[go: up one dir, main page]

JPS6128035B2 - - Google Patents

Info

Publication number
JPS6128035B2
JPS6128035B2 JP55169059A JP16905980A JPS6128035B2 JP S6128035 B2 JPS6128035 B2 JP S6128035B2 JP 55169059 A JP55169059 A JP 55169059A JP 16905980 A JP16905980 A JP 16905980A JP S6128035 B2 JPS6128035 B2 JP S6128035B2
Authority
JP
Japan
Prior art keywords
nickel
plating
bath
cobalt
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55169059A
Other languages
Japanese (ja)
Other versions
JPS5794582A (en
Inventor
Akihiro Sakata
Toshimasa Okazaki
Kyoji Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP55169059A priority Critical patent/JPS5794582A/en
Priority to DE19813132269 priority patent/DE3132269A1/en
Publication of JPS5794582A publication Critical patent/JPS5794582A/en
Publication of JPS6128035B2 publication Critical patent/JPS6128035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素発生用陰極、特にアルカリ水酸化
物、アルカリ炭酸化物その他アルカリ性の水溶液
中において優れた低水素過電圧を示す主として電
解のための水素発生用陰極に関する。従来より陰
極で水素ガスが発生する技術として隔膜(アスベ
スト隔膜の如き多孔性の隔膜及びイオン交換膜
の如き密隔膜を含む)法アルカリ金属塩水溶液の
電解が知られており、又水電解等もこれに該当す
る。他方特に近年省エネルギーの観点からこの種
技術において、電解電圧の低減化が望まれて来て
おり、その一環として陰極の水素過電圧を減少さ
せることが提唱されている。低水素過電圧陰極に
関しては、従来より各種材料の電極が提案されて
いるが、本発明者等は、電極基材表面にニツケル
浴による電気メツキを施した陰極、特に炭素質か
らなる微粒子を分散させたニツケル浴から電気メ
ツキを施した陰極について幾多研究を行つた結
果、優れた持続性を持つた低水素過電圧陰極が得
られることを見出し、本発明を完成するに至つ
た。本発明の骨子とするところは、メツキ時にお
ける浴成分として、炭素質からなる微粒子が分散
され、且つ主たる成分金属がニツケルおよびコバ
ルトでありかつ銅、クロム、アルミニウム、ス
ズ、亜鉛、バリウム、銀、白金、ロジウム、イリ
ジウムおよびパラジウムより選ばれた金属イオン
の1種もしくは2種以上を微量含有せしめたメツ
キ浴により、電極基材に電気メツキを施し、該基
材表面にニツケル主体のニツケル−コバルト合金
を含むメツキ層を形成させることを特徴とする水
素発生用陰極の製造方法である。 上記本発明において使用するメツキ浴は、その
成分金属としてニツケルおよびコバルトを含むも
のであり、この浴中に更に炭素質からなる微粒子
を分散せしめかつ銅、クロム、アルミニウム、ス
ズ、亜鉛、バリウム、銀、白金、ロジウム、イリ
ジウムおよびパラジウムより選ばれた金属イオン
の1種もしくは2種以上を微量含むものである。 かゝる浴により、電極基材表面に電気メツキを
施し、これによつてニツケルを主体としたニツケ
ル−コバルト合金を含むメツキ層を形成させるも
のであり、かくて得た陰極は、基材上に活性な層
を有し、寿命が長く、著しく低減化された水素過
電圧を持つものである。又この方法によれば格別
複雑な工数を要することなく、安価に電極を製造
することが出来る点で頗る有利である。 本発明に使用する電極基材としては、鉄、ステ
ンレス、銅、ニツケル及びこれらの合金などニツ
ケルメツキ可能な材料、及び鉄上にニツケル、銅
などのメツキを施したもの、更にはバルブ金属に
白金族あるいはそれ以外の金属又は、酸化物を単
独又は混ぜて付けたもの、それらの上に更に銅、
鉄、ニツケル及びその他のメツキを施したもの等
で、ある程度使用条件下で耐食性を示すものなら
ば、すべて使用可能である。一方メツキ浴中に分
散させる炭素質からなる微粒子としては、木炭、
石炭、骨炭などの炭素類及び黒鉛、活性炭、カー
ボンブラツク、コークス等の微粒子を挙げること
が出来、特に木材、ヤシガラ等を原料とした活性
炭が性能上も、又経済的にも有利である。かかる
微粒子は100μ以下が好ましい。但し一般市販の
微粒子は可成り広範囲の粒度分布を持つものが多
いので、100μ以下の粒子が約50%以上含まれて
おれば、本発明の目的達成には特に支障を生じな
い。 メツキ浴中にかゝる微粒子を分散させる場合、
その濃度は好ましくは0.1〜100g/、特に好ま
しくは1〜20g/である。この微粒子の濃度は
或る一定濃度を越えて高濃度となつても得られる
陰極の水素過電圧にはあまり影響を及ぼさない
が、濃度が過大となると均一な分散が困難とな
り、モツキ操作が厄介となる。これが十分メツキ
に適した条件で分散される時には上記した濃度の
好ましい上限を越えてもあまり問題はない。又上
記した濃度範囲は分散させる炭素質微粒子の粒度
分布にも影響するので濃度そのものに左程拘泥す
る必要はない。一方、これが低濃度に過ぎるとき
は、所期の低水素過電圧陰極は得られ難くなり、
前記した濃度範囲が望ましい。このような微粒子
を分散させるには適当な撹拌を行う必要がある
が、その具体的手段としては、ガス吹込みによる
方法、液循環による方法、或いは撹拌器を用いる
方法等があり、又小規模の場合にはマグネテイツ
クスターラーによる撹拌方法も推奨出来る。この
撹拌が不充分であると均一なメツキ物を得ること
が出来ず、逆に強過ぎると活性あるメツキ物とな
らない。又メツキ操作を長時間継続すると炭素質
微粒子は消費され、特に細かい粒子が多く減少し
てゆくが、その際にはプレコード過器などを用
いてすべての微粒子を除去し、再び新らしい微粒
子を添加して操作してもよく、操作に練れた場合
には消費された分を追加することも出来る。 一方、通常のニツケルメツキ浴、例えばスルフ
アミン酸ニツケル、硫酸ニツケル、塩化ニツケル
などの代表的なニツケルメツキ浴をはじめとする
多くのニツケルメツキ浴は、普通、純純にニツケ
ルのみが含まれているものではなく、ニツケル以
外にコバルトを含むものであり、その量は0.01〜
10%の広範囲に亘つている。 本発明に用いるメツキ浴中の主な成分金属はニ
ツケルおよびコバルトであり、前記通常のニツケ
ルメツキ浴中のコバルトをそのまゝ成分金属とし
て利用するか、又はこの通常のニツケルメツキ浴
中のコバルトを一部除去したり、或は別途コバル
トを水溶性化合物の形で加えたりして所望の組成
比としたものが好ましく使用出来る。又コバルト
を含む前記通常のニツケルメツキ浴と共に、電気
メツキ時に使用する相手極として、コバルトを含
むプレートを使用し、メツキ時に溶解するコバル
トを合金成分として役立ててもよく、更にコバル
トを含まないニツケルメツキ浴を使用し、コバル
トを含む前記相手極のコバルトのみを以て合金成
分としてもよく、この様に本発明におけるメツキ
浴は、少くともメツキ時における浴成分としてニ
ツケル−コバルトを主たる成分金属とし前記した
炭素質微粒子が分散されかつ銅、クロム、アルミ
ニウム、スズ、亜鉛、バリウム、銀、白金、ロジ
ウム、イリジウムおよびパラジウムより選ばれた
金属イオンの1種もしくは2種以上を微量含量せ
しめた浴であればよい。 かゝるニツケル−コバルトの組成比はメツキ浴
としては特に制限はなく、要するにメツキ温度メ
ツキ電流密度、相手極材料、メツキ液PH、液撹拌
の程度などのメツキ条件を考慮して形成した基材
表面の合金成分としてニツケルが優位量で存在
し、残部の特に好ましくは1〜49重量%の範囲が
コバルトとなるようにメツキ時の浴組成を決定す
ることである。この様な基材表面における主たる
成分金属(ニツケル−コバルト)の組成はメツキ
層の一部を剥離して溶解せしめ、原子吸光法等の
方法で測定することが出来る。 かゝる合金中のコバルトの存在は基材に対する
メツキ層の密着を優れたものとなし、且つメツキ
層の硬度を向上せしめる利点をもつものである。
そして、このコバルトが少な過ぎるときは、上記
の利点が失われ、逆に過大になるとニツケルの持
つ耐蝕性が減少する傾向を示すので上記した合金
組成範囲が好適である。 本発明においては前記した炭素質微粒子を分散
させたニツケル−コバルト浴中に更に下記の金属
イオンを存在させることが必要である、即ちそれ
は、銅、クロム、アルミニウム、スズ、亜鉛、バ
リウム、銀、白金、ロジウム、イリジウムおよび
パラジウムより選ばれた金属イオンの1種もしく
は2種以上であり、これらを浴全体に対して微量
存在させることによつて、得られた陰極の活性効
果が一層助長され、より低い水素過電圧を示す陰
極となる。 この場合の微量金属の添加は浴に対して1重量
%以下が望ましく、その特に好ましい濃度範囲は
金属の種類によつても異るが、 概ね次の通りである。 Cu〓:0.5〜250ppm、 Cr〓又はCr〓50〜2000ppm Al〓:50〜5000ppm、 Sn〓:50〜5000ppm Zn〓:50〜5000ppm、 Ba〓:50〜5000ppm Ag+:50〜5000ppm、 Pt〓又はPt〓:5〜3000ppm Rh〓:5〜300ppm、 Ir〓又はIr〓又はIr〓:10〜3000ppm Pd〓:1〜300ppm、 これらの微量金属は、メツキ浴中に塩の形で添
加することが望ましい。これらの添加金属は一般
的にはイオンの形でメツキ浴中に存在するが特定
のものは不溶性塩の形で存在するものがある。 本発明に使用するメツキ浴は既述の通り通常の
