JPS6128339B2 - - Google Patents
Info
- Publication number
- JPS6128339B2 JPS6128339B2 JP51027027A JP2702776A JPS6128339B2 JP S6128339 B2 JPS6128339 B2 JP S6128339B2 JP 51027027 A JP51027027 A JP 51027027A JP 2702776 A JP2702776 A JP 2702776A JP S6128339 B2 JPS6128339 B2 JP S6128339B2
- Authority
- JP
- Japan
- Prior art keywords
- heating device
- cutting edge
- temperature
- blade
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00107—Coatings on the energy applicator
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Resistance Heating (AREA)
- Magnetic Treatment Devices (AREA)
Description
本発明は切開用器具に関し、特に切刃先を一定
の高温に維持する装置を備えた外科用の切開器具
に関する。この装置は該一定の高温の範囲におい
て比透磁率がキユーリ点の転移を示す材料からな
り、所定の温度以下に低下した場合には表皮の厚
さが減少してそこを通る電流によるジユール熱の
増大により温度を増大せしめ、所定の温度以上に
なるとキユーリ点の転移により表皮の厚さが増大
し抵抗が減少してジユール熱の発生が抑えられる
ようになつている。
外科手術中の出血の制御は、手術中に含まれる
全時間の大部分をしめる。組織が切開される時は
何時も、全ての組織に広がる小さい血管の過多か
ら起る出血は、外科医の視野をおおい隠し、その
精度を低下させ、又、外科手術に於ける遅い念入
りな処置を必要とする。切り口からの出血を最小
限にするために、組織を加熱することが周知であ
る。更に、組織の温度を上げ、出血を最小限にす
るように、設計された外外科手術用メスも又、周
知である。一つのそのようなメスは、高周波数、
高エネルギー火花を、外科医の手中に持たれた小
さい電極から、組織へ、伝達し、そこで火花は熱
に変えられる。代表的には、実質的電流が、患者
の下の大きな電極へ、患者の体を通過し、このよ
うにして、電気的回路をなしている。しかし、組
織中での火花の放出や温度変換の分布及び強度を
制御することは不十分であるため、患者に於ける
不規律な筋肉収縮が生じ、従つて、この装置は精
密な外科手術を行うために使用することは出来な
い。更に、この形式の装置は、焦げたり死んだり
といつた形で、組織のひどい損害や組織の破片を
生ずることになり、これらが、傷の回復を実質的
に妨げる。
別の周知の外科手術用メスは、組織を切り、同
時の出血停止を提供する抵抗加熱要素を有する刃
を使用する。これらの抵抗要素は、組織に接触す
るに先立つて、空気中に於て、適当に高い一定の
温度に容易に持つて来ることが出来るけれども、
刃の部分が、組織と接触するや否やそれらは急速
に冷却される。外科手術中に、組織が切られる
時、予め知ることのできない、常に異なる刃の一
部分が組織に接触する。刃が冷却するに伴れて、
組織の切開、及び、出血停止は著しく効果が減少
し、組織は刃に付着する傾向がある。若し、この
冷却に対抗して作用するために、従来の手段によ
つて、付加的の電力が加えられるならば、この付
加的の電力は、刃の不冷却部分に選択的に伝えら
れて、屡々、過度の温度となり、これは、組織障
害及び刃破壊を来すかも知れない。これは、或既
知の抵抗的に加熱されるメスに於て、加熱は、電
流自乗倍の抵抗の関数であるという事実から生じ
る。この形式の従来の金属性刃に於ては、任意の
刃部分の温度が高ければ高い程、それの電気抵抗
はそれだけ大きく、従つて、増加する入力から生
じる増加する加熱は、それだけ大きい。
組織を封じ、止血を行うためには、300℃と
1000℃との間の温度に於て、手術することが望ま
しいことは一般に認められている。上記の理由の
ために、電熱的止血外科切開器具は、切刃先が、
所望の最適範囲内の実質的に均一の作動温度に、
維持されるように、それによつて電力が、組織接
触によつて冷却される刃の部分に、選択的に分配
される機構を含むことが望ましい。最近、それに
於ては、温度制御機構がメス刃の表面上に配置さ
れた抵抗加熱要素を、含む止血メスが記述されて
いる。(例えば、米国特許第3768482号及び第
3826263号参照)。しかし、そのような器具は、所
望の抵抗を得るために、加熱要素の寸法を製作す
るに於て、精密を要する。そして、組織汁及びた
んぱく質が、刃の表面上に、付着されるようにな
るから、そのような抵抗加熱要素は、使用中に抵
抗に於ける変化を受けるかも知れない。
本発明は、切刃先の部位に配置された電導体に
於ける可変表皮の厚さ内に於て流れる無線周波数
電流による加熱によつて、刃のの切る部分が、高
められた予め選ばれた温度範囲に持つて来られ
て、その範囲内に維持される外科切開器具を提供
する。無線周波数の交流電流が、刃の切刃先の近
くに配置された電流を運ぶ導体によつて伝導され
る。電流は、表面の近くに集中する、及び、表面
からの距離と共に指数的に減衰する傾向を有して
いる。この現象は、「表皮効果」と称される。こ
の表皮効果の深さは、電流がそれの表面値の約37
%にまで低下される所の深さであつて、電流を伝
導する材料の電気抵抗率及び透磁率によつて、及
び、交流の周波数によつて、決定される。表皮の
厚さd(cm)は、
によつて決定される。これについては例えばボゾ
ース(Richard M. Bozorth)の「強磁性体」
(1951年デイ・バン・ノストランド社発行)770〜
