JPS61280217A - Greenhouse culture method - Google Patents
Greenhouse culture methodInfo
- Publication number
- JPS61280217A JPS61280217A JP60117691A JP11769185A JPS61280217A JP S61280217 A JPS61280217 A JP S61280217A JP 60117691 A JP60117691 A JP 60117691A JP 11769185 A JP11769185 A JP 11769185A JP S61280217 A JPS61280217 A JP S61280217A
- Authority
- JP
- Japan
- Prior art keywords
- air
- concentration
- membrane
- greenhouse
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/20—Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
Landscapes
- Cultivation Of Plants (AREA)
- Greenhouses (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(発明の技術分野)
本発明はハウス内に炭酸ガス(CO□)を供給して作物
を栽培する技術(以下、この技術をCO2施肥ともいう
)を用いたハウス栽培方法に関し、特K Co 供給源
としてCO□富化空気を用いた省エネルギー型で且つC
02濃度コントロールの容易なハウス栽培方法を提供す
るものである
(従来技術および問題点)
近年、 CO2施肥を用いたハウス栽培は、少ないエネ
ルギー投入量で収量増大の効果が著しいため急速に普及
している。この栽培法に使用されるC02発生源として
は、従来例えば白灯油、グロノ9ンガス、天然ガス等の
燃焼方式と液化CO□方式が一般的であった。この内、
液化CO□は一般にゼンベよりガスとして取出すため、
CO□濃度のコントロールが容易である等の長所を有す
る反面、CO□の発生に要する単価(002発生単価)
が高く、テンイの運搬、取換え作業を要する等の問題が
あった。他方、燃焼方式ではCO□濃度のコントロール
が難しく、燃焼に伴う有害ガスや高温ガスによる −障
害及びCO2発生単価が高い等の問題がありた。Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to greenhouse cultivation using a technology for cultivating crops by supplying carbon dioxide gas (CO□) into a greenhouse (hereinafter, this technology is also referred to as CO2 fertilization). Regarding the method, it is a special energy-saving type using CO□enriched air as the K Co supply source and C
02 concentration control method (prior art and problems) In recent years, greenhouse cultivation using CO2 fertilization has rapidly become popular because it has a remarkable effect of increasing yield with low energy input. There is. As the CO2 generation source used in this cultivation method, combustion methods such as white kerosene, gas, natural gas, etc., and liquefied CO□ methods have conventionally been common. Of these,
Liquefied CO□ is generally extracted from Zenbe as a gas, so
Although it has advantages such as easy control of CO□ concentration, the unit cost required to generate CO□ (002 generation unit cost)
There were problems such as the high cost and the need to transport and replace the ten. On the other hand, with the combustion method, it is difficult to control the CO□ concentration, and there are problems such as problems caused by harmful gases and high-temperature gases associated with combustion, and a high unit cost of CO2 generation.
(問題を解決するための手段および効果)本発明者等は
上記問題を解決する方法について種々検討した結果、空
気をCO2選択透過性のガス分離膜(以下、単にCO□
選択透過性膜ともいう)を通してハウス内へ供給する簡
便な方法を見い出し1本発明を提案するに至った。即ち
1本発明は空気を炭酸ガス選択透過性のガス分離膜に通
した後、ハウス内に供給することを特徴とするノ・ウス
載培方法である。(Means and Effects for Solving the Problems) As a result of various studies on methods for solving the above problems, the inventors of the present invention have found that air can be separated by a CO2-selective gas separation membrane (hereinafter simply referred to as CO□).
We have discovered a simple method for supplying this material into a greenhouse through a permselective membrane (also called a permselective membrane), and have proposed the present invention. That is, one aspect of the present invention is a method for cultivating NO-US, which is characterized in that air is passed through a gas separation membrane selectively permeable to carbon dioxide and then supplied into a greenhouse.
本発明の最大の特徴は、ハウス内へ供給するCO□源を
空気中より得ることであり7該空気をCO2選択透過性
膜を通してCO□濃度を富化してハウス内へ供給するこ
とにより、CO□発生単価を低くすることが可能になる
と共に1作業性及びCO□濃度のコントロールを極めて
容易にすることが出来る。The most important feature of the present invention is that the CO□ source to be supplied into the house is obtained from the air. □It is possible to lower the unit cost of generation, and it is also possible to extremely easily control workability and CO□ concentration.
以下1本発明を図面に基づき詳細に説明するが。The present invention will be explained in detail below based on the drawings.
本発明は以下の図面に特に限定されるものでない。The present invention is not particularly limited to the following drawings.
