JPS61280570A - Novel analysis by electrophoresis - Google Patents
Novel analysis by electrophoresisInfo
- Publication number
- JPS61280570A JPS61280570A JP60121461A JP12146185A JPS61280570A JP S61280570 A JPS61280570 A JP S61280570A JP 60121461 A JP60121461 A JP 60121461A JP 12146185 A JP12146185 A JP 12146185A JP S61280570 A JPS61280570 A JP S61280570A
- Authority
- JP
- Japan
- Prior art keywords
- electrophoresis
- specimen
- sample
- reagent
- reacted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001962 electrophoresis Methods 0.000 title claims abstract description 46
- 238000004458 analytical method Methods 0.000 title claims abstract description 17
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 239000000427 antigen Substances 0.000 claims abstract description 8
- 102000036639 antigens Human genes 0.000 claims abstract description 8
- 108091007433 antigens Proteins 0.000 claims abstract description 8
- 238000013508 migration Methods 0.000 claims abstract description 8
- 230000005012 migration Effects 0.000 claims abstract description 8
- -1 polysaccharides lipid Chemical class 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims abstract description 4
- 102000004190 Enzymes Human genes 0.000 claims abstract description 3
- 108090000790 Enzymes Proteins 0.000 claims abstract description 3
- 229920001282 polysaccharide Polymers 0.000 claims abstract 2
- 239000005017 polysaccharide Substances 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000975 dye Substances 0.000 claims 1
- 150000004676 glycans Chemical class 0.000 claims 1
- 150000002632 lipids Chemical class 0.000 claims 1
- 239000012070 reactive reagent Substances 0.000 claims 1
- 239000011543 agarose gel Substances 0.000 abstract description 5
- 238000004108 freeze drying Methods 0.000 abstract description 3
- 238000004040 coloring Methods 0.000 abstract 1
- 239000002131 composite material Substances 0.000 abstract 1
- 238000005259 measurement Methods 0.000 abstract 1
- 230000002285 radioactive effect Effects 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 49
- 210000002966 serum Anatomy 0.000 description 19
- 239000000499 gel Substances 0.000 description 18
- 230000001900 immune effect Effects 0.000 description 11
- 238000000760 immunoelectrophoresis Methods 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 102000009027 Albumins Human genes 0.000 description 6
- 108010088751 Albumins Proteins 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000007693 zone electrophoresis Methods 0.000 description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 102000013415 peroxidase activity proteins Human genes 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000054727 Serum Amyloid A Human genes 0.000 description 2
- 101710190759 Serum amyloid A protein Proteins 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 108010074605 gamma-Globulins Proteins 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 101100296544 Caenorhabditis elegans pbo-5 gene Proteins 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000005717 Myeloma Proteins Human genes 0.000 description 1
- 108010045503 Myeloma Proteins Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000036046 immunoreaction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は電気泳動による分析方法に係り、特に免疫学的
な研究や、臨床検査によく用いられる試料の成分と反応
する親和性試薬を用いろ、電気泳動による分析方法に関
する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an analysis method by electrophoresis, and in particular to an analysis method using an affinity reagent that reacts with a component of a sample often used in immunological research and clinical tests. Iro: Concerning an analysis method using electrophoresis.
[従来の技術]
近年、タンパク質の分析に電−気泳動が多用されている
。この原理は、電場の中に荷電粒子を入れると、その電
荷の相違により、粒子の移動する距離が異なるという物
理化学的な現象を利用したものである。[Prior Art] In recent years, electrophoresis has been frequently used for protein analysis. This principle utilizes the physicochemical phenomenon that when charged particles are placed in an electric field, the distances traveled by the particles differ depending on the difference in their charges.
この電気泳動の方式には、移動界面電気泳動とゾーン電
気泳動とにわけられる。This electrophoresis system can be divided into moving interface electrophoresis and zone electrophoresis.
界面電気泳動は、予め試料とその上に重層した溶媒との
間で界面を形成させておき、電場のなかで溶液中の溶質
分子の移動として観察するものである。一方ゾーン電気
泳動法は、バンド状にして加えた試料に電圧をかけるこ
とにより、各成分がバンド状に分画分離される方法であ
る。In interfacial electrophoresis, an interface is formed in advance between a sample and a solvent layered thereon, and the movement of solute molecules in the solution is observed in an electric field. On the other hand, zone electrophoresis is a method in which each component is fractionated and separated into bands by applying voltage to a sample added in bands.
支持体を用いる場合、支持体ゾーン電気泳動といわれ、
その支持体の目的は、分離された成分のゾーンの安定化
を計ることであり、以下のような素材がある。When a support is used, it is called support zone electrophoresis.
The purpose of the support is to stabilize the zone of separated components, and materials include:
(1)多孔質な素材として、ろ紙、セルローズアセテー
トが代表的なもので、安価で操作が簡単なことから臨床
検査には多用されている。(1) Typical porous materials include filter paper and cellulose acetate, which are often used in clinical tests because they are inexpensive and easy to operate.