771頁を参照されたい。ここに、ρ×10-9は電気
抵抗率(オーム―cm)であり、μは比透磁率であ
り、は周波数(ヘルツ)である。自己調整する
加熱されたメスは、無線周波数(RF)電流をし
て、抵抗加熱要素として利用される導体中を、流
れさせることによつて作られる。これらの抵抗加
熱要素は、メスの切刃先の部位に配置されてい
て、温度が減少するに伴つて、透磁率の如き電気
的パラメーターに於ける増加を示す。透磁率に於
ける増加が表皮の厚さに於ける減少を起すことが
見られる。電流を伝導する通路の抵抗は、横断面
積(路幅倍の表皮の厚さ)に、反比例するから、
この効果は、冷却された部位に於ける電流通路の
抵抗に於ける増加、及び、それのジユール加熱に
於ける増加、を起す。
例として、鉄、ニツケル、及びコバルト、及び
それらの合金の如き強磁性材料は、それらの温度
が、「キユリー」点と称する転移点を通る時、相
対透磁率に於ける大きな変化を示す。多くの鉄―
ニツケル合金に対してこのキユリー点は、約450
℃に於て起る。このキユリー点以上に於て相対透
磁率は、殆んど不変である。キユリー点以下に於
てそれは、本出願に於て利用される磁場力に対し
て、高く、多分100乃至1000である。加えられた
RF信号は、電流をして、切刃先の近くに於て刃
の表面導体中を流れさせる。そして、これが組織
との接触に先立つて、刃先を約500℃に加熱す
る。切刃先の部分が組織と接触して、冷却される
と、冷却された部分は、温度に於て、キユリー点
以下に下るかも知れない。そして、これが相対透
磁率を不変値近くから100以上にまで増加するで
あろう。関連表皮の厚さは10対1以上減少するで
あろう。そして加熱は、冷却された部分に於て比
例して増加するであろう。
本発明に従つて、アルミナ・セラミツクの如き
電気絶縁材料のメス刃が、切刃先に近く導体に沿
つて高周波数電流を伝導することによつて、それ
の切刃先の部位に於て、電気的に加熱される。こ
れらの導体は、刃の絶縁材料に配置された強磁性
材料で形成されている。しかし冷却される部材た
るメス刃は絶縁材料で構成せずともよく、例えば
導体と絶縁シートを介して絶縁してあるなどでも
よい。
さて、第1図及び第2図を参照するに、外科手
術用器具を形成するために、柄部11に取付けら
れたアルミナ・セラミツクの如き電気絶縁材料の
刃部9を含む、本発明の一実施例が示されてい
る。ニツケル―鉄の如き強磁性材料の信号導体1
3が、刃9の一側に沿つて、及び裏に刃の他側に
沿つて完全な伝導路を形成するために、切刃先2
1に隣接して刃9上に配置されている。無線周波
数に於ける入力電力が、電力源19から、接続手
段15及び17を通して導体13に供給されても
よい。
強磁性材料で形成された電流を運ぶ導体13を
以て、前に論議された表皮の厚さ特性が温度調整
のために、有利に利用出来る。強磁性導体13を
通つて流れる電流は、その材料に対する表皮の厚
さに於て、導体の内側を流れるであろう。そし
て、強磁性材料及びそれに熱的に連結されたセラ
ミツクの切刃先21を加熱するであろう。キユリ
ー温度以上である空気中の作動温度から、切刃先
の部分は、切刃先が組織に触れると、冷却するで
あろう。そして、それの作動温度は、キユリー温
度以下に下るかも知れない。そして表皮の厚さは
約10対1減少し、加熱に於て略々10対1の局部的
増加を与えるであろう。10対1の電力増加を達成
するためには、比透磁率は、組織接触によつて冷
却された時、100対1増加しなければならないば
かりでなく、又、空気中に於ける予め切る作動状
態に於ける表皮の厚さは、10対1の表皮の厚さ減
少を実現するためには、導体の厚さの略々2/3又
はそれ以下でなければならない。このように、強
磁性材料からなり適当に薄い自己調整可能な伝導
性の加熱装置をその上に備えた適当に薄いメス刃
に対しては、必要な表皮の厚さを確立するために
高周波数を要するかも知れない。次の表示は、
50:50鉄―ニツケル強磁性合金に於けるキユリー
点以上及び以下に於ける種々の表皮の厚に対して
要する周波数を示す。そして、約3アンペアの電
流によつて付勢された時の3cm切刃先の部位に於
けるメス刃の両小面上に連続して配置された幅40
ミルの導体の関係電力消費を示す。
The present invention relates to an incision instrument, and more particularly to a surgical incision instrument equipped with a device for maintaining a cutting edge at a constant high temperature. This device is made of a material whose relative magnetic permeability exhibits a transition to the Currie point in a certain high temperature range, and when the temperature drops below a predetermined temperature, the thickness of the skin decreases and the electric current passing through it reduces the Joule heat. The temperature is increased by increasing the temperature, and when the temperature exceeds a predetermined value, the thickness of the epidermis increases due to the transition of the Kiuri point, and the resistance decreases, thereby suppressing the generation of Joule