ニツケルメツキ浴をベースとして使用することが
出来る。 特に好適な浴の1例としてはスルフアミン酸ニ
ツケルや硫酸ニツケルを主成分とする浴である。
本発明方法を実施するに当つてはメツキ条件、即
ち、メツキ浴組成、メツキ温度、メツキ電流密
度、相手極メツキ液PH、液の撹拌などがメツキ浴
と共に関係してるので好適な範囲を選定すること
が望ましい。 メツキの厚みは純ニツケルに換算して数ミクロ
ン以上、好ましくは20ミクロン以上が陰極寿命な
どの点で好適である。 又これらのメツキ物の密着性を一層向上させる
ためにはメツキ表面に更にニツケルメツキ或は硫
黄含有ニツケルメツキを施してもよい。含有イオ
ウメツキとしては、ニツケルメツキ浴にメツキ中
に硫黄分を析出するチオ尿素、チオシアン酸塩、
チオ硫酸塩、チオグリコール酸などの化合物を添
加したもの、その他が使える。以上説明した通
り、本発明方法によれば、安価に水素発生用陰極
を製造出来、得られた陰極は顕著は低水素過電圧
陰極を持ち、しかもその活性を長期間持続しうる
ものである。そしてかゝる陰極は水素発生陰極と
してアスベスト隔膜或いはイオン交換膜を使用す
る塩化ナトリウム、塩化カリウム等の電解用電極
としても有用であり、又水電解装置用としても充
分使用に耐えるものである。 以下実施例を掲げて本発明を説明する。 比較例 1 直径3mmφのニツケル丸棒よりなる基材を、5
〜6N−HCl中に80℃、30分間浸漬してエツチング
した。同様に直径3mmφの軟鉄丸棒を同濃度の塩
酸を用いて60℃、30分間浸漬してエツチングし
た。エツチング液のこれらの丸棒を下記組成のメ
ツキ浴で下記条件により電気メツキを行つた。 〔メツキ浴組成〕 硫酸ニツケル 84 g/ 硫酸コバルト 5 g/ 塩化ニツケル 30 g/ 塩化アンモニウム 4.5g/ 塩化カリウム 6 g/ ホウ酸 30 g/ 微粒状活性炭(二村化学KK製 KV−3 100μ
以下の粒子を70%以上含有) 5 g/ 〔メツキ条件〕 メツキ浴PH 3.5 相手極 黒鉛 温 度 40℃ メツキ電流密度 2A/dm2 メツキ時間 2時間 上記の如くして得たメツキ物につて、20%
KOH溶液60℃、200A/dm2でHg/Hgo電極基準で
水素発生電位を測定した結果、Ni丸棒−1.14V、
軟鉄丸棒−1.15Vを得た。 実施例 1 比較例1と同じ組成のメツキ浴にPt、Rh、
Ir、Pdを添加したそれぞれのメツキ浴を用いて比
較例1と同様にして電気メツキを行つた。 その結果は第1表の通りであつた。
The present invention relates to a hydrogen generating cathode, particularly a hydrogen generating cathode mainly used for electrolysis, which exhibits an excellent low hydrogen overvoltage in alkaline aqueous solutions such as alkali hydroxides, alkali carbonates, and other alkaline aqueous solutions. Conventionally, as a technique for generating hydrogen gas at the cathode, diaphragm (including porous diaphragms such as asbestos diaphragms and tight diaphragms such as ion exchange membranes) method, electrolysis of aqueous alkali metal salt solutions, etc. have been known. This applies. On the other hand, in recent years, particularly in this type of technology, there has been a desire to reduce the electrolysis voltage from the viewpoint of energy saving, and as part of this, it has been proposed to reduce the hydrogen overvoltage of the cathode. Regarding low hydrogen overvoltage cathodes, electrodes made of various materials have been proposed in the past, but the present inventors have developed a cathode whose surface is electroplated with a nickel bath, and in particular, a cathode in which fine particles made of carbonaceous material are dispersed. As a result of numerous studies conducted on cathodes electroplated from nickel baths, the inventors discovered that a low hydrogen overvoltage cathode with excellent durability could be obtained, leading to the completion of the present invention. The gist of the present invention is that carbonaceous fine particles are dispersed as a bath component during plating, and the main component metals are nickel and cobalt, and copper, chromium, aluminum, tin, zinc, barium, silver, The electrode base material is electroplated using a plating bath containing trace amounts of one or more metal ions selected from platinum, rhodium, iridium, and palladium, and a nickel-cobalt alloy mainly composed of nickel is coated on the surface of the base material. This is a method for producing a hydrogen generating cathode characterized by forming a plating layer containing the following. The plating bath used in the present invention contains nickel and cobalt as its component metals, and further contains carbonaceous fine particles dispersed therein, and copper, chromium, aluminum, tin, zinc, barium, and silver. , platinum, rhodium, iridium, and palladium. Using such a bath, the surface of the electrode substrate is electroplated to form a plating layer containing a nickel-cobalt alloy mainly composed of nickel, and the cathode thus obtained is coated on the substrate. It has an active layer, has a long life, and has a significantly reduced hydrogen overvoltage. Furthermore, this method is extremely advantageous in that the electrodes can be manufactured at low cost without requiring particularly complicated man-hours. The electrode base materials used in the present invention include materials that can be plated with nickel, such as iron, stainless steel, copper, nickel, and alloys thereof, iron plated with nickel, copper, etc., and platinum group metals as valve metals. Or other metals or oxides are applied alone or in combination, and copper is added on top of them.
Any material such as iron, nickel, or other plated material can be used as long as it exhibits some degree of corrosion resistance under the conditions of use. On the other hand, fine particles made of carbonaceous material to be dispersed in the plating bath include charcoal,