(2)ゲル、粉末状のものとして、寒天や澱粉がよく用
いられ、試料の保持量と分離の能力が高い点が評価され
ている。(2) Agar and starch are often used as gels or powders, and are praised for their high sample retention and separation ability.
(3)分子ふるい効果を持つものとして・ポリアクリル
アミドケルがあり、分子量にしたがった移動と溶質の拡
散が少ないことから、優れた分離能が認められている。(3) There is polyacrylamide gel, which has a molecular sieving effect, and is recognized to have excellent separation ability because it moves according to molecular weight and has little diffusion of solutes.
この様に、ゾーン電気泳動においては、支持体の性質に
多く依存するが、泳動したゾーンの分析方法として、泳
動後、タンパク質に特異的な染色を行ない、染色された
ゾーンの位置や強弱を、肉眼或は光学的方法を用いて確
認するが、その分離の確認は、重複が多く非常に困難な
場合が多い。In this way, in zone electrophoresis, a lot depends on the properties of the support, but as a method for analyzing the migrated zones, protein-specific staining is performed after electrophoresis, and the position and strength of the stained zones are determined. Confirmation is performed using the naked eye or optical methods, but confirmation of separation is often extremely difficult due to the large number of overlaps.
この欠点を解決する為に、1953年にGrabar、
P、&Wi l I iams、C,Aは、上記の電気
泳動と、免疫学的なゲル内抗原抗体沈降反応とを組み合
わせて、免疫学的な特異性を利用した一度の高い定性的
な分析を可能にし、いわゆる免疫電気泳動法を発表した
。In order to solve this drawback, in 1953, Grabar,
P., & Wiliams, C.A., combined the above electrophoresis with an immunological in-gel antigen-antibody precipitation reaction to perform a highly qualitative analysis using immunological specificity. made it possible and published the so-called immunoelectrophoresis method.
この方法は、薄い寒天のゲルに小さな穴をあけ、そこに
抗原を含む試料を添加して、先ず電気泳動をして、試料
中の各成分を展開分離させた後、その泳動方向に平行に
あけた溝に抗体を入れ、一定時間放置すると、ゲル中を
試料と抗体が同時に拡散して、各成分に対応した位置に
免疫学的に沈降線を形成するので、この沈降線の位置や
強弱から、特定成分の分析をする方法である。しかして
この分析の際、ゲル中の拡散には、10時間から50時
間を要し、また高価な抗体等の親和性試薬も0.02m
1から0.2mlを必要とし非常に困難な方法である。In this method, a small hole is made in a thin agar gel, a sample containing the antigen is added thereto, electrophoresis is first performed to develop and separate each component in the sample, and then the electrophoresis is performed parallel to the direction of electrophoresis. When antibodies are placed in the opened grooves and left for a certain period of time, the sample and antibodies simultaneously diffuse through the gel, forming immunological precipitation lines at positions corresponding to each component. This is a method for analyzing specific components. However, during leverage analysis, it takes 10 to 50 hours for diffusion in the gel, and expensive affinity reagents such as antibodies are required at 0.02 m
This is a very difficult method, requiring 1 to 0.2 ml.
この免疫電気泳動の時、溝に入れる抗体をモノクロナー
ルなものとした場合、免疫学的な沈降線を作らず、電気
泳動による判定は不可能である。During this immunoelectrophoresis, if monoclonal antibodies are used in the groove, no immunological precipitation lines are created and determination by electrophoresis is impossible.
その他電気泳動と免疫学的な方法の組み合わせた方法と
しては(1)ロケット免疫電気泳動法(2)交差免疫電
気泳動法(3)免疫固定法がある。Other methods that combine electrophoresis and immunological methods include (1) rocket immunoelectrophoresis, (2) cross-immunoelectrophoresis, and (3) immunofixation.
(+)(2)の方法は、割に多量の抗体等の親和性試′
薬をアガロースと混ぜてゲルを作成してから、原点に
抗原を含む試料を入れ電気泳動を行ない、抗原の泳動に
従って免疫学的な沈降物の形成をロケット状、或は山状
にして、その大きさから特定成分の分析をする方法であ
る。(+) Method (2) requires relatively large amounts of affinity assays such as antibodies.
After mixing the drug with agarose to create a gel, a sample containing the antigen is placed at the origin and electrophoresis is performed, and an immunological precipitate is formed in the shape of a rocket or mountain according to the migration of the antigen. This method analyzes specific components based on their size.
(3)はゾーン電気泳動後にゲルを抗体に浸し、抗体と
反応する特定のゾーンのみを沈降物として固定して残し
、その池は食塩水によって流しだして判定する方法であ
る。(3) is a method in which after zone electrophoresis, the gel is immersed in antibodies, and only the specific zones that react with the antibodies are left fixed as precipitates, and the ponds are flushed out with saline to make the determination.
これらは、いずれも電気泳動中、または電気泳動後にM
気泳動のゲル中で免疫反応、或は親和性物質との反応を
行ない、試料中の成分を同定していた。そのため、ゲル
中である成分に反応する抗体を、多量に、また広範囲に
添加する事により、反応が陰性の周辺から反応陽性の成
分を区別する方法であった。All of these are M during or after electrophoresis.
