[go: up one dir, main page]

JPS61281210A - Aspherical single lens - Google Patents

Aspherical single lens

Info

Publication number
JPS61281210A
JPS61281210A JP12365085A JP12365085A JPS61281210A JP S61281210 A JPS61281210 A JP S61281210A JP 12365085 A JP12365085 A JP 12365085A JP 12365085 A JP12365085 A JP 12365085A JP S61281210 A JPS61281210 A JP S61281210A
Authority
JP
Japan
Prior art keywords
lens
refractive index
wall thickness
single lens
comes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12365085A
Other languages
Japanese (ja)
Inventor
Masahiko Daimon
大門 昌彦
Fumiyoshi Sato
佐藤 文良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP12365085A priority Critical patent/JPS61281210A/en
Publication of JPS61281210A publication Critical patent/JPS61281210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To correct the aberration with a high accuracy, to have the sufficient operating distance, to be small-sized and light and to have the shape characteristic suitable for molding by being an aplanatic single lens and specifying the refractive index and the central wall thickness. CONSTITUTION:The lens is an aplanatic single lens whose first surface is the projected aspheric surface and whose second surface is the plane, the refractive index of the lens is in the range of 1.7-2.0 for the use wavelength (usually, 0.63-0.83mum) and the central wall thickness is in the range of 1-5mm. When the refractive index (n) is <1.7, a central wall thickness d1 suitable for removing the aberration comes to be lower and simultaneously, an edge surface angle thetacomes to be higher, the edge surface thickness comes to be extremely small, and therefore, molding comes to be extremely hard. When the refractive index (n) exceeds 2.0, the optimum central wall thickness d1 is increased, the lens weight comes to be higher, in addition, an operating distance W.D comes to be short and the lens is hard to be supplied for the practical use.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、収差が光の回折限界内にあって、高精度に補
正された小型軽量の平凸非球面単レンズからなり、モー
ルド成形するに好適な形状特性を有する非球面単レンズ
、とくに光ディスク用対物レンズとして用いるに適した
非球面単レンズに関する。
Detailed Description of the Invention "Industrial Application Field" The present invention consists of a small and lightweight plano-convex aspherical single lens whose aberrations are within the diffraction limit of light and are corrected with high precision, and which is molded. The present invention relates to an aspherical single lens having shape characteristics suitable for use in, particularly, an aspherical single lens suitable for use as an objective lens for optical discs.

「従来の技術」 最近、半導体レーザーを用いた光ディスク技術が急速に
発展しているが、光ディスクの信号検出部に集光レンズ
として組込まれる対物レンズは、高密度に記録された情
報を読み取るために、軸上の球面収差がほぼ完全に除去
されていると同時に、正弦条件が満足されていることが
必要である。また、トラッキング方式によっては、非点
収差も小さくすることが望まれる。
"Conventional technology" Recently, optical disc technology using semiconductor lasers has been rapidly developing, but the objective lens, which is incorporated as a condensing lens in the signal detection section of the optical disc, is used to read information recorded in high density. , it is necessary that axial spherical aberration be almost completely eliminated and at the same time the sine condition be satisfied. Furthermore, depending on the tracking method, it is desirable to reduce astigmatism as well.

また、上記光ディスク用レンズは、装置の可動部に使用
されるため、ディスクとの間に十分な作動距離を有する
とともに小型軽量でなければならない。
Furthermore, since the optical disc lens is used in a movable part of the device, it must have a sufficient working distance from the disc and be small and lightweight.

さらに、この種のレンズは、多量の需要に応じなければ
ならないので、製造し易く、量産性に優れていることが
重要である。
Furthermore, since this type of lens must meet the demand for large quantities, it is important that it is easy to manufacture and has excellent mass productivity.

