[go: up one dir, main page]

JPS61282821A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPS61282821A
JPS61282821A JP60124451A JP12445185A JPS61282821A JP S61282821 A JPS61282821 A JP S61282821A JP 60124451 A JP60124451 A JP 60124451A JP 12445185 A JP12445185 A JP 12445185A JP S61282821 A JPS61282821 A JP S61282821A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
voltage
picture element
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60124451A
Other languages
Japanese (ja)
Inventor
Tetsu Ogawa
小川 鉄
Katsumi Adachi
克己 足達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60124451A priority Critical patent/JPS61282821A/en
Publication of JPS61282821A publication Critical patent/JPS61282821A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To expand an operating voltage range and to easily execute a multi- gradation display by providing at least >=1 layers of voltage regulating layers consisting of insulators between a liquid crystal and picture element electrodes except an oriented film. CONSTITUTION:An auxiliary capacitor is formed by laminating a transparent electrode 2, an insulating layer 3 and picture element electrodes 4 on a transparent substrate 1. The gate electrode 5 on the layer 3 is positioned to face a semiconductor layer 7 via a gate insulating layer 6. A thin film transistor is formed of a drain electrode 9 and a source electrode 8. At least >=1 layers of the voltage regulating layers 10 are provided on the electrodes 4 and the oriented film 11 is laminated thereon. The liquid crystal 20 is packed between the substrate disposed with the thin film transistor and the picture elements consisting of the picture element electrodes into the matrix shape and the transparent substrate 21 on which the transparnet electrode 22 is formed over the entire surface. The permissible voltage range for each one gradation is thereby expanded and the multi-gradation display is easily executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄膜トランジスタで液晶を駆動する液晶表示装
置の改良に関し、とりわけTNモードの液晶を用いた多
階調表示可能な液晶表示装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a liquid crystal display device that drives a liquid crystal using a thin film transistor, and particularly to a liquid crystal display device capable of displaying multiple gradations using a TN mode liquid crystal. be.

従来の技術 液晶表示装置は、薄型で低電圧駆動でき消費電力が小さ
いという特徴をもつことから、平面型表示素子として市
場のニーズは高い。なかでも、各絵素毎に薄膜トランジ
スタを設は液晶を駆動するアクティブマトリクス型の液
晶表示装置は、単純マトリクス型のものと比べて、クロ
ストークがなく、実質的にスタティック駆動となるため
走査線数を多くすることが可能で、高密度、高解像度の
映像表示に対応出来る。
BACKGROUND ART Liquid crystal display devices are thin, can be driven at low voltages, and have low power consumption, and are therefore in high demand in the market as flat display devices. Among these, active matrix type liquid crystal display devices, in which a thin film transistor is installed in each pixel to drive the liquid crystal, have no crosstalk and are essentially static driven, which reduces the number of scanning lines compared to simple matrix type devices. It is possible to increase the number of images and support high-density, high-resolution video display.

また、低電圧駆動という液晶表示装置のメリットを最大
限に生かすために、用いる液晶材料としては動作電圧範
囲が2〜3v程度と比較的低いΔε>0のTN液晶を用
いるのが一般である。
Further, in order to make the most of the advantage of low voltage driving of a liquid crystal display device, it is common to use a TN liquid crystal whose operating voltage range is relatively low, about 2 to 3 V, and Δε>0 as the liquid crystal material used.

通常薄膜トランジスタは、第2図に示すように走査線に
相当するゲート線に接続されたゲート電極5.ゲート絶
縁層6.非晶質シリコンあるいは多結晶シリコン等から
成る半導体層7、信号線に相当するソース線に接続され
れソース電極8.絵素電極4に接続されたドレイン電極
9からなり、マトリクス状に配置された各絵素毎に設け
られる。
Normally, a thin film transistor has a gate electrode 5. connected to a gate line corresponding to a scanning line, as shown in FIG. Gate insulating layer 6. A semiconductor layer 7 made of amorphous silicon, polycrystalline silicon, etc., and a source electrode 8 connected to a source line corresponding to a signal line. It consists of a drain electrode 9 connected to the picture element electrode 4, and is provided for each picture element arranged in a matrix.