Immunoreactions or reactions with affinity substances were performed in an aerophoresis gel to identify components in a sample. Therefore, the method was to add a large amount of an antibody that reacts with a certain component to a gel over a wide range, thereby distinguishing a component with a positive reaction from a surrounding region with a negative reaction.
[発明が解決しようとする問題点]
このように、従来の電気泳動法には、以下のような欠点
があった。[Problems to be Solved by the Invention] As described above, the conventional electrophoresis method has the following drawbacks.
(1)高価な親和性試薬を、真に必要とする監以上に過
動に添加しなければならないので、非経済的である。(1) It is uneconomical because expensive affinity reagents must be added in excess of what is really needed.
(2)反応に要する時間が、親和性試薬および試F↓が
ゲル中を拡散する時間も含むため、長時間になる。(2) The time required for the reaction is long because it includes the time for the affinity reagent and reagent F↓ to diffuse in the gel.
(3)モノクロナール抗体は免疫電気泳動の時、対応す
る試料中の微量成分と免疫学的な沈降線を作らず定性的
な分析が出来ない。(3) Monoclonal antibodies do not form immunological precipitation lines with trace components in the corresponding sample during immunoelectrophoresis, making qualitative analysis impossible.
(4)血清材料中の重量成分を分析するとき、血清中に
多量に存在するアルブミンやγグロブリンのため、その
周辺の微量成分のバンドが覆い隠されて分析が困難であ
る。(4) When analyzing the weight components in serum materials, it is difficult to analyze because albumin and γ globulin, which are present in large amounts in serum, obscure bands of trace components around them.
本発明は、これらの欠点を取り除いた、経済的で簡便で
、しかも短時間で行なえる、感度のよい電気泳動による
分析方法を提供することを目的とする。An object of the present invention is to provide an economical, simple, and sensitive electrophoretic analysis method that can be performed in a short time and eliminates these drawbacks.
[問題点を解決するための手段]
本発明は、その目的を達成するために、次のような方法
から成立している。[Means for Solving the Problems] In order to achieve the object, the present invention is comprised of the following methods.
即ち、先ず試料を二分して、試料A、Bとする。That is, first, the sample is divided into two parts, which are designated as samples A and B.
Aは対照とするため、そのまま手を加えず残しておく。A is left unchanged as it is used as a control.
次に試料Bに、試料中の成分と特異的に反応する親和性
試薬を添加反応させた後、両者を電気泳動用のゲルに添
加し、電気泳動をした後、公知の常法に従い、ゲルを染
色、脱色、乾燥し、現われた泳動のパターンを、肉眼又
はデンシトメーターで識別する。Next, an affinity reagent that specifically reacts with the components in the sample is added to sample B, and both are added to an electrophoresis gel. After electrophoresis, gel The sample is stained, decolorized, and dried, and the pattern of migration that appears is identified with the naked eye or with a densitometer.
そして試料Aと試料Bのパターンを比較すると、試料B
のパターンては親和性試薬と特異的に反応した成分のス
ポットが、原点の位置に免疫学的に沈降して、泳動が不
可能になって欠損したり、又は親和性試薬の量が少ない
と、一二分が欠11するため、その染色濃度が減衰して
、対照の試料へと明らかな差を示す。Comparing the patterns of sample A and sample B, sample B
In this pattern, the spot of the component that specifically reacted with the affinity reagent is immunologically precipitated at the origin position, making migration impossible and missing, or when the amount of affinity reagent is small. , 12 minutes are missing, so the staining density is attenuated and shows a clear difference to the control sample.
更にモノクロナール抗体を親和性試薬とした場合、対照
としての試料Aと比較して、バンドの位置の差が明確に
生じる。Furthermore, when a monoclonal antibody is used as an affinity reagent, a clear difference in band position occurs compared to sample A as a control.
これらの事より、目的とした成分が同定できる。From these facts, the target component can be identified.
本発明で、試料中の成分と親和性試薬を反応する場所は
、試験管、バイアル、スピッツ、マイクロプレート等の
一般に免疫学的な反応に用いられる容器中であれば問題
はない。しかし、親和性試薬の量と操作時間を考えると
、好ましくは試料を電気泳動のゲルに添加するために用
いるチップ中で反応させる事がよい。In the present invention, there is no problem as long as the component in the sample and the affinity reagent are reacted in a container commonly used for immunological reactions, such as a test tube, vial, spitz, or microplate. However, considering the amount of affinity reagent and operation time, it is preferable to carry out the reaction in a chip used for adding the sample to the gel for electrophoresis.
即ち、あらかじめ一定量の親和性試薬を内蔵さ′せたチ
ップに試料を充填し、試料中の成分と反応させた後、こ
れを電気泳動のゲルに添加する。このようにすると、高
価な親和性試薬を、反応のない二分を含めた広い場所に
加えなくてもよいし、また反応させる容器に付着して、
無駄になる事がないので、極めて微量で実施する事が可
能になる。That is, a sample is filled into a chip containing a certain amount of affinity reagent in advance, reacted with components in the sample, and then added to an electrophoresis gel. In this way, expensive affinity reagents do not need to be added to a large area, including the unreacted halves, and do not adhere to the reaction container.