これらの要望を満たすため、たとえば、特開昭57−7
8512号、特開昭57−201210号および特開昭
59−28714号等の公報において、両面を非球面で
構成したアブラナティンク屯レンズが提案されているが
、これらのレンズは、一般に、中心と端面の肉厚差が大
きく複雑形状を呈し勝ちである。このようなl/ンズを
モールド成形技術、すなわち、加熱軟化状態の光学材料
を高精度成形面を有する鋳型で加圧して、1宣接、成形
する技術により得る場合、材料の塑性変形量が大きくな
り、このため成形品の面精度の低下や鋳型の損耗を招き
やすい欠点がある。また、これらのレンズは、両面が非
球面である1−に非球面量が大きくなりやすいので、鋳
型の加工や鋳型成形面の測定評価に一層高度の技術や繁
雑な作業を要するばかりでなく、レンズ成形の際の鋳型
両面の光軸を合わせる技術にも多くの困難を伴う。
In order to meet these demands, for example,
8512, Japanese Patent Application Laid-open No. 57-201210, and Japanese Patent Application Laid-open No. 59-28714, an abrasive lens with aspherical surfaces on both sides has been proposed, but these lenses generally have It tends to have a complicated shape with a large difference in wall thickness at the end face. When such l/lens are obtained by molding technology, that is, a technology in which a heat-softened optical material is pressurized in a mold with a high-precision molding surface and molded in a single contact, the amount of plastic deformation of the material is large. Therefore, there is a drawback that the surface accuracy of the molded product is reduced and the mold is easily worn out. In addition, since these lenses tend to have a large amount of aspherical surface on both sides, not only do mold processing and measurement and evaluation of the molding surface require more advanced technology and complicated work, but also The technique of aligning the optical axes of both sides of the mold during lens molding also involves many difficulties.

なお、ガラス表面にプラスチック非球面層を形成させた
複合レンズも知られているが、この種のレンズは、製造
工程を複雑化するので、量産性に劣る欠点がある。
Although composite lenses in which a plastic aspherical layer is formed on the glass surface are also known, this type of lens has the drawback of complicating the manufacturing process and making it less suitable for mass production.

[発明が解決しようとする問題点」 本発明は、上述の状況に鑑みてなされたもので、その目
的とするところは、収差が高精度に補正され、また、」
−分な作動距離を有し、かつ、小型軽量であって、しか
も、モールド成形するに好適な形状特性を有する非球面
単レンズ、とくに光ディスク用対物レンズとして用いる
に適した非球面単レンズを提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned situation, and its purpose is to correct aberrations with high precision, and to
- Provides an aspherical single lens that has a working distance of 100-minutes, is small and lightweight, and has shape characteristics suitable for molding, especially an aspherical single lens suitable for use as an objective lens for optical discs. It's about doing.

r問題点を解決するための手段」 上記目的を達成するため、本発明者は、光学設計の立場
からだけではなく、モールド成形技術や測定技術等の面
からも総合的に検討を行なった結果、平凸非球面単レン
ズにおいて、レンズ媒質の屈折率(労)が1.7〜2.
0の範囲内にある場合には、屈折率(7′L)に対応し
て求められる収差補正に最適な中心肉厚が1〜5層層の
範囲にあり、また非球面部の高さくΔh)と端面角度(
θ)が小さいため、小型軽量であってモールド成形に適
した形状特性を有しており、しかも、十分な作動距離を
有するレンズが得られることをみいだし、本発明をなす
に至った。
``Means for Solving the Problems'' In order to achieve the above purpose, the present inventor has comprehensively studied not only from the standpoint of optical design but also from the aspects of molding technology, measurement technology, etc. , in a plano-convex aspherical single lens, the refractive index (labor) of the lens medium is 1.7 to 2.
If it is within the range of 0, the optimum center wall thickness for aberration correction found corresponding to the refractive index (7'L) is in the range of 1 to 5 layers, and the height of the aspherical part is Δh. ) and end face angle (
The present inventors have discovered that since the lens θ) is small, it is possible to obtain a lens that is small and lightweight, has shape characteristics suitable for molding, and has a sufficient working distance, and has accomplished the present invention.

すなわち、本発明にかかる非球面単レンズの特徴は、第
1面が凸非球面であり、第2面が平面であるアプラナテ
ィック単レンズであって、上記レンズの屈折率が使用波
長(通常は0.63〜0.83g+s)に対して、 1
.7〜2.0の範囲にあり、かつ、中心肉厚が1〜5m
mの範囲にあるところにある。
That is, the aspherical single lens according to the present invention is characterized by being an aplanatic single lens in which the first surface is a convex aspherical surface and the second surface is a flat surface, and the refractive index of the lens is similar to the wavelength used (usually is 0.63~0.83g+s), 1
.. 7 to 2.0, and the center wall thickness is 1 to 5 m.
It is located in the range of m.

