[go: up one dir, main page]

JPS6128231B2 - - Google Patents

Info

Publication number
JPS6128231B2
JPS6128231B2 JP9839777A JP9839777A JPS6128231B2 JP S6128231 B2 JPS6128231 B2 JP S6128231B2 JP 9839777 A JP9839777 A JP 9839777A JP 9839777 A JP9839777 A JP 9839777A JP S6128231 B2 JPS6128231 B2 JP S6128231B2
Authority
JP
Japan
Prior art keywords
film
silicon dioxide
polycrystalline silicon
region
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9839777A
Other languages
Japanese (ja)
Other versions
JPS5432078A (en
Inventor
Yoji Yamanaka
Toshio Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9839777A priority Critical patent/JPS5432078A/en
Publication of JPS5432078A publication Critical patent/JPS5432078A/en
Publication of JPS6128231B2 publication Critical patent/JPS6128231B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法にかかり、特に
微細構造かつチヤンネル領域に隣接せるソース、
ドレイン領域の部分が浅く形成される絶縁ゲート
型集積回路装置の製造方法に関するものです。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly relates to a method for manufacturing a semiconductor device, and particularly a source having a fine structure and adjacent to a channel region.
This relates to a method for manufacturing insulated gate integrated circuit devices in which the drain region is formed shallowly.

近年、絶縁ゲート型電界効果トランジスタを有
する半導体集積回路は高速化、高密度化の要求が
高まり、それとともに微細パタン加工法の開発も
重要なものとなつている。パタンの微細化が進む
につれ、ゲート電極もしくは基板中の不純物拡散
層と金属配線との間の絶縁膜に開孔を施す接続穴
の大きさも8μm〜1μmと小さなものとなり、
特に基板中の不純物拡散層と金属配線との接続穴
は従来行なわれている写真蝕刻法では開孔し難
い。
In recent years, demands for higher speed and higher density semiconductor integrated circuits having insulated gate field effect transistors have increased, and along with this, the development of fine pattern processing methods has also become important. As the pattern becomes finer, the size of the connection hole formed in the insulating film between the gate electrode or the impurity diffusion layer in the substrate and the metal wiring becomes smaller, ranging from 8 μm to 1 μm.
In particular, it is difficult to form a connection hole between an impurity diffusion layer in a substrate and a metal wiring using conventional photolithography.

一方、ソース、ドレイン領域の電極取出し部は
深く、チヤンネル領域との隣接部は浅く形成する
有効な方法はなかつた。
On the other hand, there has been no effective method for forming the electrode lead-out portions of the source and drain regions deep and the portion adjacent to the channel region shallow.

従つて本発明の目的は基板中の不純物拡散と金
属配線とを接続する接続穴を容易に開孔せしめ、
かつ上記形状のソース、ドレイン領域を容易にか
つ高い歩留り、で製造する有効な方法を提供する
ことにある。
Therefore, an object of the present invention is to easily open a connection hole for connecting impurity diffusion in a substrate and metal wiring;
Another object of the present invention is to provide an effective method for manufacturing source and drain regions having the above-mentioned shapes easily and at a high yield.

本発明の特徴は、一導電型の半導体基板の活性
領域に絶縁膜ゲート型電界効果トランジスタを製
造する方法において、ソース、ドレイン領域のう
ち、チヤンネル領域に隣接せる第1の部分にはう
すい二酸化硅素膜を被着し該第1の部分不活性領
域の第2の部分には多結晶硅素膜を被着し、熱拡
散により該うすい二酸化硅素膜および該多結晶硅
素膜を通して逆導電型の不純物をソース、ドレイ
ン形成領域に導入し、熱酸化を行うことにより、
該第1の部分には浅いPN接合が形成され、該第
2の部分には深いPN接合が形成されこの両者を
もつてソース、ドレイン領域が構成されかつ該多
結晶硅素膜上には熱酸化による二酸化硅素層が形
成され、該二酸化硅素層に接続穴を開孔して、該
多結晶硅素膜に該接続穴を通してコンタクトする
金属配線を形成する半導体装置の製造方法にあ
る。
A feature of the present invention is that in a method for manufacturing an insulating film gate field effect transistor in an active region of a semiconductor substrate of one conductivity type, dilute silicon dioxide is used in a first portion of the source and drain regions adjacent to the channel region. a polycrystalline silicon film is deposited on a second portion of the first partially inactive region, and impurities of opposite conductivity type are introduced through the thin silicon dioxide film and the polycrystalline silicon film by thermal diffusion. By introducing it into the source and drain forming regions and performing thermal oxidation,
A shallow PN junction is formed in the first part, a deep PN junction is formed in the second part, and both constitute a source and drain region, and a thermally oxidized layer is formed on the polycrystalline silicon film. A method of manufacturing a semiconductor device includes forming a silicon dioxide layer according to the present invention, forming a connection hole in the silicon dioxide layer, and forming a metal wiring that contacts the polycrystalline silicon film through the connection hole.