heat. Control of bleeding during a surgical procedure constitutes a large portion of the total time involved during the procedure. Whenever tissue is dissected, bleeding from the plethora of small blood vessels that spread through all the tissue obscures the surgeon's vision, reduces his precision, and requires slow and careful surgical procedures. shall be. It is well known to heat tissue to minimize bleeding from cuts. Additionally, scalpels designed to increase tissue temperature and minimize bleeding are also known. One such female is high frequency,
A high-energy spark is transmitted from a small electrode in the surgeon's hand to the tissue, where it is converted into heat. Typically, a substantial electrical current is passed through the patient's body to a large electrode beneath the patient, thus creating an electrical circuit. However, insufficient control over the distribution and intensity of the spark emission and temperature transformation in the tissue results in irregular muscle contractions in the patient, thus making this device difficult to perform in precision surgical procedures. It cannot be used to do anything. Furthermore, this type of device can result in severe tissue damage and tissue fragments, such as charring or death, which substantially impede wound healing. Another known scalpel uses a blade with a resistive heating element to cut tissue and provide simultaneous bleeding cessation. Although these resistive elements can easily be brought to a suitably high constant temperature in air prior to contacting the tissue,
As soon as the blade parts come into contact with tissue, they cool rapidly. During a surgical procedure, when tissue is cut, a different part of the blade always comes into contact with the tissue, which cannot be known in advance. As the blade cools,
Tissue dissection and bleeding control are significantly less effective and tissue tends to adhere to the blade. If additional power is applied by conventional means to counteract this cooling, this additional power may be selectively transmitted to the uncooled portions of the blade. , often resulting in excessive temperatures, which may result in tissue damage and blade failure. This arises from the fact that in certain known resistively heated scalpels, heating is a function of the resistance times the current squared. In conventional metallic blades of this type, the higher the temperature of any blade section, the greater its electrical resistance and therefore the greater the increased heating resulting from increased power input. To seal the tissue and stop bleeding, a temperature of 300℃ is required.