ここで、上記凸非球面は、下記の式で表わされる。Here, the convex aspherical surface is expressed by the following formula.

ただし、Xは、曲面上の1点から頂点の接平面におろし
た垂線の長さ、Cは頂点での接球面の曲率、Hは入射高
、Kは円錐係数、D、E、FおよびGは4〜10次の各
非球面係数である。
However, X is the length of a perpendicular drawn from a point on the curved surface to the tangent plane of the vertex, C is the curvature of the tangent surface at the vertex, H is the incident height, K is the conic coefficient, D, E, F, and G are the respective aspherical coefficients of the 4th to 10th orders.

本発明の非球面部レンズにおいて、屈折率(−rL)と
中心肉厚(dx ) 、開口数(NA’)および焦点距
離(チ)との間には、d1=g (、NA’、 )の関
数関係があり、屈折率(去)が1.7から2.0へ移行
するに従い、中心肉厚(dl)がほぼ直線的に増大する
傾向がみられるが、仕様範囲、NA=0.4〜0,6、
  =3〜59Ilにおいて、dl−L〜5ffl曙の
範囲の好適な値をとり得る。なお、屈折率(7?)が1
.7未満であると、収差を除去するに最適な中心肉厚(
dl)が過小になると同時に端面角度(θ)が過大とな
り、端面厚(dl−Δh)が極端に小さくなるため、モ
ールド成形がきわめて困難になる。また、屈折率(7L
)が2.0を超えると、最適中心肉厚(dl)が増大し
、レンズ重量が過大となるばかりでなく作動圧a (W
、[])が短くなり実用に供し難いものとなる。
In the aspheric lens of the present invention, the relationship between the refractive index (-rL), the center thickness (dx), the numerical aperture (NA'), and the focal length (CH) is d1=g (,NA', ) There is a functional relationship, and there is a tendency for the center wall thickness (dl) to increase almost linearly as the refractive index shifts from 1.7 to 2.0, but within the specification range, NA = 0. 4~0,6,
=3 to 59Il, it can take a suitable value in the range of dl-L to 5ffl. In addition, the refractive index (7?) is 1
.. If it is less than 7, the center wall thickness is optimal for removing aberrations (
When dl) becomes too small, the end face angle (θ) becomes too large and the end face thickness (dl−Δh) becomes extremely small, making molding extremely difficult. In addition, the refractive index (7L
) exceeds 2.0, the optimum center wall thickness (dl) increases and the lens weight becomes excessive, as well as the working pressure a (W
, []) become short, making it difficult to put it into practical use.

「実施例」 つぎに、本発明の非球面単レンズを光ディスク用対物レ
ンズとして用いる場合の実施例(Fb、 1〜勤、6)
および参考例Aを表1に示す、また実施例のレンズの中
心断面と光ディスクの断面との位置関係を図1に示し、
さらに実施例および参考例の各レンズの収差曲線図を、
それぞれ、図2〜図8に示す。
"Example" Next, Examples (Fb, 1 to 6) in which the aspherical single lens of the present invention is used as an objective lens for an optical disk.
and Reference Example A are shown in Table 1, and the positional relationship between the center cross section of the lens of the example and the cross section of the optical disk is shown in FIG.
Furthermore, the aberration curve diagrams of each lens of Examples and Reference Examples are shown below.
They are shown in FIGS. 2 to 8, respectively.

これらの実施例および参考例は、半導体レーザーの波長
0.781Lwに対する屈折率(7L)が1.7184
゜1.78B43 、 1.89?68 、2.(10
および1.60である5種のレンズ媒質を選択し、レン
ズの仕様が開口数(NA’)  ;0.53または0.
47、焦点距離(f);3.79または4.5■■、光
線有効口径(a) ;4.0または4.2■の場合につ
き光学計算を行なったものであり、この際ディスクの条
件としては、被覆材料(ポリカーホネイト)の厚さを1
.2■鵬とし、その屈折率を1.55とした。
In these examples and reference examples, the refractive index (7L) of the semiconductor laser with respect to the wavelength 0.781Lw is 1.7184.
゜1.78B43, 1.89?68, 2. (10
and 1.60, and the lens specifications are numerical aperture (NA'); 0.53 or 0.
47. Optical calculations were performed for the cases where the focal length (f) was 3.79 or 4.5■■, and the effective beam aperture (a) was 4.0 or 4.2■. , the thickness of the coating material (polycarbonate) is 1
.. 2), and its refractive index was set to 1.55.