Since nothing is wasted, it can be carried out with extremely small amounts.
また、ゲル中でこれらが拡散して反応する時間が不要と
なり、結果が出るまでの時間が、極めて短いという利点
が生じてくる。Furthermore, there is no need for time for these to diffuse and react in the gel, resulting in the advantage that the time required to obtain results is extremely short.
本発明に用いられるII!和性和楽試薬1としては、(
1)ブドウ状球菌のAタンパクのような、動植物の細胞
、微生物、または組成成分及びその産生物(2)ヒトヘ
モグロビンのようなタンパク貿と、その複合物
(3)ホルモン、薬物なととその複合物(4)血液、脳
を髄液中に存在する抗体に対する抗原(5)各種の抗体
(6)前記のものが、ラジオアイソトープ、蛍光試薬、
酵素等で、標識化されたものがある。II! used in the present invention! As Wasei Waraku Reagent 1, (
1) Animal and plant cells, microorganisms, or components and their products, such as Staphylococcus A protein; (2) Protein trade, such as human hemoglobin, and their complexes; (3) Hormones, drugs, and their products. Complex (4) Antigen against antibodies present in blood, brain and spinal fluid (5) Various antibodies (6) The above-mentioned substances include radioisotopes, fluorescent reagents,
Some are labeled with enzymes, etc.
これらは、単独或は複数の混合物として用いられる。又
はこれらにIeI類、アミノ酸等の安定剤、チッ化ナト
リウムのような防腐剤なと各種の添加物を加えて用いる
ことも出来る。These may be used alone or as a mixture of a plurality of them. Alternatively, various additives such as IeIs, stabilizers such as amino acids, preservatives such as sodium nitride, and the like may be added.
本発明に用いられる親和性試薬を内蔵したチップは、ガ
ラス、プラスチック、ステンレス鋼なとで出来た管状の
もので、望ましくはマイクロシリンジ又はマイクロピペ
ットの先端に装着出来るものが良い。また親和性試薬を
内蔵させるには、チップをマイクロシリンジ又はマイク
ロとベットの先端に取り付け、一定量の親和性試薬の溶
液を吸引すればよい。The chip containing the affinity reagent used in the present invention is a tubular one made of glass, plastic, stainless steel, etc., and is preferably one that can be attached to the tip of a microsyringe or micropipette. Furthermore, in order to incorporate an affinity reagent, a tip may be attached to the tip of a microsyringe or a microbed, and a certain amount of the affinity reagent solution may be aspirated.
なお親和性試薬を内蔵したチップを保管するためには、
プラスチック、金属箔等の水蒸気不透過性の袋に入れ、
密封し冷蔵又は冷凍する。好ましくは、チップ内に親和
性試薬の溶液を吸引した後、凍結乾燥等して乾燥状態で
保存するのがよい。このようにすると、保存性がよくな
るばかりでなく、試料と親和性試薬との混合と接触が速
やかに行なわれるため、微少なチップ中での反応も、迅
速に進行し、親和性試薬が溶液状態でチップ中に内蔵さ
れているよりも反応時間が短くなる。In addition, in order to store the chip containing the affinity reagent,
Place it in a water vapor impermeable bag made of plastic, metal foil, etc.
Seal and refrigerate or freeze. Preferably, the affinity reagent solution is sucked into the chip and then stored in a dry state by lyophilization or the like. This not only improves storage stability, but also allows rapid mixing and contact between the sample and the affinity reagent, allowing the reaction in the microchip to proceed rapidly, with the affinity reagent being in a solution state. The reaction time is shorter than that built into the chip.
本発明では、親和性試薬の量が一定なので、試料中にお
ける成分の含量により試料は適宜希釈して用いることが
必要になる場合もある。In the present invention, since the amount of affinity reagent is constant, it may be necessary to dilute the sample as appropriate depending on the content of the component in the sample.
本発明に用いられる電気泳動の材料及び操作は公知のそ
れらをすべて用いる事が出来る。また、パターンの相違
を見る方法としては、公知の方法をすべて用いる事がで
きるが、中でも酵素反応、ラジオオートグラフィー、補
体溶血反応などで電気泳動のパターンを出し、これを肉
眼或はデンシトメーターで識別する方法が特に有効であ
る。All known electrophoresis materials and operations can be used in the present invention. In addition, all known methods can be used to detect differences in patterns, but among them, electrophoretic patterns are generated using enzyme reactions, radioautography, complement hemolysis reactions, etc., and these can be viewed with the naked eye or densitometry. The method of identification using a meter is particularly effective.
以下に本発明の実施例を記載するが、これらは本発明の
範囲を限定するものではない。Examples of the present invention are described below, but these are not intended to limit the scope of the present invention.