It is generally accepted that it is desirable to operate at temperatures between 1000°C. For the above reasons, electrothermal hemostasis surgical cutting instruments have a cutting edge that is
to a substantially uniform operating temperature within the desired optimum range;
It is desirable to include a mechanism by which power is selectively distributed to portions of the blade that are cooled by tissue contact so as to be maintained. Recently, a hemostatic scalpel has been described in which the temperature control mechanism includes a resistive heating element disposed on the surface of the scalpel blade. (For example, U.S. Pat. No. 3,768,482 and U.S. Pat.
(See No. 3826263). However, such devices require precision in sizing the heating element to obtain the desired resistance. And, as tissue fluids and proteins become deposited on the surface of the blade, such resistive heating elements may undergo changes in resistance during use. The present invention provides that the cutting area of the blade is heated to a preselected height by heating by radio frequency current flowing within the variable skin thickness of the electrical conductor located at the cutting edge area. To provide a surgical cutting instrument that can be brought to a temperature range and maintained within the temperature range. A radio frequency alternating current is conducted by a current carrying conductor located near the cutting edge of the blade. Current has a tendency to concentrate near the surface and decay exponentially with distance from the surface. This phenomenon is called the "skin effect." The depth of this skin effect is approximately 37
%, determined by the electrical resistivity and magnetic permeability of the material conducting the current and by the frequency of the alternating current. The thickness of the epidermis d (cm) is determined by. For example, Richard M. Bozorth's ``ferromagnetism''
(Published by Day Van Nostrand in 1951) 770~
See page 771. Here, ρ×10 −9 is the electrical resistivity (ohm-cm), μ is the relative magnetic permeability, and is the frequency (hertz). A self-regulating heated scalpel is created by passing a radio frequency (RF) current through a conductor that is utilized as a resistive heating element. These resistive heating elements are located at the cutting edge of the scalpel and exhibit an increase in electrical parameters such as magnetic permeability as the temperature decreases. It is seen that an increase in permeability causes a decrease in skin thickness. The resistance of a path that conducts current is inversely proportional to the cross-sectional area (path width times skin thickness), so
This effect causes an increase in the resistance of the current path in the cooled region and an increase in its heating. By way of example, ferromagnetic materials such as iron, nickel, and cobalt, and their alloys exhibit large changes in relative magnetic permeability as their temperature passes through a transition point called the "Curie" point. lots of iron
This Kyrie point for nickel alloy is approximately 450
Occurs at ℃. Above this Curie point, the relative magnetic permeability remains almost unchanged. Below the Curie point it is high, perhaps 100 to 1000, for the magnetic field force utilized in this application. added
The RF signal causes an electric current to flow through the surface conductor of the blade near the cutting edge. This then heats the cutting edge to approximately 500°C prior to contact with tissue. When a portion of the cutting edge contacts tissue and is cooled, the temperature of the cooled portion may drop below the Curie point. This, in turn, would increase the relative permeability from near a constant value to over 100. The associated epidermal thickness will be reduced by more than 10:1. Heating will then increase proportionately in the cooled section. In accordance with the present invention, a scalpel blade of electrically insulating material, such as alumina ceramic, conducts a high frequency current along a conductor near the cutting edge, thereby generating an electrical current at the region of its cutting edge. heated to. These conductors are made of ferromagnetic material placed on the insulating material of the blade. However, the scalpel blade, which is a member to be cooled, does not need to be made of an insulating material, and may be insulated from the conductor via an insulating sheet, for example. Referring now to FIGS. 1 and 2, one embodiment of the present invention includes a blade portion 9 of electrically insulating material, such as alumina ceramic, attached to a handle 11 to form a surgical instrument. An example is shown. Nickel - Signal conductor 1 made of ferromagnetic material such as iron
3 to form a complete conduction path along one side of the blade 9 and the other side of the blade on the back.