かかる本発明は、逆導電型領域上が凹形状にな
らずフオトレジスト膜厚がほぼ均一に被覆できる
という原理に基づき、従つて微小な接続穴でも均
一に開孔でき、歩留りの高い高密度集積回路装置
が得られる。又、ソース、ドレイン領域の深い
PN接合部分と浅いPN接合部分とが同時に形成で
きるから工程が簡素化され、かつ上記方法によれ
ば、基板領域のPN接合のゲート絶縁膜下への広
がりを自動的におさえることができ、短チヤンネ
ル型トランジスタの形成を容易とする。
The present invention is based on the principle that the photoresist film can be coated almost uniformly in thickness without creating a concave shape on the opposite conductivity type region. Therefore, even minute connection holes can be uniformly formed, and high-density integration with high yield can be achieved. A circuit device is obtained. Also, deep source and drain regions
The process is simplified because the PN junction part and the shallow PN junction part can be formed at the same time, and according to the above method, it is possible to automatically suppress the spread of the PN junction in the substrate area under the gate insulating film. Facilitates formation of channel type transistors.

次に図面を参照して本発明の実施例を説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の主たる工程に
おける断面図である。はじめに第1図Aに示すよ
うにP型硅素結晶基板101に窒化硅素膜を用い
た公知の選択酸化法によつて活性領域と不活性領
域とを形成し、不活性領域にはP+拡散層103
と厚い二酸化硅素膜102を、活性領域には50
0Aの二酸化硅素膜104を選択的に形成する。
その後第1図Bに示すように多結晶硅素膜105
を約5000Å、窒素硅素膜106を1000Å、二酸化
硅素膜107を約200Å形成し、写真蝕刻法によ
り、二酸化硅素膜107を弗酸水溶液で選択的に
エツチング除去する。次に第1図Cに示すように
窒化硅素膜106を熱リン酸中でエツチング除去
し、多結晶硅素膜105を選択的に露呈せしめ、
そこにリン拡散を行なつた後に多結晶硅素膜10
5を硝酸と弗酸と氷酢酸の混合液にてエツチング
除去する。リンを含有する多結晶硅素は不純物を
含まない多結晶硅素より数十倍エツチング速度が
早いため、多結晶硅素膜厚の不均一性に関係なく
均一にトランジスタ除去できる。その後第1図D
に示すように二酸化硅素膜107を弗酸水溶液で
窒化硅素膜106を熱リン酸中で順次エツチング
除去する。このとき一部露呈している二酸化硅素
膜104は約500Å程度の膜厚なので二酸化硅素
膜107をエツチング除去しても約800Å程度残
留する。その後この残留した二酸化硅素膜と多結
晶硅素膜を通して同時にリンの熱拡散をし、熱酸
化を行ないソース領域108、ドレイン領域10
9及び二酸化硅素膜110を形成する。このとき
多結晶硅素より二酸化硅素膜の方が拡散係数が小
のため、前述の残留した二酸化硅素膜下はPN接
合深さが浅く、多結晶硅素膜下では深くなる。な
お残留した二酸化硅素膜の厚さは前工程における
窒化硅素膜106を熱酸化のマスクとして酸化を
行ない、所望の膜厚に制御することも可能であ
る。次に第1図Eに示すように多結晶硅素105
上に金属配線との接続穴を開孔し、アルミニウム
配線111,112を形成する。接続穴を開孔す
るための写真蝕刻法において、ソース領域108
上には多結晶硅素105が形成されているため、
従来技術と比べ表面がほぼ均一になつており、従
つて先に述べたようにフオトレジスト膜の問題点
を解決でき、微小接続穴も確実に開孔できる。第
1の実施例によつて得られる効果はまず微小接続
穴でも容易に開孔できることである。即ち、ソー
ス及びドレイン領域上の多結晶硅素よつて、凹形
状を解消し、他の領域とほぼ平坦な構造となるた
め前述のようなフオトレジストの問題点を解決で
きる。またソース及びドレイン領域のPN接合の
ゲート絶縁膜下への広がりが自動的におさえられ
るため、短チヤンネル型トランジスタの形成を容
易にし、されにPN接合の深さが浅いことによつ
て生じる高抵抗が多結晶硅素膜によつて低抵抗化
でき、またアルミニウムが拡散層をつき抜けで
PN接合不良を起すことも多結晶硅素膜によつて
防止できる。さらにまた表面がほぼ平坦になるた
めアルミニウム配線の断線、シヨートなどの不良
も防止できる。
FIG. 1 is a sectional view of the main steps of the first embodiment of the present invention. First, as shown in FIG. 1A, an active region and an inactive region are formed on a P-type silicon crystal substrate 101 by a known selective oxidation method using a silicon nitride film, and a P + diffusion layer is formed in the inactive region. 103
and a thick silicon dioxide film 102 in the active region.
A silicon dioxide film 104 of 0A is selectively formed.
Thereafter, as shown in FIG. 1B, the polycrystalline silicon film 105 is
The silicon dioxide film 106 is formed to have a thickness of approximately 5,000 Å, the silicon dioxide film 106 to a thickness of approximately 1,000 Å, and the silicon dioxide film 107 to a thickness of approximately 200 Å. The silicon dioxide film 107 is selectively etched away using a hydrofluoric acid aqueous solution by photolithography. Next, as shown in FIG. 1C, the silicon nitride film 106 is removed by etching in hot phosphoric acid to selectively expose the polycrystalline silicon film 105.