本発明の方法は、基本的には第1図のようなフローとな
る。即ち、空気をコンプレッサー1により吸引し、ライ
ン21.22を通し、 CO2選択透過性膜を設けたC
O2分離装置2に送風し、 CO□濃度が富化した空気
を取出し、ライン23よりハウス3内へ供給する。この
ような方法に用いられるCO□分離装置2としては、空
気を供給側気体として用いCO□選択透過性膜を差圧に
より透過させることにより、CO□富化気体(空気)を
生成させる装置であり、一般に空気(大気)中に存在す
る約300 ppm程度のCO□を約500〜3000
ppfHに富化(濃縮)出来る機能を有する構造のもの
であれば特に制限されない。例えば第2図及び第3図に
示すような、複数枚のCO□選択透過性膜4を設は九装
置がCO□発生単価、操作性等より特に好ましい。即ち
、第2図に示す装置は、CO2選択透過性膜として平面
状の高分子膜を多数重ねた所謂フィルタープレス型の装
置であり、それぞれ空気室(D室)に供給管5より空気
を供給し、それぞれ濃縮室(C室)よりのCO□富化空
気を取出管6より取出す。この際の装置への空気の供給
方法は。The method of the present invention basically has a flow as shown in FIG. That is, air is sucked in by compressor 1 and passed through lines 21 and 22 to C equipped with a CO2 selectively permeable membrane.
Air is blown to the O2 separator 2, and air enriched in CO□ concentration is taken out and supplied into the house 3 through the line 23. The CO□ separation device 2 used in such a method is a device that generates CO□-enriched gas (air) by using air as the supply side gas and permeating the CO□ selectively permeable membrane under differential pressure. There is approximately 300 ppm of CO□, which is generally present in the air (atmosphere), and approximately 500 to 3,000
It is not particularly limited as long as it has a structure that can enrich (concentrate) ppfH. For example, a device equipped with a plurality of CO□ selectively permeable membranes 4 as shown in FIGS. 2 and 3 is particularly preferable in terms of CO□ generation unit cost, operability, etc. That is, the device shown in FIG. 2 is a so-called filter press type device in which a large number of planar polymer membranes are stacked as CO2 permselective membranes, and air is supplied from the supply pipe 5 to each air chamber (chamber D). Then, the CO□-enriched air from the concentration chamber (chamber C) is taken out from the take-out pipe 6. How to supply air to the equipment in this case?
該装置の供給側に加圧手段を設ける加圧式、或いは取出
側に減圧手段を設ける減圧式のいずれでもよい。例えば
、C室の空気を吸引ポンプなどにより吸引し、取出量(
圧力)を排出管7に設けたパルプ8の開度をコントロー
ルすることにより、取出管6よりの空気量及びCO□含
量をコントロールすることが出来る。尚、このようなフ
ィルタープレス型の装置においては、CO□濃度をより
高くするために多段方式の如く膜との接触面積を増加さ
せる等の改良は必要に応じて適宜性なうことが出来る。Either a pressurizing type in which a pressurizing means is provided on the supply side of the apparatus or a depressurizing type in which a depressurizing means is provided in the extracting side may be used. For example, the air in chamber C is sucked in using a suction pump, and the amount of air extracted (
By controlling the opening degree of the pulp 8 provided in the discharge pipe 7, the amount of air and CO□ content from the discharge pipe 6 can be controlled. In addition, in such a filter press type device, improvements such as increasing the contact area with the membrane such as a multi-stage system can be made as necessary in order to further increase the CO□ concentration.
一方、第3図は管状の高分子膜4を用いた所謂シェル・
アンド・チューブ型の装置であり、シェル9側に空気を
供給して、管状の高分子膜4を介して、チューブ(多孔
性チー−プ)10側よりC02濃縮空気を取り出す方法
およびその反対の方法のいずれでもよく、上記した平膜
型モノニールに比べると単位面積当りの空気の透過量を
少なく出来る。On the other hand, FIG. 3 shows a so-called shell film using a tubular polymer membrane 4.
It is an and-tube type device, and there are methods for supplying air to the shell 9 side and taking out CO2 concentrated air from the tube (porous cheap) 10 side through the tubular polymer membrane 4, and the opposite method. Any method may be used, and the amount of air permeation per unit area can be reduced compared to the above-described flat membrane type monoyl.