[実施例]
実施例(1)
骨髄腫血清のM成分のクラスとタイプを決定する為に、
アガロースゲルの電気泳動の原点NO〜1に原血清を0
.00In+I、 No−2に60倍希釈の血清を0.
001m1、NO−3には、予め精製されたIgG抗体
を帆0021吸引して凍結乾燥したチップに、60倍希
釈血清、0.001m1を吸引して1分間反応させて、
l、gGを親和吸収した試料、No−4には同様に、I
gA抗体にて親和吸収した試料、NI)5には同様に1
8M抗体にて親和吸収した試料、No−6には同様にに
抗体で親和吸収した試料、No−7にはλ抗体で親和吸
収した試料を添加し、直流電圧200■て60分間電気
泳動し、トリクロル酢酸とアルコールで固定し、次にコ
マンジーブリリアントブルーで染色、温風で乾燥し、鮮
明なブルーの泳動パターンを作成する。そのパターンか
らNo−4のIgAとNo−6のにの欠損が読み取れた
のでM成分は、IgAに型と判定された。[Example] Example (1) To determine the class and type of M component of myeloma serum,
Add original serum to the origin of agarose gel electrophoresis No. 1 to 0.
.. 00In+I, 0.60 times diluted serum to No-2.
For 001ml and NO-3, 0.001ml of 60-fold diluted serum was sucked into the freeze-dried chip after suctioning the pre-purified IgG antibody and reacting for 1 minute.
Similarly, sample No. 4 which had affinity absorption of I and gG was
Samples affinity-absorbed with gA antibody, NI) 5 were similarly treated with 1
A sample affinity-absorbed with an 8M antibody, a sample similarly affinity-absorbed with an antibody to No. 6, and a sample affinity-absorbed with a λ antibody to No. 7 were added, and electrophoresis was performed at a DC voltage of 200 μ for 60 minutes. , fixed with trichloroacetic acid and alcohol, then stained with Comangie brilliant blue and dried with warm air to create a clear blue migration pattern. Since defects in IgA in No. 4 and Ni in No. 6 were detected from the pattern, the M component was determined to be of IgA type.
抗体の使用量は0.005m1、所用時間は2時間であ
った。The amount of antibody used was 0.005ml, and the time required was 2 hours.
比較例(1) 実施例(1)の分析を従来の免疫電気泳動で行なった。Comparative example (1) The analysis of Example (1) was performed by conventional immunoelectrophoresis.
先ずアガロースゲルの薄層を作って、原点No−1,2
,3,4,5ニ、原血清を各々0.002++I添加し
て、直流電圧200vで60分電気泳劫を行ない、泳動
後、泳動の方向に平行に作った溝N0−1.2,3,4
.5ニ0.051の抗1gG、抗1gA、抗1.1(M
、抗に、抗λ の各抗体を入れて、これを室温で放置し
て24時間の後、ようやく免疫学的な沈降線の出現のあ
った・NO−2の1gAトNo−4のにから、M成分は
+8Aに型と判定した・実施例(1)は比較例(1)と
比べると抗体の使用量は50倍、使用時間は12倍、試
料必要量は11倍であった。First, make a thin layer of agarose gel and place origin No. 1 and 2.
, 3, 4, and 5 D. Add 0.002++ I of each of the original serum and perform electrophoresis for 60 minutes at a DC voltage of 200 V. After electrophoresis, grooves N0-1, 2, and 3 were made parallel to the direction of electrophoresis. ,4
.. 5 0.051 anti-1gG, anti-1gA, anti-1.1 (M
After adding each anti-λ antibody to the anti-antibody and leaving it at room temperature for 24 hours, an immunological precipitation line finally appeared. , the M component was determined to be type +8A.Compared to Comparative Example (1), Example (1) used 50 times the amount of antibody used, 12 times the usage time, and 11 times the required amount of sample.
実施例(2)
IgG骨髄腫血清のM成分のIgGサブクラスを判定す
る為に、アガロースゲルの原点No−1に血清を帆00
2m l、No−2に100倍希釈の血清を0.002
m1、NO−3に親和クロマトグラフィにより精製され
た抗13Glモノクロナール抗体を0.002m1吸引
して、凍結乾燥したチップに、100倍希釈血清0.0
02m1を吸引して、IgG1を親和吸収した試料、N
o−4には同様に、抗13G4にて親和吸収した試料、
NO−3には同様にブドウ状球閏のAタンパクで親和吸
収した試料を添加し、直流電圧200■で60分間電気
泳動し、トリクロル酢酸とアルコールで固定し、次にコ
マンジーブリリアントブルーで染色後、温風で乾燥する
。この泳動のパターンから、NO−3のバンドの欠損が
読み取れた。一般にAタンパクはIgG1,2.4と反
応するが、この試料は抗1gG+、4とは反応していな
いので、M成分のIgGサブクラスはl gc2と判定
した。Example (2) In order to determine the IgG subclass of the M component of IgG myeloma serum, serum was added to origin No. 1 of an agarose gel.