表1のdl、Δh、W、Dおよびθは、図1に示したと
おり、それぞれ、中心肉厚、非球面部の高さ、作動距離
および端面角度を示す、また、R1は非球面頂点の曲率
半径を、R2は第2面の曲率半径を示す。
As shown in Fig. 1, dl, Δh, W, D, and θ in Table 1 indicate the center wall thickness, height of the aspherical surface, working distance, and end face angle, respectively, and R1 indicates the apex of the aspherical surface. R2 indicates the radius of curvature of the second surface.

表1および図2〜図7から明らかなとおり、実施例のレ
ンズは、いずれも、収差が光の回折限界内に補正されて
おり、また、約0.8〜2.21■の範囲の十分な作動
距離(LD)を有し、しかも、中心肉厚(dl)が約1
〜5龍の範囲の好適な値であり、小型軽量性をそなえて
いる。
As is clear from Table 1 and FIGS. 2 to 7, the aberrations of the lenses of the examples are all corrected to within the diffraction limit of light, and the aberrations are sufficiently corrected within the range of about 0.8 to 2.21 It has a working distance (LD), and a center wall thickness (dl) of approximately 1
It has a suitable value in the range of ~5 dragons, and is small and lightweight.

さらに、上記実施例のレンズは、いずれも、非球面部の
高さくΔh)が0.5〜G、8■■の範囲にあって小さ
く、また40°以下の小さな端面角度(θ)と0.8〜
3.7mmの範囲の適度の端面厚(dx−Δh)とを有
する単純な形状のレンズである。また表1には示してな
いが非球面量自体も小さい、したがって、レンズのモー
ルド成形に際しては、板状等の単純形状の光学材料に少
量の塑性変形を付与することにより、容易に高精度面を
得ることが可能であり、この場合、加圧時に鋳型に与え
る加重負担が少ないので、鋳型の精密成形面を損耗させ
ることなく、鋳型を長期間にわたり、繰返し使用できる
利点がある。またΔhとθが小さいので、鋳型の精密成
形面の加工が容易であり、さらに、鋳型および成形レン
ズの非球面形状の測定も容易に行うことができる。これ
らのレンズは、製造する際に、簡便な成形装置で両面の
光軸合わせを容易に行ない得る。また平面部を利用して
信号検出部の鏡筒への組込を容易に行ない得る。
Furthermore, all of the lenses of the above examples have a small height Δh) of the aspherical part in the range of 0.5 to G, 8■■, and a small end face angle (θ) of 40° or less and 0. .8~
The lens has a simple shape and has a moderate end face thickness (dx-Δh) in the range of 3.7 mm. Although not shown in Table 1, the amount of aspherical surface itself is small. Therefore, when molding lenses, it is possible to easily form a high-precision surface by applying a small amount of plastic deformation to a simple-shaped optical material such as a plate. In this case, since the weight applied to the mold during pressurization is small, there is an advantage that the mold can be used repeatedly over a long period of time without damaging the precision molding surface of the mold. Furthermore, since Δh and θ are small, it is easy to process the precision molding surface of the mold, and furthermore, it is easy to measure the aspherical shapes of the mold and molded lens. When manufacturing these lenses, the optical axes of both surfaces can be easily aligned using a simple molding device. Furthermore, the signal detection section can be easily incorporated into the lens barrel by using the flat surface.

一方参考例Aのレンズ(n諺1.8)は、図8に示した
とおり、正弦条件を満たすことができず、しかも、表1
にみられるとおり、非球面部の高さくΔh)が0.87
と大きく、47°の大きな端面角度(θ)と0.03m
5の極めて小さな端面厚(dl−Δh)とを有している
のでモールド成形するには不適当な形状である。
On the other hand, the lens of Reference Example A (n proverb 1.8) cannot satisfy the sine condition as shown in FIG.
As can be seen, the height of the aspherical part (Δh) is 0.87.
and a large end face angle (θ) of 47° and 0.03m.
Since it has an extremely small end face thickness (dl-Δh) of 5, the shape is inappropriate for molding.