ゲート線に走査信号が加わり薄膜トランジスタがオンと
なったとき、信号線に所定の信号電圧を加えれば、ソー
ス電極、半導体層、ドレイン電極を通じ絵素電極に信号
電圧が印加され、液晶の光透過量を′制御することが出
来る。
When a scanning signal is applied to the gate line and the thin film transistor is turned on, if a predetermined signal voltage is applied to the signal line, the signal voltage is applied to the pixel electrode through the source electrode, semiconductor layer, and drain electrode, and the amount of light transmitted through the liquid crystal changes. can be controlled.

しかし、従来の液晶表示装置では絵素電極と液晶の間に
は、液晶の初期配向を制御する配向膜11、又は第2図
には示されていないが、電極の保護層以外の膜は、液晶
印加実効電圧の低下を防ぐために設けられていなかった
However, in the conventional liquid crystal display device, between the picture element electrode and the liquid crystal, there is an alignment film 11 that controls the initial alignment of the liquid crystal, or a film other than the electrode protective layer, which is not shown in FIG. It was not provided to prevent a drop in the effective voltage applied to the liquid crystal.

発明が解決しようとする問題点 先述したように、液晶としてTN液晶を用いた場合、液
晶単独では(液晶の初期配向を制御する配向膜は含まれ
ているものとする。)、第5図の点線で示す、印加電圧
と透過率の関係かられかるように、電圧に対し透過率は
急峻に立ち上りその動作電圧範囲は約2v〜3vである
。この動作電圧範囲で、例えば20階調の透過率の制御
を行なおうとすると、1階調当たり電圧許容範囲は1v
/20で約somvとなる。しかし現状の薄膜トランジ
スタの特性を考えれば、オフ抵抗の絶対値の低さ、オン
電流の各素子毎のバラツキ、ゲート〜ドレイン間のつき
ぬけ容量による電圧降下等により、この条件は非常に厳
しく、希望する階調の制御は困難であった。
Problems to be Solved by the Invention As mentioned above, when a TN liquid crystal is used as the liquid crystal, the liquid crystal alone (assuming that an alignment film that controls the initial alignment of the liquid crystal is included) will not be able to handle the problems shown in FIG. As can be seen from the relationship between the applied voltage and the transmittance shown by the dotted line, the transmittance rises steeply with respect to the voltage, and the operating voltage range is approximately 2V to 3V. In this operating voltage range, if you try to control the transmittance of, for example, 20 gradations, the permissible voltage range per gradation is 1v.
/20 is approximately somv. However, considering the characteristics of current thin film transistors, this condition is extremely strict due to the low absolute value of off-resistance, variation in on-current for each element, voltage drop due to pass-through capacitance between gate and drain, etc. It was difficult to control the gradation.

これは第2図に示すように、絵素電極4の上には配向膜
11しかないために(通常配向膜の膜厚は1000人程
度で十分薄い)、信号電圧そのものがほぼそのまま液晶
に印加されるためであった。
This is because, as shown in Figure 2, there is only the alignment film 11 on the pixel electrode 4 (the thickness of the alignment film is usually about 1000, which is sufficiently thin), so the signal voltage itself is applied almost as is to the liquid crystal. It was for the purpose of being

本発明はかかる点に鑑みなされたもので、比較的簡易な
構成の改良で、多階表示可能な液晶表示装置を提供する
ことを目的としている。
The present invention has been made in view of this point, and an object of the present invention is to provide a liquid crystal display device capable of displaying multiple levels by improving a relatively simple structure.

問題点を解決するための手段 本発明は上記問題点を解決するため、配向膜以外に液晶
と絵素電極との間に、少くとも一層以上の□絶縁体から
なる電圧調整層を設けるものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides at least one voltage adjustment layer made of an insulator between the liquid crystal and the picture element electrodes in addition to the alignment film. be.