Add 100 times diluted serum to 2 ml, No-2 at 0.002
ml, 0.002 ml of anti-13Gl monoclonal antibody purified by affinity chromatography to NO-3 was aspirated, and 0.0 ml of 100-fold diluted serum was added to the freeze-dried chip.
A sample in which 02ml was aspirated and IgG1 was affinity-absorbed, N
Similarly, o-4 contained a sample affinity-absorbed with anti-13G4,
To NO-3, a sample that had been similarly affinity-absorbed with the A protein of the grape-shaped bulb was added, electrophoresed at a DC voltage of 200 μm for 60 minutes, fixed with trichloroacetic acid and alcohol, and then stained with Comangie brilliant blue. Then dry with warm air. Defects in the NO-3 band were read from this electrophoresis pattern. Generally, A protein reacts with IgG1, 2.4, but this sample did not react with anti-1gG+, 4, so the IgG subclass of the M component was determined to be lgc2.
この様にして同定したサブクラスの判定のための表を以
下に示す。(反応陽性は+、陰性は−)比較例(2)
実施例(2)と同様に、I−gG骨髄腫血清のM成分の
+gcサブクラスの同定をする時に、チップの中に抗1
3Gモノクロナール抗体を溶液の状態のまま吸入して、
30分後にゲルに添加−して電気泳動をおこなった。そ
の結果、親和吸収はは不完全な状態であり、従って電気
泳動の泳動のパターンは、明確な移動度の差を示さず、
僅かな減衰しか認めろれなかった。A table for determining the subclasses identified in this manner is shown below. (Positive reaction: +, negative reaction: -) Comparative Example (2) Similarly to Example (2), when identifying the +gc subclass of the M component of IgG myeloma serum, anti-1
Inhaling the 3G monoclonal antibody in solution form,
After 30 minutes, it was added to the gel and electrophoresis was performed. As a result, the affinity absorption is incomplete, and therefore the electrophoretic migration pattern does not show a clear difference in mobility.
Only a slight attenuation was observed.
比較例(3)
実施例(2)と同様に、1gG骨髄肺血清のM成分のサ
ブクラスの同定をする時に、市販のモノクロナール抗体
を用いて、従来の免疫電気泳動を行なった。まず、アガ
ロースゲルのKNを作って、原点No−1,2,3,4
に試料の血清を0.002m1添加して、泳動の後、泳
動の方向に平行に作った溝No−1,2,3,4に帆0
51のモノクロナール抗体、抗13G+、抗13G2
。Comparative Example (3) Similarly to Example (2), conventional immunoelectrophoresis was performed using a commercially available monoclonal antibody to identify the subclass of the M component of 1gG bone marrow and lung serum. First, make KN of agarose gel and use origin No. 1, 2, 3, 4.
Add 0.002 ml of sample serum to the sample, and after electrophoresis, fill grooves No. 1, 2, 3, and 4 parallel to the direction of electrophoresis.
51 monoclonal antibodies, anti-13G+, anti-13G2
.
抗1 gG3 、抗18G4を入れて、これを室温で放
置して、24時間の後、免疫学的な沈降線の検出を期待
し、だが、ゲル面に沈降によるパターンは発見すること
が出来ず、サブクラスの同定は出来なかった。I added anti-1 gG3 and anti-18G4 and left it at room temperature. After 24 hours, I expected to detect an immunological precipitation line, but I could not find any pattern due to precipitation on the gel surface. , the subclass could not be identified.
実施例(3)
試料血清中の微量成分、血清アミロイドAタンパクを分
析するために、アルブミンの抗体を内蔵したチップを用
いて実施例(2)と同様に電気泳動による分析を行なっ
た。その結果、試料中のアルブミンの親和吸収が行なわ
れて、電気泳動のパターンは、アルブミンが消失し電気
泳動的に近接して存在する1Mfi成分の血清アミロイ
ドAタンパクが明瞭に出現した。Example (3) In order to analyze a trace component in a sample serum, serum amyloid A protein, electrophoretic analysis was performed in the same manner as in Example (2) using a chip containing an albumin antibody. As a result, affinity absorption of albumin in the sample was performed, and in the electrophoretic pattern, albumin disappeared and serum amyloid A protein, a 1Mfi component, which existed electrophoretically close to the sample, clearly appeared.
比較例く4)
実施例(3)と同様な実験を行なった。ただし、この場
合アルブミンの抗体が含まれていないチップを用いた。Comparative Example 4) An experiment similar to Example (3) was conducted. However, in this case, a chip that did not contain albumin antibodies was used.
従って微量成分、血清7ミaイトタンパクのバンドは、
血清中、含有率の最も高いアルブミンの影響を強く受け
て覆い隠されて出現できず、識別が困難だった。Therefore, the trace component, the band of serum 7 myoprotein, is
It was difficult to identify because it was strongly influenced by albumin, which has the highest content in serum, and was obscured.