Examples include carbons such as coal and bone charcoal, and fine particles such as graphite, activated carbon, carbon black, and coke. In particular, activated carbon made from wood, coconut shell, etc. is advantageous in terms of performance and economy. Such fine particles preferably have a size of 100 μm or less. However, since many commercially available fine particles have a fairly wide particle size distribution, as long as about 50% or more of particles of 100 μm or less are contained, there is no particular problem in achieving the object of the present invention. When dispersing such fine particles in the plating bath,
Its concentration is preferably from 0.1 to 100 g/, particularly preferably from 1 to 20 g/. Even if the concentration of these fine particles exceeds a certain level, it will not have much effect on the hydrogen overvoltage of the cathode obtained. However, if the concentration becomes too high, uniform dispersion becomes difficult and motsuki operation becomes troublesome. Become. When it is sufficiently dispersed under conditions suitable for plating, there is no problem even if the concentration exceeds the above-mentioned preferred upper limit. Furthermore, since the above concentration range also affects the particle size distribution of the carbonaceous fine particles to be dispersed, there is no need to be too particular about the concentration itself. On the other hand, if this concentration is too low, it becomes difficult to obtain the desired low hydrogen overvoltage cathode.
The concentration range described above is desirable. Appropriate stirring is required to disperse such fine particles, and specific methods include gas blowing, liquid circulation, or using a stirrer. In this case, a stirring method using a magnetic stirrer is also recommended. If this stirring is insufficient, a uniform plated product cannot be obtained, and on the other hand, if it is too strong, an active plated product cannot be obtained. In addition, if the plating operation continues for a long time, the carbonaceous particles will be consumed, and many fine particles in particular will be reduced, but in this case, all the particles will be removed using a pre-coating device, etc., and new particles will be generated again. The operation may be performed by adding the amount of water consumed, and if the operation is practiced, the amount consumed can be added. On the other hand, many nickel-metallic baths, including typical nickel-metallic baths such as nickel sulfamate, nickel sulfate, and nickel chloride, do not usually contain only nickel; It contains cobalt in addition to nickel, and the amount is 0.01~
It covers a wide range of 10%. The main component metals in the plating bath used in the present invention are nickel and cobalt, and the cobalt in the conventional nickel plating bath may be used as a component metal, or the cobalt in the conventional nickel plating bath may be used as a component metal. A desired composition ratio can be preferably used by removing cobalt or separately adding cobalt in the form of a water-soluble compound. In addition to the above-mentioned normal nickel plating bath containing cobalt, a plate containing cobalt may be used as a counter electrode during electroplating, and the cobalt dissolved during plating may be used as an alloying component. In this way, the plating bath of the present invention may contain nickel-cobalt as a main component metal at least as a bath component during plating, and the above-mentioned carbonaceous fine particles may be used as the alloy component. Any bath may be used as long as it contains a trace amount of one or more metal ions selected from copper, chromium, aluminum, tin, zinc, barium, silver, platinum, rhodium, iridium, and palladium. The composition ratio of nickel-cobalt is not particularly limited as a plating bath, and in short, the base material is formed by considering plating conditions such as plating temperature, plating current density, counter electrode material, plating liquid PH, and degree of liquid stirring. The bath composition during plating is determined so that nickel is present in a predominant amount as an alloy component on the surface, and the remainder, particularly preferably in the range of 1 to 49% by weight, is cobalt. The composition of the main component metal (nickel-cobalt) on the surface of such a base material can be measured by peeling off and dissolving a part of the plating layer and using a method such as atomic absorption spectrometry. The presence of cobalt in such an alloy has the advantage of providing excellent adhesion of the plating layer to the base material and improving the hardness of the plating layer.
