaning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628637A (en) * 1979-08-16 1981-03-20 Shunpei Yamazaki Film making method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628637A (en) * 1979-08-16 1981-03-20 Shunpei Yamazaki Film making method

Also Published As

Publication number Publication date
JPS56166935A (en) 1981-12-22

Similar Documents

Publication Publication Date Title
KR100235362B1 (en) A method and apparatus for forming an amorphous carbon thin film by plasma chemical vapor deposition (CVD)
JPH0645261A (en) Semiconductor vapor growing apparatus
WO2007114155A1 (en) Method and apparatus for growing plasma atomic layer
KR100467082B1 (en) Apparatus for fabricating a semiconductor device and method of cleaning the same
JPS6128372B2 (en)
JP2000260721A (en) Cvd system, cvd method and method of cleaning the cvd system
JPH1154441A (en) Catalytic chemical evaporation device
JP3631903B2 (en) Plasma chemical vapor deposition equipment
JPH07283292A (en) Sealing mechanism besides treatment device and treatment method using this sealing mechanism
KR100812044B1 (en) Gas phase reaction processing device
JP2547035B2 (en) Plasma processing device
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH01188678A (en) Plasma vapor growth apparatus
JP2717185B2 (en) Cleaning method for heat treatment equipment
JPS62203330A (en) Semiconductor heat treatment apparatus with reaction tube washing means
JPS5941773B2 (en) Vapor phase growth method and apparatus
JPS62218577A (en) Electrode for vapor phase reactor
JPH0214523A (en) Treatment by plasma
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JP4570186B2 (en) Plasma cleaning method
JP2721847B2 (en) Plasma processing method and vertical heat treatment apparatus
JPS607133A (en) Plasma cvd device
JPS6140770Y2 (en)
JPS643338B2 (en)
JP2721846B2 (en) Vertical heat treatment apparatus and treatment method by vertical heat treatment apparatus