作用 本発明は上記した構成により、絶縁体からなる電圧調整
層で印加電圧の一部を消費し、故意に液晶印加実効電圧
を低下させ、これによシ液晶表示装置の印加電圧と透過
率の関係は□、電圧調整層を設けない場合よりもなめら
かな単調関数的特性を示し、動作電圧範囲を拡大させる
ものである。したがって、1階調当たシの電圧許容範囲
が増え。
According to the above-described structure, the present invention consumes a part of the applied voltage in the voltage adjustment layer made of an insulator, intentionally reduces the effective voltage applied to the liquid crystal, and thereby changes the applied voltage and transmittance of the liquid crystal display device. The relationship □ shows smoother monotonic characteristics than in the case where no voltage adjustment layer is provided, and the operating voltage range is expanded. Therefore, the permissible voltage range per gradation increases.

多階調表示を容易ならしめるものである。This facilitates multi-gradation display.

実施例 第1図は本発明の液晶表示装置の一実施例で、液晶を挾
持する2枚の基板のうち、薄膜トランジスタを含む側の
基板の1絵素の断面図である。1は透明基板、2は透明
電極、3は絶縁層、4は絵素電極で、2,3.4で補助
コンデンサを形成する。この補助コンデンサは本発明の
本質とは直接的には関係なく、無くても支障はない。そ
の時は、第1図から透明電極2と絶縁層3は除外された
構成となる。20は液晶を示す。
Embodiment FIG. 1 is an embodiment of the liquid crystal display device of the present invention, and is a cross-sectional view of one pixel of the substrate on the side containing the thin film transistor, of the two substrates that sandwich the liquid crystal. 1 is a transparent substrate, 2 is a transparent electrode, 3 is an insulating layer, 4 is a picture element electrode, and 2, 3.4 form an auxiliary capacitor. This auxiliary capacitor is not directly related to the essence of the present invention, and there is no problem even if it is absent. At that time, the transparent electrode 2 and the insulating layer 3 will be excluded from FIG. 1. 20 indicates a liquid crystal.

従来の技術の項で述べたように、薄膜トランジスタは、
走査線に相当するゲート線に接続されたゲート電極6.
ゲート絶縁層6.半導体層7.信号線に相当するソース
線に接続されたソース電極8、絵素電極4に接続された
ドレイン電極9からなり、マトリクス状に配置された絵
素毎に設けられ、スイッチング素子としての機能を果た
している。
As mentioned in the conventional technology section, thin film transistors are
A gate electrode connected to a gate line corresponding to a scanning line 6.
Gate insulating layer 6. Semiconductor layer 7. Consisting of a source electrode 8 connected to a source line corresponding to a signal line, and a drain electrode 9 connected to a picture element electrode 4, it is provided for each picture element arranged in a matrix, and functions as a switching element. .

このような、薄膜トランジスタと絵素電極から主として
なる絵素がマトリクス状に配された基板と、全面に透明
電極22が形成された別の透明基板21との間に、配向
膜11を介して液晶2oが挾持される。
A liquid crystal is placed between the substrate on which picture elements mainly consisting of thin film transistors and picture element electrodes are arranged in a matrix, and another transparent substrate 21 on which a transparent electrode 22 is formed on the entire surface, via an alignment film 11. 2o is held.

本発明のポイントである電圧調整層1oは絵素電極4と
液晶2oとの間に介在して設けられる。
The voltage adjustment layer 1o, which is the key point of the present invention, is provided interposed between the picture element electrode 4 and the liquid crystal 2o.

電圧調整層10の1例として当発羽者らは、cvn法に
よる5102膜2000人、 SiNx膜4400人の
2層構造とした。この電圧調整層1oを無機膜の蒸着で
形成したのは、膜厚制御の容易さとその均一性の良さに
よるが、形成方法・材料は特に問わないのは勿論である
。電圧調整層10としては少くとも1層以上の絶縁体か
らなる膜を駆動電圧との関連も考慮し、所望の厚みに形
成すればよい。
As an example of the voltage adjustment layer 10, the present inventors used a two-layer structure consisting of a 5102 film of 2000 layers and a SiNx film of 4400 layers formed by the CVN method. The reason why this voltage adjustment layer 1o is formed by vapor deposition of an inorganic film is because of the ease of controlling the film thickness and its good uniformity, but it goes without saying that the forming method and material are not particularly limited. As the voltage adjustment layer 10, a film made of at least one insulator may be formed to have a desired thickness in consideration of the relationship with the drive voltage.