It is arranged on the blade 9 adjacent to the blade 1. Input power at radio frequencies may be supplied to the conductor 13 from the power source 19 through the connection means 15 and 17. With the current-carrying conductor 13 made of ferromagnetic material, the skin thickness characteristics previously discussed can be advantageously utilized for temperature regulation. Current flowing through the ferromagnetic conductor 13 will flow inside the conductor at the skin thickness for that material. The ferromagnetic material and the ceramic cutting edge 21 thermally coupled thereto will then be heated. From the operating temperature in air, which is above the Curie temperature, the portion of the cutting edge will cool when it contacts tissue. And its operating temperature may fall below the Curie temperature. The thickness of the epidermis will then decrease by approximately 10:1, giving a localized increase in heating of approximately 10:1. To achieve a 10:1 power increase, the relative permeability must not only increase by 100:1 when cooled by tissue contact, but also when pre-cutting in air. The skin thickness at the condition must be approximately two-thirds or less of the conductor thickness to achieve a 10:1 skin thickness reduction. Thus, for a suitably thin scalpel blade made of ferromagnetic material and equipped with a suitably thin self-adjustable conductive heating device thereon, high frequency It may require. The next display is
The required frequencies are shown for various skin thicknesses above and below the Curie point in a 50:50 iron-nickel ferromagnetic alloy. and a width 40 mm continuously placed on both facets of the scalpel blade at the 3 cm cutting edge region when energized by a current of about 3 amperes.
Showing the related power consumption of the conductor of the mill.
【表】
切られつつある組織を電流から絶縁するため
に、絶縁23の層が導体13をおおつて配置され
ている。
切刃先の平均作動温度を調節するために、高周
波数信号源19は、信号振幅に於て、又は周波数
に於て、又はその両方に於て調節出来てもよい。
前述の如く、表皮の厚さ変更するため、及び、
それによつて空気中の切刃先の周囲の作動温度を
確立するために、周波数を調節してもよい。A layer of insulation 23 is placed over the conductor 13 to insulate the tissue being cut from the electrical current. To adjust the average operating temperature of the cutting edge, the high frequency signal source 19 may be adjustable in signal amplitude, or in frequency, or both. As mentioned above, to change the thickness of the epidermis, and
The frequency may be adjusted to thereby establish an operating temperature around the cutting edge in air.
第1図は本発明による外科手術用器具の側面
図、第2図は第1図の装置の刃の断面図である。
9…刃部、11…柄部、13…導体、15…接
続手段、17…接続手段、19…信号源、21…
切刃先、23…絶縁層。
1 is a side view of a surgical instrument according to the invention, and FIG. 2 is a cross-sectional view of the blade of the device of FIG. 9...Blade portion, 11...Handle portion, 13...Conductor, 15...Connection means, 17...Connection means, 19...Signal source, 21...
Cutting edge, 23...insulating layer.