After performing phosphorus diffusion thereon, the polycrystalline silicon film 10
5 is removed by etching with a mixture of nitric acid, hydrofluoric acid, and glacial acetic acid. Polycrystalline silicon containing phosphorus has an etching rate several tens of times faster than polycrystalline silicon that does not contain impurities, so transistors can be uniformly removed regardless of non-uniformity in the thickness of the polycrystalline silicon film. Then Figure 1D
As shown in FIG. 3, the silicon dioxide film 107 is removed by etching in a hydrofluoric acid aqueous solution and the silicon nitride film 106 is sequentially etched away in hot phosphoric acid. The partially exposed silicon dioxide film 104 at this time has a thickness of about 500 Å, so even if the silicon dioxide film 107 is removed by etching, about 800 Å remains. Thereafter, phosphorus is simultaneously thermally diffused through the remaining silicon dioxide film and polycrystalline silicon film to perform thermal oxidation, and the source region 108 and drain region 10
9 and a silicon dioxide film 110 are formed. At this time, since the diffusion coefficient of the silicon dioxide film is smaller than that of polycrystalline silicon, the PN junction depth is shallow under the aforementioned remaining silicon dioxide film, and deeper under the polycrystalline silicon film. The thickness of the remaining silicon dioxide film can also be controlled to a desired thickness by performing oxidation using the silicon nitride film 106 in the previous step as a mask for thermal oxidation. Next, as shown in FIG. 1E, polycrystalline silicon 105
Connection holes with metal wiring are formed on the top, and aluminum wirings 111 and 112 are formed. In the photolithography process for drilling the connection hole, the source region 108
Since polycrystalline silicon 105 is formed on top,
Compared to the conventional technology, the surface is almost uniform, so the problems with photoresist films as mentioned above can be solved, and even minute connection holes can be reliably formed. The effect obtained by the first embodiment is that even minute connection holes can be easily formed. That is, the polycrystalline silicon on the source and drain regions eliminates the concave shape and creates a structure that is substantially flat with other regions, so that the above-mentioned problems of photoresists can be solved. In addition, the spread of the PN junction in the source and drain regions below the gate insulating film is automatically suppressed, making it easier to form short channel transistors, and also reducing the high resistance caused by the shallow depth of the PN junction. can be lowered by the polycrystalline silicon film, and aluminum can penetrate through the diffusion layer.
A polycrystalline silicon film can also prevent PN junction failure. Furthermore, since the surface is almost flat, defects such as disconnections and shorts in the aluminum wiring can be prevented.