前記したCO2選択透過性膜の高分子膜4としてハ1例
えばシリコーンゴム、酢酸セルローズ、Iリフェニレン
オキサイド、ポリカーデネート、ポリスルホン、4リエ
ーテルスルホンなどの重合体を材料(素材)とする公知
のものが特に制限なく用いられる。また、これらの高分
子膜は空気(大気)中のCO2濃度(平均的300 p
pm程度)を500〜3000 ppmに富化する如く
、膜厚、膜数や膜面積を考慮すれば良い。As the polymer membrane 4 of the CO2 permselective membrane described above, H1 is a known material made of a polymer such as silicone rubber, cellulose acetate, I-lifenylene oxide, polycarbonate, polysulfone, or 4-reaethersulfone. can be used without any particular restrictions. In addition, these polymer membranes reduce the CO2 concentration in the air (atmosphere) (on average 300 p
The film thickness, the number of films, and the film area may be taken into consideration so as to enrich the content (about 500 ppm) to 500 to 3000 ppm.
CO2分離装置2によって、 CO□濃度を富化した空
気は、ハウス3内へ供給される。この際、ハウス3内の
CO2濃度は一般に500〜3000ppmの範囲で所
望する値となるように適宜選定されるが、このためのコ
ントロール方法として第1図に示す如く、ハウス3内に
CO□濃度検出器11を設け、該検出信号によりCO□
分離装置2の供給パルプ12又は12′を自動制御する
方法やCO□分離装置2の起動・停止をタイマー操作す
る等の方法が好ましく用いられる。The CO2 separator 2 supplies air enriched with CO□ concentration into the house 3. At this time, the CO2 concentration in the house 3 is generally selected appropriately so as to have a desired value within the range of 500 to 3000 ppm.As a control method for this purpose, as shown in Figure 1, the CO2 concentration in the house 3 A detector 11 is provided, and CO□ is detected by the detection signal.
A method of automatically controlling the supply pulp 12 or 12' of the separator 2 or a method of operating a timer to start and stop the CO□ separator 2 is preferably used.
尚、第1図のフローは、Co2分離装置2とハウス3が
接続した態様であるが、ハウス3とCO2分離装置2を
一体化させた構造も適宜に選定することが出来る。Although the flow shown in FIG. 1 shows an embodiment in which the CO2 separator 2 and the house 3 are connected, a structure in which the house 3 and the CO2 separator 2 are integrated can also be appropriately selected.
(実施例)
以下1本発明を実施例に基づき説明するが1本発明は以
下の実施例に特に限定されるものでない。(Examples) The present invention will be described below based on Examples, but the present invention is not particularly limited to the following Examples.
実施例1
第1表に示す仕様の有効透過面積が10 dm”(30
,0儂X33.3cm)のフィルタープレス型CO2分
離装置へ第2表に示す条件で原料用空気をコンプレッサ
ーで送風し、高分子膜を透過した濃縮室のCO□濃縮空
気を第2表の状態で取出管より取出す。この濃縮空気を
メロンを育成栽培する温室ビニルハウス(所要容積40
m” + 2mw X 10mLX 2mH) ヘ毎日
、昼間の9時から15時の6時間、CO□濃度が700
〜950 ppmとなる様に、ハウス内へ付ケた赤外線
CO2分析計で常時検知しながらコントロールした(た
だし雨天の場合、 CO□施肥効果が小さいことから1
分離装置を運転しなかった)。Example 1 The effective transmission area of the specifications shown in Table 1 was 10 dm" (30 dm").
The raw material air is blown by a compressor under the conditions shown in Table 2 to a filter press type CO2 separator (0 x 33.3 cm), and the CO□ concentrated air in the concentration chamber that has passed through the polymer membrane is converted to the conditions shown in Table 2. Take it out from the take-out tube. This concentrated air is used to grow and cultivate melons in greenhouse vinyl greenhouses (required volume: 40
m” + 2mw x 10mL
The CO2 concentration was controlled at ~950 ppm by constantly detecting it with an infrared CO2 analyzer installed inside the greenhouse (however, in case of rain, CO□ fertilization effect is small, so
separator was not operated).
第2表へ夏期(6月〜9月)において第1表の分離装置
で試験した空気中のCO□の濃縮結果を示している。こ
の間、一般的なCO2施肥法である白灯油によるゲイラ
ー燃焼法に較べてCO□濃度のコントロールが容易でし
かも安全面での配慮を殆んどする必要がなく、無人化の
状態で支障なく連続運転出来た。又、この施肥効果につ
いても今までより。Table 2 shows the results of concentration of CO□ in the air tested using the separator shown in Table 1 during the summer season (June to September). During this time, compared to the general CO2 fertilization method, the gaylor combustion method using white kerosene, it is easier to control the CO□ concentration, and there is almost no need to consider safety, and the process can be continued without any problems in an unmanned state. I was able to drive. Also, the effect of this fertilization is better than before.