Claims (1)
切開用切刃先に沿つて延在る加熱装置であつて、
ある高温において透磁率がキユリー点の転移を示
す強磁性材料からなる加熱装置と、 前記加熱装置に接続され該加熱装置に無線周波
数電流を給電する装置とからなり、 前記キユリー点以下の温度で電流は前記加熱装
置の表皮のある厚みに集中され、前記キユリー点
以上の温度で電流は前記の厚みよりも大きな厚み
において前記加熱装置の表皮を流れることからな
る、切開用器具。 2 前記加熱装置の前記強磁性材料は鉄、ニツケ
ル及びコバルトからなる群から選択された元素を
含み、約300℃から約1000℃までの温度範囲内で
キユリー点の転移を示す。特許請求の範囲第1項
記載の切開用器具。 3 前記加熱装置は該加熱装置を覆つて配置され
た絶縁層を有している、特許請求の範囲第1項記
載の切開用器具。 4 前記切開用切刃先は電気的絶縁材料からな
る、特許請求の範囲第1項記載の切開用器具。[Scope of Claims] 1. an incising cutting edge; a heating device disposed close to the incision cutting edge and extending along the incision cutting edge;
A heating device made of a ferromagnetic material whose magnetic permeability exhibits a transition to the Curie point at a certain high temperature, and a device connected to the heating device to supply a radio frequency current to the heating device, the device being connected to the heating device and supplying radio frequency current to the heating device, the current flowing at a temperature below the Curie point. is concentrated in a certain thickness of the epidermis of said heating device, and at a temperature above said Curie point, the current flows through the epidermis of said heating device in a thickness greater than said thickness. 2. The ferromagnetic material of the heating device comprises an element selected from the group consisting of iron, nickel and cobalt and exhibits a Curie point transition within a temperature range of about 300°C to about 1000°C. An incision instrument according to claim 1. 3. The incision instrument of claim 1, wherein the heating device has an insulating layer disposed over the heating device. 4. The incision instrument according to claim 1, wherein the incision cutting edge is made of an electrically insulating material.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/558,335 US4185632A (en) | 1970-08-13 | 1975-03-14 | Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS51122987A JPS51122987A (en) | 1976-10-27 |
JPS6128339B2 true JPS6128339B2 (en) | 1986-06-30 |
Family
ID=24229150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51027027A Granted JPS51122987A (en) | 1975-03-14 | 1976-03-12 | Incising device and method thereof |
Country Status (11)
Country | Link |
---|---|
JP (1) | JPS51122987A (en) |
AU (1) | AU500503B2 (en) |
BR (1) | BR7601547A (en) |
CA (1) | CA1077366A (en) |
DE (1) | DE2609327C3 (en) |
FR (1) | FR2303518A1 (en) |
GB (1) | GB1546627A (en) |
NL (1) | NL7602177A (en) |
SE (1) | SE412842B (en) |
SU (1) | SU720995A3 (en) |
ZA (1) | ZA761133B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020508810A (en) * | 2017-03-05 | 2020-03-26 | アイ.シー. メディカル, インコーポレイテッド | Monopolar electrosurgical pencil with argon beam function |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2022974A (en) * | 1978-04-20 | 1979-12-19 | Shaw R F | Improved electrically heated apparatus and method and material |
CA2134894A1 (en) * | 1992-05-01 | 1993-11-11 | Philip E. Eggers | Surgical instruments having auto-regulating heater |
EP1815807B1 (en) | 2004-09-22 | 2017-11-22 | Olympus Corporation | Organic tissue sampling device |
DE102006005224B4 (en) * | 2006-01-31 | 2008-09-04 | P + P Medical Gmbh | Device for separating an existing from an electrically conductive material Gelenkendoprothese of biological and / or biocompatible materials |
US9730749B2 (en) * | 2009-04-17 | 2017-08-15 | Domain Surgical, Inc. | Surgical scalpel with inductively heated regions |
US20180071011A1 (en) * | 2016-09-06 | 2018-03-15 | I.C. Medical, Inc. | Monopolar electrosurgery blade and electrosurgery blade assembly |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3234356A (en) * | 1963-05-07 | 1966-02-08 | Raymond F Babb | Electrically heated medical implement |