なお、本発明の実施例のレンズは、屈折率(7t)が1
.75以上であると端面厚(dx  −Δh)が約1.
0以上であるので、成形性が一段と良好であり、また屈
折率(71)が1.9以下であると約1.2以上の大き
な作動距離(91,0)e得ることができる。したがっ
て、T・1.75〜1.9である場合、光ディスク用対
物レンズとして一層好適である。
Note that the lens of the example of the present invention has a refractive index (7t) of 1.
.. When it is 75 or more, the end face thickness (dx - Δh) is about 1.
When the refractive index (71) is 0 or more, the moldability is even better, and when the refractive index (71) is 1.9 or less, a large working distance (91,0)e of about 1.2 or more can be obtained. Therefore, when T·1.75 to 1.9, it is more suitable as an objective lens for an optical disc.

本発明の実施において、屈折率(?1)が1.7〜2.
0の範囲の光学材料としては、通常、LaF系、La5
F系およびSF系と称されている各種の光学ガラスやテ
ルライトガラス等のなかから加圧成形に適したものを適
宜選択して使用することが好ましい。
In the practice of the present invention, the refractive index (?1) is between 1.7 and 2.
Optical materials in the range of 0 are usually LaF-based, La5
It is preferable to appropriately select and use a glass suitable for pressure molding from among various types of optical glasses and tellurite glasses called F series and SF series.

「発明の効果」 上述のとおり、本発明の非球面単レンズは、第1面が凸
非球面であり、第2面が平面であるアプラナティック単
レンズであって、上記レンズの屈折率が使用波長に対し
て1.7〜2.0の範囲にあり、かつ、中心肉厚が1〜
5amの範囲にあり、また、端面角度が40°以下であ
るから、収差が高精度に補正され、また、十分な作動距
離を有し、かつ、小型軽量であり、しかも、モールド成
形と成形レンズの測定評価に当り、好適な形状特性を有
している。
"Effects of the Invention" As described above, the aspherical single lens of the present invention is an aplanatic single lens in which the first surface is a convex aspherical surface and the second surface is a flat surface, and the refractive index of the lens is It is in the range of 1.7 to 2.0 for the wavelength used, and the center thickness is 1 to 2.0.
5 am, and the end face angle is 40° or less, so aberrations are corrected with high precision, and it has a sufficient working distance, is small and lightweight, and can be molded and molded. It has suitable shape characteristics for measurement and evaluation.

したがって、本発明の非球面単レンズは、光ディスク用
対物レンズとして用いるに好適であり、また量産性に富
んでいる。
Therefore, the aspheric single lens of the present invention is suitable for use as an objective lens for optical discs, and is highly suitable for mass production.

なお、本発明の非球面単レンズは、上記用途に限定され
るものではなく、たとえば、電子機器用マイクロレンズ
や光伝送ファイバー用レンズ等として幅広く利用できる
Note that the aspheric single lens of the present invention is not limited to the above-mentioned applications, and can be widely used, for example, as microlenses for electronic devices, lenses for optical transmission fibers, and the like.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

図1は、本発明の実施例の非球面単1/ンズとディスク
との位置関係を示す断面図、図2〜図8は、実施例およ
び参考例の各レンズの収差曲線図である。 特許出願人  株式会社 才 ハ ラ 図2 HA ” x O,53+IA’ t o、531M、
tl −0,0[181球面収芹          
 正弦条件           非へ収差球面収差 
         正弦条件          非点
収差図4 球面収差          正弦条件       
   非点収差球面収差          正弦条件
          非点収差図6 球面収差          正弦条件       
   非点収差′露0.47 球面収差 図8 一′−0,51 球面収差          正弦条件IN、9−0.
0785 IN、H−0,0691 非点収差
FIG. 1 is a sectional view showing the positional relationship between an aspheric single lens and a disk according to an example of the present invention, and FIGS. 2 to 8 are aberration curve diagrams of each lens of the example and reference example. Patent applicant Saihara Co., Ltd. Figure 2 HA ” x O, 53 + IA' to, 531M,
tl −0,0[181 spherical convergence
Sine condition Non-heterosophical spherical aberration
Sine condition Astigmatism diagram 4 Spherical aberration Sine condition
Astigmatism Spherical aberration Sine condition Astigmatism diagram 6 Spherical aberration Sine condition
Astigmatism' dew 0.47 Spherical aberration Figure 8 1'-0,51 Spherical aberration Sine condition IN, 9-0.
0785 IN, H-0,0691 Astigmatism