第2図は本発明の第2の実施例を説明するため
の断面図である。はじめに第2図Aに示すように
P型硅素単結晶基板201に窒化硅素膜を用いた
選択酸化法によつて活性領域と不活性領域には
P+拡散層202と厚い二酸化硅素膜2203
を、活性領域は約500Åの二酸化硅素膜204を
選択的に形成する。その後第2図Bに示すように
多結晶硅素膜205を約5000Å形成し、引き続き
約000Åの窒化硅素膜206,207,208を
選択的に被覆する次に第2図Cに示すように前述
の窒化硅素膜206,207,208をマスクと
してリンを多結晶硅素205中に拡散した後、
1000℃にて酸化し、窒化硅素膜206,207,
208の被われていない領域の多結晶硅素を二酸
化硅素膜209に変える。リンを含む多結晶硅素
は不純物を含まない多結晶硅素膜より酸化速度が
早いため、酸化による横方向への広がり、また多
結晶硅素膜膜厚の不均一性をおさえることができ
る。その後第2図Dに示すように多結晶硅素膜2
05を酸化して形成した二酸化硅素膜209を弗
酸水溶液で所望の厚さが残留するようにエツチン
グを行なう。本実施例では約300Åの二酸化硅素
膜を残留せしめた。その後熱リン酸中にて窒化硅
素膜206,207,208をエツチング除去し
た後第1の実施例と同様に多結晶硅素205と残
留せしめた二酸化硅素膜209を通して熱拡散に
よりリン拡散を同時に行いそして酸化を行ない、
ソース領域210及びドレイン領域211を形成
し、それとともに二酸化硅素膜212も形成され
る。その後は第2図Eに示すように多結晶硅素上
の二酸化硅素膜212に開孔を施し、アルミニウ
ム配線213,214を行なつて完成する。第2
の実施例で得られる効果は第1の部分の実施例で
得られた効果と全く等しいことは明らかである。
FIG. 2 is a sectional view for explaining a second embodiment of the present invention. First, as shown in FIG. 2A, active regions and inactive regions are formed on a P-type silicon single crystal substrate 201 by selective oxidation using a silicon nitride film.
P + diffusion layer 202 and thick silicon dioxide film 2203
In the active region, a silicon dioxide film 204 of about 500 Å is selectively formed. Thereafter, as shown in FIG. 2B, a polycrystalline silicon film 205 with a thickness of about 5000 Å is formed, followed by selectively covering silicon nitride films 206, 207, and 208 with a thickness of about 000 Å. After diffusing phosphorus into the polycrystalline silicon 205 using the silicon nitride films 206, 207, and 208 as a mask,
Oxidized at 1000℃, silicon nitride films 206, 207,
The polycrystalline silicon in the uncovered region 208 is changed to a silicon dioxide film 209. Since polycrystalline silicon containing phosphorus has a faster oxidation rate than a polycrystalline silicon film that does not contain impurities, it is possible to suppress lateral spread due to oxidation and non-uniformity in the thickness of the polycrystalline silicon film. After that, as shown in FIG. 2D, the polycrystalline silicon film 2 is
The silicon dioxide film 209 formed by oxidizing 05 is etched with a hydrofluoric acid aqueous solution so that a desired thickness remains. In this example, a silicon dioxide film of approximately 300 Å was left. Thereafter, the silicon nitride films 206, 207, and 208 were removed by etching in hot phosphoric acid, and then phosphorus was simultaneously diffused by thermal diffusion through the polycrystalline silicon 205 and the remaining silicon dioxide film 209, as in the first embodiment. perform oxidation,
A source region 210 and a drain region 211 are formed, and a silicon dioxide film 212 is also formed therewith. Thereafter, as shown in FIG. 2E, holes are made in the silicon dioxide film 212 on the polycrystalline silicon, and aluminum interconnections 213 and 214 are formed to complete the process. Second
It is clear that the effects obtained with the embodiments are exactly the same as those obtained with the embodiments of the first part.

なお第1及び第2の実施例において、多結晶硅
素膜上に窒化硅素膜を被覆したが必要に応じて二
酸化硅素膜を介してもよい。
In the first and second embodiments, the polycrystalline silicon film is coated with a silicon nitride film, but a silicon dioxide film may be used as needed.