If the amount of cobalt is too small, the above advantages are lost, and if it is too large, the corrosion resistance of nickel tends to decrease, so the above alloy composition range is preferable. In the present invention, it is necessary to further include the following metal ions in the nickel-cobalt bath in which the carbonaceous fine particles are dispersed, namely, copper, chromium, aluminum, tin, zinc, barium, silver, One or more metal ions selected from platinum, rhodium, iridium, and palladium, and by making them present in trace amounts in the entire bath, the activation effect of the obtained cathode is further promoted, This results in a cathode that exhibits a lower hydrogen overvoltage. In this case, the addition of trace metals is preferably 1% by weight or less based on the bath, and the particularly preferred concentration range varies depending on the type of metal, but is generally as follows. Cu〓: 0.5~250ppm, Cr〓 or Cr〓50~2000ppm Al〓: 50~5000ppm, Sn〓: 50~5000ppm Zn〓: 50~5000ppm, Ba〓: 50~5000ppm Ag + : 50~5000ppm, Pt〓 or Pt〓: 5-3000ppm Rh〓: 5-300ppm, Ir〓 or Ir〓 or Ir〓: 10-3000ppm Pd〓: 1-300ppm, These trace metals should be added in the form of salts to the plating bath. is desirable. These additive metals are generally present in the plating bath in the form of ions, but certain metals may be present in the form of insoluble salts. The plating bath used in the present invention can be based on a normal nickel plating bath as described above. An example of a particularly suitable bath is a bath containing nickel sulfamate or nickel sulfate as a main component.
When carrying out the method of the present invention, plating conditions such as plating bath composition, plating temperature, plating current density, counter electrode plating liquid PH, and stirring of the liquid are related to the plating bath, so a suitable range should be selected. This is desirable. The thickness of the plating is preferably several microns or more, preferably 20 microns or more in terms of cathode life, etc. in terms of pure nickel. In order to further improve the adhesion of these plated materials, the plated surface may be further coated with nickel plating or sulfur-containing nickel plating. Examples of sulfur-containing metals include thiourea, thiocyanate, which precipitates sulfur content in the metal in the nickel metallurgy bath.
Those with added compounds such as thiosulfate and thioglycolic acid, and others can be used. As explained above, according to the method of the present invention, a cathode for hydrogen generation can be manufactured at low cost, and the obtained cathode has a significantly low hydrogen overvoltage cathode and can maintain its activity for a long period of time. Such a cathode is also useful as an electrode for electrolysis of sodium chloride, potassium chloride, etc. using an asbestos diaphragm or ion exchange membrane as a hydrogen generating cathode, and is also sufficiently durable for use in water electrolysis equipment. The present invention will be explained below with reference to Examples. Comparative Example 1 A base material made of a nickel round bar with a diameter of 3 mmφ was
It was etched by immersing it in ~6N HCl at 80°C for 30 minutes. Similarly, a soft iron round bar with a diameter of 3 mm was etched by immersing it in hydrochloric acid of the same concentration at 60°C for 30 minutes. These round bars of the etching solution were electroplated in a plating bath having the composition shown below and under the following conditions. [Metting bath composition] Nickel sulfate 84 g/ Cobalt sulfate 5 g/ Nickel chloride 30 g/ Ammonium chloride 4.5 g/ Potassium chloride 6 g/ Boric acid 30 g/ Fine granular activated carbon (KV-3 100μ manufactured by Futamura Kagaku KK)
Contains 70% or more of the following particles) 5 g/ [Plating conditions] Plating bath PH 3.5 Counter electrode graphite temperature 40℃ Plating current density 2A/dm 2 Plating time 2 hours Regarding the plated product obtained as above, 20%
As a result of measuring the hydrogen generation potential with Hg/Hgo electrode reference in KOH solution at 60℃ and 200A/ dm2 , Ni round bar -1.14V,
Soft iron round bar −1.15V was obtained. Example 1 Pt, Rh,
Electroplating was performed in the same manner as in Comparative Example 1 using each plating bath to which Ir and Pd were added. The results were as shown in Table 1.