Claims (3)

【特許請求の範囲】[Claims] (1)第1面が凸非球面であり、第2面が平面であるア
プラナティック単レンズであって、上記レンズの屈折率
が使用波長に対して1.7〜2.0の範囲にあり、かつ
、中心肉厚が1〜5mmの範囲にあることを特徴とする
非球面単レンズ。
(1) An aplanatic single lens in which the first surface is a convex aspherical surface and the second surface is a flat surface, and the refractive index of the lens is in the range of 1.7 to 2.0 for the wavelength used. 1. An aspherical single lens having a central wall thickness in the range of 1 to 5 mm.
(2)屈折率が1.75〜1.9である特許請求の範囲
第1項記載の非球面単レンズ。
(2) The aspheric single lens according to claim 1, which has a refractive index of 1.75 to 1.9.
(3)非球面単レンズを光ディスク用対物レンズとして
用いる特許請求の範囲第1項および第2項記載の非球面
単レンズ。
(3) The aspherical single lens according to claims 1 and 2, in which the aspherical single lens is used as an objective lens for an optical disc.
JP12365085A 1985-06-07 1985-06-07 Aspherical single lens Pending JPS61281210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12365085A JPS61281210A (en) 1985-06-07 1985-06-07 Aspherical single lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12365085A JPS61281210A (en) 1985-06-07 1985-06-07 Aspherical single lens

Publications (1)

Publication Number Publication Date
JPS61281210A true JPS61281210A (en) 1986-12-11

Family

ID=14865853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12365085A Pending JPS61281210A (en) 1985-06-07 1985-06-07 Aspherical single lens

Country Status (1)

Country Link
JP (1) JPS61281210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863248A (en) * 1987-11-24 1989-09-05 Minolta Camera Kabushiki Kaisha Single collimator lens
JP2001297471A (en) * 2000-02-08 2001-10-26 Asahi Optical Co Ltd Objective optical system for optical pickup

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863248A (en) * 1987-11-24 1989-09-05 Minolta Camera Kabushiki Kaisha Single collimator lens
JP2001297471A (en) * 2000-02-08 2001-10-26 Asahi Optical Co Ltd Objective optical system for optical pickup

Similar Documents

Publication Publication Date Title
US6914724B2 (en) Micro lens and method and apparatus for fabricating
US5424869A (en) Zoom lens
JPS61275808A (en) Lens for optical disk
JPS60126616A (en) Single lens and optical reader and/or writing unit
JPS62119512A (en) Lens for optical disc
US5682263A (en) Broad-band ultraviolet lens systems well-corrected for chromatic aberration
JP2739651B2 (en) Glass molded aspheric single lens
US4572623A (en) Objective lens for optical disc
JPS5923313A (en) Large aperture condenser lens
JPS61281210A (en) Aspherical single lens
JP2725198B2 (en) Glass molded aspheric single lens
US6075656A (en) High numerical aperture objective lens
US4852981A (en) Imaging lens system comprising a distributed index lens and a plano-convex lens
JPS5912412A (en) Large-diameter condenser lens
KR20100111497A (en) Objective
JP2001296472A (en) Objective optical system for optical head
JPS58219507A (en) One-dimensional lens
JPS61284715A (en) Aspherical single lens
JPH02245715A (en) Aspherical single lens formed by molding of low dispersion glass
JP2727373B2 (en) Finite system large aperture imaging lens
JPH0576606B2 (en)
JPS616615A (en) Distributed refractive index type lens
JPH11258497A (en) Objective lens optics
EP0241558A1 (en) Method of manufacturing gradient index lens
JPS62229203A (en) Grating lens