配向膜11としては、日立化成(株)製PIX−540
0を1000人スピンナ塗布にて形成した。配向膜11
はこの他に印刷などで形成されるが、蒸着等で形成する
のに比して、膜厚の制御性。
As the alignment film 11, PIX-540 manufactured by Hitachi Chemical Co., Ltd.
0 was formed by coating with a 1000 person spinner. Orientation film 11
Although it can also be formed by printing, etc., the film thickness can be controlled more easily than when it is formed by vapor deposition.

均一性に問題がちシ、電圧調整層として用いるのは不適
当である。
It tends to have uniformity problems and is unsuitable for use as a voltage adjustment layer.

上記の様な構成の液晶表示装置において配向膜を含めた
絵素の全容量Ctは と表わされる。
In the liquid crystal display device having the above structure, the total capacitance Ct of the picture element including the alignment film is expressed as follows.

ここでC□は配向膜の容量、CLoは液晶の容量。Here, C□ is the capacity of the alignment film, and CLo is the capacity of the liquid crystal.

C8は電圧調整層の容量である。したがって外部印加電
圧Vに対する液晶印加実効電圧vムcの割合は(1)式
より、 となる。しかるに一般にコンデンサの容量Cはで求めら
れる。ここで、εは膜の比誘電率、ε。
C8 is the capacitance of the voltage adjustment layer. Therefore, the ratio of the liquid crystal applied effective voltage vmuc to the externally applied voltage V is obtained from equation (1) as follows. However, in general, the capacitance C of a capacitor is determined by: Here, ε is the dielectric constant of the film, ε.

は真空の誘電率、Sは電極面積、dは膜厚である。is the permittivity of vacuum, S is the electrode area, and d is the film thickness.

本発明者らは1例として以下に示す作成条件で液晶表示
装置を試作した。
As an example, the present inventors prototyped a liquid crystal display device under the following manufacturing conditions.

上記作成条件に基き、(2) 、 (3)式から電圧調
整層1oがある場合について、液晶印加実効電圧Vt、
Cの外部印加電圧に対する割合の計算結果を第4図の実
線で示す。他条件は同一で、電圧調整層1゜がない場合
が同図の点線で示されるのに対し、20%程度液晶印加
実効電圧が低下しているのがわかる。このため、第6図
に示すように電圧調整層1oがある場合は印加電圧に対
する透過率の変化は、電圧調整層10が無い場合に比べ
かなりゆるやかになシ、動作電圧範囲も約2〜4vと2
倍程度拡大している。1階調尚たりの電圧許容範囲も広
がシ、シたがって階調の制御が非常に容易になり、例え
ば薄膜トランジスタの特性のバラツキや性能の低さ等を
吸収することができる。従って例えばテレビ映像のよう
な相当の階調性が要求される映像にも十分対応可能とな
る。
Based on the above production conditions, from equations (2) and (3), for the case where there is a voltage adjustment layer 1o, the effective voltage applied to the liquid crystal Vt,
The calculation result of the ratio of C to the externally applied voltage is shown by the solid line in FIG. It can be seen that the effective voltage applied to the liquid crystal is reduced by about 20% compared to the case where the voltage adjustment layer 1° is not provided under the same conditions as shown by the dotted line in the figure. Therefore, as shown in FIG. 6, when there is a voltage adjustment layer 1o, the change in transmittance with respect to the applied voltage is much more gradual than when there is no voltage adjustment layer 10, and the operating voltage range is also about 2 to 4 V. and 2
It has expanded about twice as much. The permissible voltage range for one gradation is also widened, which makes it very easy to control the gradation, making it possible to absorb, for example, variations in characteristics and poor performance of thin film transistors. Therefore, it is possible to sufficiently cope with images that require considerable gradation, such as television images.