実施例(4)
血清のγグロブリン領域に3本のM成分があり、これh
月gGであるかを判定した。予備試験として市販のパー
オキシダーゼ標識のIgGを倍数希釈列を作ってその力
価を検定してから、8倍希釈のパーオキシダーゼ標識の
IgG抗体をO,001m1内蔵したチップをつくった
。先ず試料帆0011を、泳動用のアガロースゲルの原
点N0−1に添加した。次に10倍希釈の試料0.00
1ソ1をNO−2に添加した。次に、同試料を標識抗体
を内蔵したチップにとり、原点NO・3に添加した。こ
れを電気泳動した後、パーオキシダーゼの基質iαに浸
し、4クロr:11ナフトールで紫色に発色させた。N
O−3ではM成分に相当する2本のバンドが呈色した。Example (4) There are three M components in the γ globulin region of serum, and these
It was determined whether it was Moon GG. As a preliminary test, a dilution series of commercially available peroxidase-labeled IgG was prepared and the titer was assayed, and then a chip containing 0,001 ml of peroxidase-labeled IgG antibody diluted 8 times was prepared. First, sample sail 0011 was added to the origin No. 1 of an agarose gel for electrophoresis. Next, 10 times diluted sample 0.00
1 so 1 was added to NO-2. Next, the same sample was placed on a chip containing a labeled antibody and added to origin No. 3. After electrophoresing this, it was immersed in peroxidase substrate iα and colored purple with 4 chloror:11 naphthol. N
In O-3, two bands corresponding to the M component were colored.
これによって試料の3本のバンドのうち2本が、IgG
のM成分であることが確認された。As a result, two of the three bands in the sample are IgG
It was confirmed that it was the M component.
実施例(5)
血清中で、炎症に対して防禦的に働くα+ATの分析、
をマイクロプレートの容110.05m1の小さな穴の
中で、試料を親和吸収する方法を試みた。Example (5) Analysis of α+AT that acts as a defense against inflammation in serum,
We tried a method of affinity absorption of the sample in a small hole with a volume of 110.05 ml in a microplate.
先ず、試料を二分して、試料Aを穴No−1に入れて、
試NBを、予めα+AT抗体を凍結乾燥しである穴NO
−2に入れて一分間反応をさせて後、両者をアガa−ズ
ゲルを用いて電気泳動すると、対照とした試料Aは、電
気泳動的α1の位置に明確なバンドをもったパターンを
示すが、反応した試料Bの方は、α1の位置にバンドを
欠損したパターンを示し、試料へに出現したバンドが、
α+ATであると同定する事ができた。First, divide the sample into two and put sample A into hole No.1.
Test NB was prepared by freeze-drying α+AT antibody in advance.
-2 and reacted for 1 minute, and then electrophoresed both samples using Aga's gel. Sample A, which was used as a control, showed a pattern with a clear band at the electrophoretic α1 position. , the reacted sample B showed a pattern in which a band was missing at the α1 position, and the band that appeared in the sample was
It was possible to identify it as α+AT.
[発明の効果コ
以上の結果から明らかなように、本発明の分析方法を用
いると、一般的に用いられている精製抗体だけでなく、
従来、抗原と抗体は反応しても沈降物を作らず、免疫学
的な解析が不完全だったモノクロナール抗体やタンパク
Aを用いる実験が可能になって、未知試料の分析や、よ
り確実な解析が出来るようになった。[Effects of the Invention] As is clear from the above results, when the analysis method of the present invention is used, not only the commonly used purified antibodies but also the
Conventionally, antigens and antibodies do not form precipitates even when they react, making it possible to perform experiments using monoclonal antibodies and protein A, for which immunological analysis was incomplete, making it possible to analyze unknown samples and more accurately. Analysis is now possible.
即ち、本発明は、この点を親和性試薬を内蔵したチップ
等の小さな容器中で、試料を親和吸収して後、電気泳動
を行ない、反応物質と、吸収以前の成分との間に生じた
パターンの差を解析することによって解決すると同時に
、経済的で短時間内に、しかも高感度で分析できる様に
工夫したため、免疫学の分野は勿論のこと、臨床検査や
生化学の分野に、診断や研究の情報の正確度を高めろ分
析法として、非常に有用である。That is, the present invention solves this problem by affinity-absorbing a sample in a small container such as a chip containing an affinity reagent and then performing electrophoresis to detect the differences between the reactant and the components before absorption. We solved the problem by analyzing the differences in patterns, and at the same time, we devised an economical, short-time, and high-sensitivity analysis method, making it useful not only in the field of immunology but also in the fields of clinical testing and biochemistry. It is very useful as an analysis method to increase the accuracy of information in research and research.
Claims (7)
、一方の試料は対照として残し、他方を特異的に反応す
る試薬と反応させた後、これらを、それぞれ電気泳動を
して、両者の作る泳動パターンの相違により、反応した
上記の成分を同定することを特徴とする電気泳動による
分析方法。(1) In the electrophoresis method, a sample is divided into two parts in advance, one sample is left as a control, the other is reacted with a specifically reactive reagent, and then each of these is subjected to electrophoresis to create a mixture of both. An analysis method using electrophoresis, characterized in that the above-mentioned components that have reacted are identified based on differences in migration patterns.