また種々のエツチングにおいてプラズマもしく
はスパツタ―エツチングなどを使用しても同様の
効果を得る。
Similar effects can also be obtained by using plasma or sputter etching in various types of etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至第1図E及び第2図A乃至第2図
Eはそれぞれ本発明の第1の実施例及び第2の実
施例の製造を工程順に示した断面図である。 尚図において、101,201,はシリコン基
板、102,104,107,110,203,
204,209は二酸化硅素膜、103,202
はP+拡散層、108,109,210,211
はn-拡散層、105,205は多結晶硅素膜、
107,206,207,208は窒化硅素膜、
111,112,213,214はアルミニウム
配線である。
1A to 1E and FIGS. 2A to 2E are cross-sectional views showing the manufacturing process of a first embodiment and a second embodiment of the present invention, respectively. In the figure, 101, 201 are silicon substrates, 102, 104, 107, 110, 203,
204, 209 are silicon dioxide films, 103, 202
is P + diffusion layer, 108, 109, 210, 211
is an n - diffusion layer, 105, 205 is a polycrystalline silicon film,
107, 206, 207, 208 are silicon nitride films,
111, 112, 213, and 214 are aluminum wirings.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板の活性領域に絶縁ゲー
ト型電界効果トランジスタを製造する方法におい
て、ソース、ドレイン形成領域のうちチヤンネル
領域に隣接せる第1の部分には、うすい二酸化硅
素膜を被着し、該第1の部分と不活性領域間の第
2の部分には多結晶硅素膜を被着し、熱拡散によ
り該うすい二酸化硅素膜および該多結晶硅素膜を
通して逆導電型の不純物をソース、ドレイン形式
領域に導入し、熱酸化を行うことにより、該第1
の部分には浅いPN接合が形成され、該第2の部
分には深いPN接合が形成されこの両者をもつて
ソース、ドレイン領域が構成され、かつ該多結晶
硅素膜上には熱酸化による二酸化硅素層が形成さ
れ、該二酸化硅素層に接続穴を開孔して、該多結
晶硅素膜に該接続穴を通してコンタクトする金属
配線を形成することを特徴とする半導体装置の製
造方法。
1. In a method for manufacturing an insulated gate field effect transistor in an active region of a semiconductor substrate of one conductivity type, a thin silicon dioxide film is deposited on a first portion of the source/drain forming region adjacent to the channel region. , a polycrystalline silicon film is deposited on a second part between the first part and the inactive region, and an impurity of the opposite conductivity type is sourced through the thin silicon dioxide film and the polycrystalline silicon film by thermal diffusion; By introducing it into the drain type region and performing thermal oxidation,
A shallow PN junction is formed in the second part, and a deep PN junction is formed in the second part, and both constitute the source and drain regions. 1. A method of manufacturing a semiconductor device, comprising forming a silicon layer, forming a connection hole in the silicon dioxide layer, and forming a metal wiring that contacts the polycrystalline silicon film through the connection hole.
JP9839777A 1977-08-16 1977-08-16 Semiconductor device Granted JPS5432078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9839777A JPS5432078A (en) 1977-08-16 1977-08-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9839777A JPS5432078A (en) 1977-08-16 1977-08-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5432078A JPS5432078A (en) 1979-03-09
JPS6128231B2 true JPS6128231B2 (en) 1986-06-28

Family

ID=14218693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9839777A Granted JPS5432078A (en) 1977-08-16 1977-08-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5432078A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612773A (en) * 1979-07-12 1981-02-07 Seiko Epson Corp Silicon gate mos field-effect transistor
JPS615766A (en) * 1984-06-18 1986-01-11 Aoyama Kazuko Preparation of fermented drinking water
JPS6147178A (en) * 1984-08-09 1986-03-07 Takara Shuzo Co Ltd Soybean milk-containing alcoholic drink

Also Published As

Publication number Publication date
JPS5432078A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
JPH0570303B2 (en)
JPH0548617B2 (en)
JPS6041470B2 (en) Manufacturing method of semiconductor device
JPS6252963A (en) Bipolar transistor manufacturing method
JPH038343A (en) Bipolar transistor and manufacture thereof
KR910000020B1 (en) Manufacturing Method of Semiconductor Device
JPS6128231B2 (en)
JPH0127589B2 (en)
JPS6134255B2 (en)
JPS6161268B2 (en)
JPS6237543B2 (en)
JPS6115579B2 (en)
JPS63102340A (en) Manufacture of semiconductor device
JPS60785B2 (en) Manufacturing method of MOS type semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS6123670B2 (en)
JPS6058637A (en) Manufacture of semiconductor device
JPS61214567A (en) Manufacturing method of semiconductor device
JPS6263435A (en) Manufacture of semiconductor device
JPS63170922A (en) Wiring method
JPS60258965A (en) Manufacture of semiconductor device
JPS6112394B2 (en)
JPH0140502B2 (en)
JPS612362A (en) Manufacture of semiconductor device
JPS63115373A (en) semiconductor equipment