US3826263A (en) * | 1970-08-13 | 1974-07-30 | R Shaw | Electrically heated surgical cutting instrument |
US3768482A (en) * | 1972-10-10 | 1973-10-30 | R Shaw | Surgical cutting instrument having electrically heated cutting edge |
-
1976
- 1976-02-25 CA CA246,546A patent/CA1077366A/en not_active Expired
- 1976-02-25 SE SE7602291A patent/SE412842B/en unknown
- 1976-02-25 ZA ZA761133A patent/ZA761133B/en unknown
- 1976-02-26 GB GB7698/76A patent/GB1546627A/en not_active Expired
- 1976-03-03 NL NL7602177A patent/NL7602177A/en not_active Application Discontinuation
- 1976-03-05 AU AU11717/76A patent/AU500503B2/en not_active Expired
- 1976-03-06 DE DE2609327A patent/DE2609327C3/en not_active Expired
- 1976-03-12 JP JP51027027A patent/JPS51122987A/en active Granted
- 1976-03-12 BR BR7601547A patent/BR7601547A/en unknown
- 1976-03-12 SU SU762333504A patent/SU720995A3/en active
- 1976-03-12 FR FR7607177A patent/FR2303518A1/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020508810A (en) * | 2017-03-05 | 2020-03-26 | アイ.シー. メディカル, インコーポレイテッド | Monopolar electrosurgical pencil with argon beam function |
US12318129B2 (en) | 2017-03-05 | 2025-06-03 | F.C. Medical, Inc. | Monopolar telescopic electrosurgery pencil |
Also Published As
Publication number | Publication date |
---|---|
SE7602291L (en) | 1976-09-15 |
AU500503B2 (en) | 1979-05-24 |
BR7601547A (en) | 1976-09-14 |
FR2303518A1 (en) | 1976-10-08 |
JPS51122987A (en) | 1976-10-27 |
ZA761133B (en) | 1977-02-23 |
SE412842B (en) | 1980-03-24 |
NL7602177A (en) | 1976-09-16 |
CA1077366A (en) | 1980-05-13 |
DE2609327B2 (en) | 1978-11-09 |
GB1546627A (en) | 1979-05-23 |
AU1171776A (en) | 1977-09-08 |
SU720995A3 (en) | 1980-03-05 |
DE2609327A1 (en) | 1976-09-30 |
DE2609327C3 (en) | 1979-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4185632A (en) | Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same | |
US4091813A (en) | Surgical instrument having self-regulated electrical proximity heating of its cutting edge and method of using the same | |
USRE29088E (en) | Surgical cutting instrument having electrically heated cutting edge | |
US11219480B2 (en) | Apparatus, system and method for excision of soft tissue | |
CA1083457A (en) | Surgical instrument having self-regulated electrical induction heating of its cutting edge and method of using the same | |
US4364390A (en) | Surgical instrument having self-regulating dielectric heating of its cutting edge and method of using the same | |
US5324289A (en) | Hemostatic bi-polar electrosurgical cutting apparatus and methods of use | |
US4207896A (en) | Surgical instrument having self-regulating dielectric heating of its cutting edge | |
US3768482A (en) | Surgical cutting instrument having electrically heated cutting edge | |
US4485810A (en) | Surgical cutting blade | |
US5480397A (en) | Surgical instrument with auto-regulating heater and method of using same | |
US5308311A (en) | Electrically heated surgical blade and methods of making | |
US5611798A (en) | Resistively heated cutting and coagulating surgical instrument | |
US5911719A (en) | Resistively heating cutting and coagulating surgical instrument | |
US6974452B1 (en) | Cutting and cauterizing surgical tools | |
US11701160B2 (en) | Planar ferromagnetic coated surgical tip and method for making | |
US6060695A (en) | Electrically heated scissors with cutting blade of each limb comprising electric heating layer or insert | |
JPS6232938B2 (en) | ||
US11324541B2 (en) | Thermal incision apparatus, system and method | |
JPS6128339B2 (en) | ||
CA1085253A (en) | Surgical instrument having self-regulating dielectric heating of its cutting edge and method of using the same | |
US20240156515A1 (en) | Surgical cutting and coagulation device | |
JPS6072545A (en) | Heating knife |