【表】 実施例 2 直径3mmφのニツケル丸棒よりなる基材を5〜
6H−HCl中に80℃、30分間浸漬してエツチング
した。同様に3mmφ軟鉄丸棒を60℃、30分浸漬し
てエツチングした。このエツチング後、下記組成
のメツキ液及びこのメツキ浴中に微量の金属成分
を加えたメツキ浴により、下記のメツキ条件で電
気メツキを行つた。 <メツキ浴組成> スルフアミン酸ニツケル 300 g/ スルフアミン酸コバルト 0.1g/ 塩化ニツケル 5 g/ ホウ酸 40 g/ 微粒状活性炭(二村化学KK製KV−3 100μ以
下の粒子を70%含む) 5 g/ <メツキ条件> メツキ浴PH 3.6 相手極 Ni99.0%、Co約1%を含むプレート 温 度 40℃ メツキ電流密度 2A/dM2 メツキ時間 2H
[Table] Example 2 A base material made of a nickel round bar with a diameter of 3 mmφ was
Etching was performed by immersing in 6H-HCl at 80°C for 30 minutes. Similarly, a 3 mm diameter soft iron round bar was etched by immersing it at 60°C for 30 minutes. After this etching, electroplating was performed under the following plating conditions using a plating solution having the composition shown below and a plating bath in which a trace amount of a metal component was added to the plating bath. <Metting bath composition> Nickel sulfamate 300 g/ Cobalt sulfamate 0.1 g/ Nickel chloride 5 g/ Boric acid 40 g/ Fine granular activated carbon (KV-3 manufactured by Nimura Kagaku KK, containing 70% particles of 100 μ or less) 5 g/ <Plating conditions> Plating bath PH 3.6 Mating electrode plate containing 99.0% Ni and approximately 1% Co Temperature 40℃ Plating current density 2A/dM 2 plating time 2H