また本発明はネガ表示の液晶表示装置に適用すれば更に
有効である。何故なら、第3図、第4図かられかる通シ
、液晶の誘電率は印加電圧の増加とともに増大するので
、外部印加電圧の増加とともに外部印加電圧は液晶以外
の層で消費されるようになり、液晶印加実効電圧は低下
する。したがってポジ表示の場合には、電圧の増加とと
もに液晶以外の部分での電圧ロスが増加し、電圧の増加
していっても透過率の変化量が小さくなるので電圧印加
時の光透過量を最小限にし黒レベルを下げ、コントラス
ト比を上げることは、印加電圧を相当に高くしない限り
非常に困難であった。
Further, the present invention is even more effective when applied to a negative display liquid crystal display device. This is because, as can be seen from Figures 3 and 4, the dielectric constant of liquid crystal increases as the applied voltage increases, so as the externally applied voltage increases, the externally applied voltage is consumed in layers other than the liquid crystal. Therefore, the effective voltage applied to the liquid crystal decreases. Therefore, in the case of positive display, voltage loss in areas other than the liquid crystal increases as the voltage increases, and the amount of change in transmittance decreases even as the voltage increases, so the amount of light transmitted when voltage is applied is minimized. It has been extremely difficult to reduce the black level and increase the contrast ratio without significantly increasing the applied voltage.

ネガ表示の場合は黒レベルは電圧無印加時に対応するの
で、最初の光学設計で液晶層の厚み等を最適化すること
により、最小限に光透過量を押えることが可能で、コン
トラスト比も十分確保出来る。
In the case of negative display, the black level corresponds to when no voltage is applied, so by optimizing the thickness of the liquid crystal layer in the initial optical design, it is possible to minimize the amount of light transmitted, and the contrast ratio is also sufficient. It can be secured.

本発明が適用される液晶表示装置は、カラーでも白黒で
もよく、用いる液晶材料もΔε>0のTN液晶に限らな
いのは勿論である。
The liquid crystal display device to which the present invention is applied may be color or black and white, and the liquid crystal material used is of course not limited to TN liquid crystal with Δε>0.

発明の効果 以上述べてきたように、本発明によれば、絵素電極と液
晶との間に、少くとも1層以上の絶縁体からなる電圧調
整層を設けることにより、1階調当たりの電圧許容範囲
を広げ、液晶表示装置の多階調表示の制御を容易ならし
めるものである。
Effects of the Invention As described above, according to the present invention, by providing a voltage adjustment layer made of at least one insulator between the picture element electrode and the liquid crystal, the voltage per gradation can be reduced. This widens the tolerance range and makes it easier to control multi-gradation display of a liquid crystal display device.

また、本発明はネガ表示方式の液晶表示装置に適用され
て一層その効力を発揮し、多階調表示出来て尚かつ高コ
ントラストの液晶表示装置を実現することが出来る。
Further, the present invention is even more effective when applied to a negative display type liquid crystal display device, and a liquid crystal display device capable of displaying multiple gradations and having high contrast can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の液晶表示装置の要部断面図、
第2図は従来の液晶表示装置の要部断面図、第3図は液
晶の誘電率の電圧依存性を示す図、第4図は液晶印加実
効電圧の外部印加電圧に対する比の電圧依存性を示した
図、第5図は液晶の光透過率の電圧依存性を示しだ図で
ある。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ミ 
寸カ 、 第3図 ■ 加 に 7rニーCVノ 第 41!1 叩 力■ 危 J已 tV) 第5図
FIG. 1 is a sectional view of a main part of a liquid crystal display device according to an embodiment of the present invention;
Figure 2 is a sectional view of the main part of a conventional liquid crystal display device, Figure 3 is a diagram showing the voltage dependence of the dielectric constant of liquid crystal, and Figure 4 is a diagram showing the voltage dependence of the ratio of the effective voltage applied to the liquid crystal to the externally applied voltage. The figure shown in FIG. 5 shows the voltage dependence of the light transmittance of liquid crystal. Name of agent: Patent attorney Toshio Nakao and one other person
Dimensions, Fig. 3 ■Additionally, 7r knee CV No. 41!