■ 生育を増進し、収量が約2倍に増大した■ 果実の
肥大が早く1色及び艶が良くなった■ 果汁中の糖分が
30〜40%増大し1品質が向上した
■ 病害虫の発生が少なく、農薬の使用量が晃〜竹と
などの効果があり、設備費、運転管理費も従来法より経
済的であることが分った。■ Increased growth and approximately doubled yield ■ Fruit enlarged faster and improved color and luster ■ Sugar content in fruit juice increased by 30-40% and improved quality ■ Reduced pest and disease outbreaks It has been found that the method has the effect of reducing the amount of agricultural chemicals used, and is more economical than the conventional method in terms of equipment costs and operation and management costs.
第1表 高分子膜分離装置の仕様 第2表 空気中のCO□濃縮結果Table 1 Specifications of polymer membrane separation equipment Table 2: Results of CO□ concentration in the air
第1図は本発明の方法の概要を示すフローである。また
、第2図及び第3図は本発明の方法に用いられる高分子
膜分離装置の代表的な態様図である。図中1はコンプレ
ッサー、2はCO□分離装置。
3はハウス、4はCO2選択透過性膜(高分子膜)。
5は供給管、6け取出管、7は排出管、8はパルプ、9
はシェル、10はチューブ、11はdO2濃度検出器で
ある。FIG. 1 is a flow diagram outlining the method of the present invention. Furthermore, FIGS. 2 and 3 are representative views of a polymer membrane separation apparatus used in the method of the present invention. In the figure, 1 is a compressor, and 2 is a CO□ separation device. 3 is a house, and 4 is a CO2 permselective membrane (polymer membrane). 5 is a supply pipe, 6 is a take-out pipe, 7 is a discharge pipe, 8 is a pulp, 9
is a shell, 10 is a tube, and 11 is a dO2 concentration detector.
Claims (3)
後、ハウス内に供給することを特徴とするハウス栽培方
法(1) A greenhouse cultivation method characterized by supplying air into the greenhouse after passing it through a gas separation membrane that is selectively permeable to carbon dioxide.
る特許請求の範囲第1項記載の方法(2) The method according to claim 1, wherein the gas separation membrane selectively permeable to carbon dioxide is a polymer membrane.
サイドまたはポリカーボネートの重合体材料よりなる特
許請求の範囲第2項記載の方法(3) The method according to claim 2, wherein the polymer membrane is made of a polymer material of silicone rubber, polyphenylene oxide, or polycarbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60117691A JPS61280217A (en) | 1985-06-01 | 1985-06-01 | Greenhouse culture method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60117691A JPS61280217A (en) | 1985-06-01 | 1985-06-01 | Greenhouse culture method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61280217A true JPS61280217A (en) | 1986-12-10 |
Family
ID=14717909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60117691A Pending JPS61280217A (en) | 1985-06-01 | 1985-06-01 | Greenhouse culture method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61280217A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0361851U (en) * | 1989-10-19 | 1991-06-18 | ||
JP2001333639A (en) * | 2000-05-25 | 2001-12-04 | Natl Inst Of Advanced Industrial Science & Technology Meti | Carbon dioxide fertilization to plants using high carbon dioxide selective separation membrane |
EP2077911A4 (en) * | 2006-10-02 | 2011-08-24 | Global Res Technologies Llc | METHOD AND APPARATUS FOR EXTRACTING CARBON DIOXIDE FROM AIR |
US9205372B2 (en) | 2006-03-08 | 2015-12-08 | Carbon Sink, Inc. | Air collector with functionalized ion exchange membrane for capturing ambient CO2 |
US9266051B2 (en) | 2005-07-28 | 2016-02-23 | Carbon Sink, Inc. | Removal of carbon dioxide from air |
US9527747B2 (en) | 2008-02-19 | 2016-12-27 | Carbon Sink, Inc. | Extraction and sequestration of carbon dioxide |
US9616375B2 (en) | 2007-04-17 | 2017-04-11 | Carbon Sink, Inc. | Capture of carbon dioxide (CO2) from air |
WO2019151072A1 (en) * | 2018-02-01 | 2019-08-08 | 日東電工株式会社 | Insect-catching device and insect-catching method |
US11737398B2 (en) | 2018-02-16 | 2023-08-29 | Carbon Sink, Inc. | Fluidized bed extractors for capture of CO2 from ambient air |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52127840A (en) * | 1976-04-19 | 1977-10-26 | Showa Tansan Kk | Carbonic acid gas feed controller in house cultivation |
-
1985
- 1985-06-01 JP JP60117691A patent/JPS61280217A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52127840A (en) * | 1976-04-19 | 1977-10-26 | Showa Tansan Kk | Carbonic acid gas feed controller in house cultivation |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0361851U (en) * | 1989-10-19 | 1991-06-18 | ||