【表】 各メツキ物は20%KOH 60℃20A/dM2でHg/
HgO基準電極で水素発生電位を測定した。 測定した結果を第2表に示す。 これらの結果により明らかな通り、微量成分を
含有さすことにより、低い過電圧を示すことが分
る。 なお、メツキ物表面のNi−Co合金組成は概ね
Ni98.5%Co1.5%であつた。
[Table] Each plated material is 20% KOH 60℃ 20A/dM 2 Hg/
Hydrogen evolution potential was measured with a HgO reference electrode. The measured results are shown in Table 2. As is clear from these results, it can be seen that the inclusion of trace components results in a lower overvoltage. The Ni-Co alloy composition on the plated surface is approximately
It was 98.5% Ni and 1.5% Co.

【表】 実施例 3 比較例1と同じ素材で微量金属を添加して下記
のメツキ浴及び条件により電気メツキを行い第3
表の結果を得た。 <メツキ浴組成> 硫酸ニツケル 84 g/ 塩化ニツケル 30 g/ 塩化アンモニウム 4.5g/ 塩化カリウム 6 g/ ホウ酸 30 g/ 微粒状活性炭(KV−3) 5 g/ <メツキ条件> メツキ浴PH 3.5 相手極 Ni90%、Co10%を含むプレート 温 度 40℃ メツキ電流密度 2A/dM2 メツキ時間 2H
[Table] Example 3 The same material as Comparative Example 1 was used, with the addition of trace metals, and electroplated using the following plating bath and conditions.
Obtained the results in the table. <Plating bath composition> Nickel sulfate 84 g/ Nickel chloride 30 g/ Ammonium chloride 4.5 g/ Potassium chloride 6 g/ Boric acid 30 g/ Fine granular activated carbon (KV-3) 5 g/ <Plating conditions> Plating bath PH 3.5 Plate temperature containing 90% Ni and 10% Co: 40℃ Plating current density: 2A/dM 2 plating time: 2H