を行なわせることを特徴とする特許請求範囲の第(1)
項の電気泳動による分析方法。(2) Claim (1) characterized in that the above reaction is carried out in a chip for adding a sample for electrophoresis.
Analysis method using electrophoresis.
ることを特徴とする特許請求範囲第(2)項に記載の電
気泳動による分析方法。(3) An analysis method by electrophoresis according to claim (2), characterized in that an addition chip containing a reagent in advance is used.
されていることを特徴とする特許請求範囲第(3)項に
記載の電気泳動による分析方法。(4) The electrophoretic analysis method according to claim (3), wherein the reagent is contained in a chip in a freeze-dried state.
複合物から選択されたものであることを特徴とする特許
請求範囲第(3)項に記載の電気泳動による分析方法。(5) The electrophoretic analysis method according to claim (3), wherein the reagent is selected from antigens, antibodies, dyes, polysaccharides, lipids, and complexes thereof.
許請求範囲第(5)項に記載の電気泳動による分析方法
。(6) The electrophoretic analysis method according to claim (5), wherein the antibody is monoclonal.
標識されている事を特徴とする特許請求範囲第(5)項
に記載の電気泳動による分析方法。(7) The electrophoretic analysis method according to claim (5), wherein the reagent is labeled with an enzyme, a radioisotope, a fluorescent substance, or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60121461A JPS61280570A (en) | 1985-06-06 | 1985-06-06 | Novel analysis by electrophoresis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60121461A JPS61280570A (en) | 1985-06-06 | 1985-06-06 | Novel analysis by electrophoresis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61280570A true JPS61280570A (en) | 1986-12-11 |
Family
ID=14811707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60121461A Pending JPS61280570A (en) | 1985-06-06 | 1985-06-06 | Novel analysis by electrophoresis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61280570A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5137614A (en) * | 1988-08-11 | 1992-08-11 | Helena Laboratories Corporation | Immunofixation electrophoresis control system |
US5228960A (en) * | 1992-07-17 | 1993-07-20 | Beckman Instruments, Inc. | Analysis of samples by capillary electrophoretic immunosubtraction |
-
1985
- 1985-06-06 JP JP60121461A patent/JPS61280570A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5137614A (en) * | 1988-08-11 | 1992-08-11 | Helena Laboratories Corporation | Immunofixation electrophoresis control system |
US5228960A (en) * | 1992-07-17 | 1993-07-20 | Beckman Instruments, Inc. | Analysis of samples by capillary electrophoretic immunosubtraction |
EP0579361A3 (en) * | 1992-07-17 | 1994-12-07 | Beckman Instruments Inc | Analysis of samples by capillary electrophoretic immunosubtraction. |
JPH0735753A (en) * | 1992-07-17 | 1995-02-07 | Smithkline Beckman Corp | Analysis of sample by capillary electrophoretic immunological subtraction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5348633A (en) | Method for quantitating trace amounts of an analyte in a sample by affinity capillary electrophoresis | |
US4018662A (en) | Method and apparatus for simultaneous quantitative analysis of several constituents in a sample | |
EP0624246B1 (en) | Differential separation assay | |
US5958790A (en) | Solid phase transverse diffusion assay | |
DK160108C (en) | Method and equipment for direct or indirect detection of reaction between a specific binding agent and the corresponding acceptor substance | |
Bao | Capillary electrophoretic immunoassays | |
US5431793A (en) | Quantitative analysis of glycosylated hemoglobin by immunocappillary electrophoresis | |
US5221454A (en) | Differential separation assay | |
US4198389A (en) | Determination of immunologically active materials and system therefore | |
JPH076984B2 (en) | Multiple item analysis method | |
US3930983A (en) | Arrangement and process for determining antigens | |
EP0207152B1 (en) | Solid phase diffusion assay | |
US20180364249A1 (en) | Method of quantitative determination of sarcosine in a biological sample | |
HK1000970B (en) | Solid phase diffusion assay | |
US4094759A (en) | Method for simultaneous quantitative analysis of several constituents in a sample | |
Chen | Characterization of charge-modified and fluorescein-labeled antibody by capillary electrophoresis using laser-induced fluorescence Application to immunoassay of low level immunoglobulin A | |
CZ374392A3 (en) | Method of determining concentration of different substances | |
JPH05307020A (en) | Analyzing method for component of vial organism | |
JPS61280570A (en) | Novel analysis by electrophoresis | |
WO1996040398A1 (en) | On line detection of a desired solute in an effluent stream using fluorescence spectroscopy | |
Steffen et al. | Multiple immunoblot: A sensitive technique to stain proteins and detect multiple antigens on a single two‐dimensional replica | |
Laurell | The use of electroimmunoassay for determining specific proteins as a supplement to agarose gel electrophoresis | |
WO1994013829A1 (en) | Isoelectric focusing differential separation assay | |
JPS61280569A (en) | Chip for adding specimen and its preparation | |
Raisys et al. | Determination of proteins in biological fluids by electroimmunodiffusion and two-directional immunoelectrophoresis |