JP2001333639A (en) * | 2000-05-25 | 2001-12-04 | Natl Inst Of Advanced Industrial Science & Technology Meti | Carbon dioxide fertilization to plants using high carbon dioxide selective separation membrane |
US9266051B2 (en) | 2005-07-28 | 2016-02-23 | Carbon Sink, Inc. | Removal of carbon dioxide from air |
US10010829B2 (en) | 2005-07-28 | 2018-07-03 | Carbon Sink, Inc. | Removal of carbon dioxide from air |
US9205372B2 (en) | 2006-03-08 | 2015-12-08 | Carbon Sink, Inc. | Air collector with functionalized ion exchange membrane for capturing ambient CO2 |
US10150112B2 (en) | 2006-03-08 | 2018-12-11 | Carbon Sink, Inc. | Air collector with functionalized ion exchange membrane for capturing ambient CO2 |
US9266052B2 (en) | 2006-10-02 | 2016-02-23 | Carbon Sink, Inc. | Method and apparatus for extracting carbon dioxide from air |
US9861933B2 (en) | 2006-10-02 | 2018-01-09 | Carbon Sink, Inc. | Method and apparatus for extracting carbon dioxide from air |
EP2077911A4 (en) * | 2006-10-02 | 2011-08-24 | Global Res Technologies Llc | METHOD AND APPARATUS FOR EXTRACTING CARBON DIOXIDE FROM AIR |
US9616375B2 (en) | 2007-04-17 | 2017-04-11 | Carbon Sink, Inc. | Capture of carbon dioxide (CO2) from air |
US9527747B2 (en) | 2008-02-19 | 2016-12-27 | Carbon Sink, Inc. | Extraction and sequestration of carbon dioxide |
WO2019151072A1 (en) * | 2018-02-01 | 2019-08-08 | 日東電工株式会社 | Insect-catching device and insect-catching method |
US11737398B2 (en) | 2018-02-16 | 2023-08-29 | Carbon Sink, Inc. | Fluidized bed extractors for capture of CO2 from ambient air |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5120329A (en) | Integrated system and method for providing a controlled atmosphere in a food storage facility | |
WO2018214770A1 (en) | Method and system for collecting aroma substances and adding to wine during fermentation process | |
JPS61280217A (en) | Greenhouse culture method | |
JPH06253682A (en) | Plant rearing house | |
RU2095698C1 (en) | Method of conditioning atmosphere in fruit storage chamber and plant for realization of this method | |
JP2007254572A (en) | Methane enrichment system and operation method thereof | |
JP7476885B2 (en) | Gas Separation Systems | |
US11609204B2 (en) | Carbon dioxide and/or hydrogen sulphide detection system and method and use thereof | |
US3425839A (en) | Continuous beer making process wherein the wort and yeast are separated by a porous partition | |
CN113214947B (en) | Device and method for reducing content of higher alcohols in Maotai-flavor liquor | |
AU2003279662A1 (en) | Method for separating a membrane and device for separating a membrane for enriching at least one gas component in a gas flow | |
JP2018051494A (en) | Production system and production method, and storage system and storage method for storage gas | |
EP4556104A1 (en) | Gas separation system and method for producing methane-enriched gas | |
AU2003288526A1 (en) | Greenhouse and method of cultivation under glass | |
JP2001333639A (en) | Carbon dioxide fertilization to plants using high carbon dioxide selective separation membrane | |
CN208354044U (en) | Increase the system of CO2 gas fertilizer at regular time and quantity for greenhouse | |
JP2018110568A (en) | Plant cultivation method and plant cultivation system | |
JPS61155201A (en) | Oxygen enriching apparatus | |
JPH0328363B2 (en) | ||
Blatt | [6] Ultrafiltration for enzyme concentration | |
CN209507589U (en) | A kind of air-conditioned cold store nitrogen making machine with detection system | |
WO2021119630A3 (en) | Apparatus and method for oxygen and carbon dioxide enrichment of atmospheric air | |
CN110860176A (en) | Device and process for recovering mixed gas in wine fermentation process | |
CN2301252Y (en) | Apparatus for preparing oxygen-enriched air and low-oxygen air by membrane separation | |
CN217795399U (en) | Carbon dioxide capture system suitable for airtight space planting area |