【表】 なお、メツキ物表面のNi−Co合金組成は概ね
Ni90% Co10%であつた。 実施例 4 実施例2において微量金属を添加して得た各メ
ツキ物上に更に下記メツキ浴及び条件で電気的メ
ツキを行つた。 <メツキ浴> 硫酸ニツケル 84 g/ 塩化ニツケル 30 g/ 塩化アンモニウム 4.5g/ 塩化カリウム 6 g/ ホウ酸 30 g/ チオ尿素 5 g/ <メツキ条件> メツキPH 3.5 相手極 99.9%Niプレート 温 度 40 メツキ電密 2A/dM2 メツキ時間 10分 かくて得た各メツキ物のメツキ後の電位を第4
表に示す。
[Table] The Ni-Co alloy composition on the plated surface is approximately
It was 90% Ni and 10% Co. Example 4 Each plated product obtained by adding trace metals in Example 2 was further electroplated using the following plating bath and conditions. <Plating bath> Nickel sulfate 84 g/ Nickel chloride 30 g/ Ammonium chloride 4.5 g/ Potassium chloride 6 g/ Boric acid 30 g/ Thiourea 5 g/ <Plating conditions> Plating PH 3.5 Counter electrode 99.9% Ni plate temperature 40 Plating electric density 2A/dM 2 Plating time 10 minutes The potential after plating of each plated object obtained in this way is
Shown in the table.