Claims (2)

【特許請求の範囲】[Claims] (1)第1の透明基板の一主面上に、複数本のゲート線
及び複数本のソース線を備え、前記ゲート線とソース線
で区画される領域が絵素に相当し、各絵素は、薄膜トラ
ンジスタ及びそれに電気的に接続された絵素電極から主
として構成され、第2の透明基板の一主面上には全面透
明電極が形成され、前記第1、第2の透明基板間に液晶
が挾持され、前記第1の透明基板の絵素電極と液晶との
間に少くとも一層以上の絶縁体からなる電圧調整層を介
在させたことを特徴とする液晶表示装置。
(1) A plurality of gate lines and a plurality of source lines are provided on one main surface of a first transparent substrate, and an area defined by the gate lines and source lines corresponds to a picture element, and each picture element is mainly composed of a thin film transistor and a picture element electrode electrically connected thereto, a transparent electrode is formed on one main surface of a second transparent substrate, and a liquid crystal is disposed between the first and second transparent substrates. A liquid crystal display device, characterized in that the voltage adjusting layer made of at least one insulator is interposed between the picture element electrode of the first transparent substrate and the liquid crystal.
(2)液晶がΔε>0のTN液晶で、ネガ表示方式であ
ることを特徴とする特許請求の範囲第1項記載の液晶表
示装置。
(2) The liquid crystal display device according to claim 1, wherein the liquid crystal is a TN liquid crystal with Δε>0 and is of a negative display type.
JP60124451A 1985-06-07 1985-06-07 Liquid crystal display device Pending JPS61282821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60124451A JPS61282821A (en) 1985-06-07 1985-06-07 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60124451A JPS61282821A (en) 1985-06-07 1985-06-07 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS61282821A true JPS61282821A (en) 1986-12-13

Family

ID=14885840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60124451A Pending JPS61282821A (en) 1985-06-07 1985-06-07 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS61282821A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199383A (en) * 1982-05-17 1983-11-19 松下電器産業株式会社 Liquid crystal image display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199383A (en) * 1982-05-17 1983-11-19 松下電器産業株式会社 Liquid crystal image display

Similar Documents

Publication Publication Date Title
US5126865A (en) Liquid crystal display with sub-pixels
US4978203A (en) Liquid crystal device with an apparent hysteresis
US7671931B2 (en) Liquid crystal display device and method of fabricating the same
US5168074A (en) Active matrix liquid crystal display fabrication for grayscale
JP2001013520A (en) Active matrix type liquid crystal display
JPH0644625B2 (en) Thin film transistor for active matrix liquid crystal display device
KR0141774B1 (en) LCD and its manufacturing method
JPH03280018A (en) Liquid crystal display device and its manufacturing method
JPH06102537A (en) Active matrix type liquid crystal display element
JPH07191348A (en) Manufacture of liquid crystal display device
JPH0244317A (en) Liquid crystal display device with auxiliary capacity
JPH0713196A (en) Active matrix type liquid crystal display device
JPH10142636A (en) Active matrix type display circuit
JPH04326329A (en) Liquid crystal display device and its manufacture
JPH10206893A (en) Active matrix type liquid crystal display device
JPH02245741A (en) Reflection type liquid crystal display device
JPS61282821A (en) Liquid crystal display device
JP2755683B2 (en) Active matrix liquid crystal display
JPH06347826A (en) Liquid crystal display device
US20090207329A1 (en) Liquid crystal display
JPH0239103B2 (en)
US5739878A (en) Liquid crystal display having common electrode with portions removed at thin film transistors
JP3119233B2 (en) Liquid crystal display device and method of manufacturing the same
JP2960801B2 (en) Ferroelectric liquid crystal cell
JPS58190063A (en) Thin film transistor for transmissive LCD panel