【表】 上記データより電位は、ほとんど変化せず、メ
ツキ物の密着強度が増した。 そのため機械的なメツキ物のハクリが減少する
ことが期待される。
[Table] From the above data, the potential hardly changed, and the adhesion strength of the plated material increased. Therefore, it is expected that mechanical peeling of plating materials will be reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 メツキ時における浴成分として、炭素質から
なる微粒子が分散され、且つ主たる成分金属がニ
ツケルおよびコバルトであり、かつ銅、クロム、
アルミニウム、スズ、亜鉛、バリウム、銀、白
金、ロジウム、イリジウムおよびパラジウムより
選ばれた金属イオンの1種もしくは2種以上を微
量含有せしめたメツキ浴により、電極基材に電気
メツキを施し、該基材表面にニツケル主体のニツ
ケル−コバルト合金を含むメツキ層を形成させる
ことを特徴とする水素発生用陰極の製造方法。
1 As a bath component during plating, carbonaceous fine particles are dispersed, and the main component metals are nickel and cobalt, and copper, chromium,
The electrode base material is electroplated using a plating bath containing a small amount of one or more metal ions selected from aluminum, tin, zinc, barium, silver, platinum, rhodium, iridium, and palladium. A method for manufacturing a cathode for hydrogen generation, characterized by forming a plating layer containing a nickel-cobalt alloy mainly composed of nickel on the surface of the material.
JP55169059A 1980-08-14 1980-12-02 Manufacture of cathode for generating hydrogen Granted JPS5794582A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55169059A JPS5794582A (en) 1980-12-02 1980-12-02 Manufacture of cathode for generating hydrogen
DE19813132269 DE3132269A1 (en) 1980-08-14 1981-08-14 Cathode for generating hydrogen gas, and method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55169059A JPS5794582A (en) 1980-12-02 1980-12-02 Manufacture of cathode for generating hydrogen

Publications (2)

Publication Number Publication Date
JPS5794582A JPS5794582A (en) 1982-06-12
JPS6128035B2 true JPS6128035B2 (en) 1986-06-28

Family

ID=15879575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55169059A Granted JPS5794582A (en) 1980-08-14 1980-12-02 Manufacture of cathode for generating hydrogen

Country Status (1)

Country Link
JP (1) JPS5794582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344141U (en) * 1986-09-06 1988-03-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344141U (en) * 1986-09-06 1988-03-24

Also Published As

Publication number Publication date
JPS5794582A (en) 1982-06-12

Similar Documents

Publication Publication Date Title
EP0298055B1 (en) Cathode for electrolysis and process for producing the same
KR900002842B1 (en) Method for preparing an electrode and use thereof in electrochemical processes
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
US4354915A (en) Low overvoltage hydrogen cathodes
KR890000179B1 (en) Cathode having high durability and low hydrogen overvoltage and method of manufacturing the same
US4470893A (en) Method for water electrolysis
US4414064A (en) Method for preparing low voltage hydrogen cathodes
US4496442A (en) Process for generating hydrogen gas
US5494560A (en) Low-hydrogen overvoltage cathode having activated carbon particles supporting platinum, rhodium, indium, or platinum in a nickel layer formed on a substrate
US4422920A (en) Hydrogen cathode
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
EP0226291B1 (en) Method for extending service life of a hydrogen-evolution electrode
JPS60159184A (en) Anode for electrolyzing water
EP0129231B1 (en) A low hydrogen overvoltage cathode and method for producing the same
JPS6128035B2 (en)
JPS6047912B2 (en) Manufacturing method of cathode for hydrogen generation
JPH0341559B2 (en)
JPS63130791A (en) Production of low-hydrogen overvoltage cathode
JPS6045710B2 (en) electrolytic cell
JP4100079B2 (en) Method for producing low hydrogen overvoltage cathode
JPS5867883A (en) Manufacture of low hydrogen overvoltage cathode
JPS6029487A (en) Manufacture of cathode with low hydrogen overvoltage
JPH036996B2 (en)
JP3367551B2 (en) Manufacturing method of low hydrogen overvoltage cathode
JPS6148592B2 (en)