JPS61278912A - Method for guiding unmanned moving machine by spot following system - Google Patents
Method for guiding unmanned moving machine by spot following systemInfo
- Publication number
- JPS61278912A JPS61278912A JP60120275A JP12027585A JPS61278912A JP S61278912 A JPS61278912 A JP S61278912A JP 60120275 A JP60120275 A JP 60120275A JP 12027585 A JP12027585 A JP 12027585A JP S61278912 A JPS61278912 A JP S61278912A
- Authority
- JP
- Japan
- Prior art keywords
- point
- mobile machine
- unmanned mobile
- vehicle
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 42
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004092 self-diagnosis Methods 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は地点追従方式による無人移動機械の誘導方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for guiding an unmanned mobile machine using a point tracking method.
従来のこの種の誘導方法としては、第6図に示すように
予定走行経路を地点A、B%C,D。In the conventional guidance method of this type, the planned travel route is set at points A, B, C, and D, as shown in FIG.
Eを教示することにより設定し、これらの各地点を結ぶ
経路上において、例えば経路AB上を走行する時には、
地磁気センサを用いて移動車の現在位置を算出したうえ
で、車輪の方向が常に地点Bに向くように制御するよう
にしたものがある(特―昭59−26032)。E is set by teaching E, and when traveling on a route connecting these points, for example, on route AB,
There is a system that calculates the current position of a mobile vehicle using a geomagnetic sensor and then controls the wheels so that they always face point B (Special Japanese Patent No. 59-26032).
また、この種の他の誘導方法としては、上記と同様にし
て予定走行経路上の各地点を教示し、これらの与えられ
た地点を、CADの分野で用いられているスプライン曲
線で近似し、2次元平面上の連続した曲線に置き直した
うえで、その曲線をなぞって走るように車体を操舵する
ようにしたものがある(第2回日本ロボット・学会学術
講演会「スプライン曲線を用いた軌道設計」)。In addition, as another guidance method of this kind, each point on the planned travel route is taught in the same manner as above, and these given points are approximated with a spline curve used in the CAD field. There is a system in which the vehicle is replaced with a continuous curve on a two-dimensional plane, and the vehicle body is steered so as to trace the curve. “Trajectory Design”).
しかしながら、前者の誘導方法は、単に車輪の方向がl
it次各次点地点、C,D、E)に向(ように制御する
ため、移動車の速度およびハンドルの遅れ要素にもよる
が、各地点間の距離を少なくともステアリングの切り遅
れを修正して車輪の方向が目標地点に向くまでの距離が
必要である。However, in the former guidance method, the direction of the wheels is simply
It depends on the speed of the moving vehicle and the steering delay factor, but the distance between each point must be adjusted to at least correct the steering delay. The distance it takes for the wheels to point toward the target point is required.
この地点間距離が長くなると、コーナーでの旋回時に実
用上使いものKならないステアリングの切り遅れが生じ
、逆に、短かいとステアリングの切り遅れを修正するこ
とができず、目標地点を通過することができない。%に
、上記理由により目標地点を通過できない場合、あるい
は路面の凹凸などの外乱によって目標地点を通過できな
い場合には、次の目標地点を定める時期を逸することに
なり、その後O制御に支障をきたすといった問題がある
。If this distance between points is long, there will be a delay in steering which is practically useless when turning around a corner, and conversely, if it is short, it will not be possible to correct the delay in steering and it will be difficult to pass the target point. Can not. %, if the target point cannot be passed due to the above reasons, or if the target point cannot be passed due to disturbances such as unevenness of the road surface, the time to determine the next target point will be missed, and the O control will be hindered thereafter. There are problems such as:
一万、後者の誘導方法は、計算式が複雑であるため、経
済的に車載可能な安価なマイクロコンビエータで計算を
行なうと、1つの点と点の区間の追従の計算を行なうの
に数秒間を要する。However, since the calculation formula for the latter guidance method is complicated, if the calculation is performed using an inexpensive micro combinator that can be economically mounted on a car, it will take several times to calculate the tracking of one point to point. It takes seconds.
なお、車体のステアリングに切り遅れのないように制御
するには、0.1秒以内に新たな計算結果が必要である
。Note that a new calculation result is required within 0.1 seconds in order to control the steering of the vehicle without delay.
したがって、この誘導方法は経済的に実用可能なマイク
ロコンピュータで制御するには不十分な方式であり、仮
にそのマイクロコンピュータを車載したとしても、著し
いステアリングの切り遅れが生じて実用使いものになら
ない。Therefore, this guidance method is insufficient to be controlled by an economically practical microcomputer, and even if such a microcomputer were installed in a vehicle, there would be a significant steering delay, making it useless for practical use.
本発明は上記実情に鑑みてなされたもので、複雑な曲線
経路を含む地点追従方式によって与えられた予定経路を
、ステアリングの切り遅れが生じることなく走行するこ
とができる地点追従方式による無人移動機械の誘導方法
を提供することを目的とする。The present invention has been made in view of the above-mentioned circumstances, and is an unmanned mobile machine using a point following method that can travel on a scheduled route given by a point following method including a complicated curved route without causing a delay in turning the steering wheel. The purpose is to provide a guidance method for
〔問題点を解決するだめの手段および作用〕本発明によ
れば、地点追従方式において点列として教示された各地
点のうち、現在の目標地点と無人移動機械の現在位置と
の距離を逐次算出し、その距離が一定距離以下となった
とき若しくはその距離が除々に長くなったとき、現在の
目標地点に代えて前記点列の次の地点を新たな目標地点
とし、この目標地点と無人移動機械の現在位置とから再
び該無人移動機械の誘導制御を行なうようにしている。[Means and operations for solving the problem] According to the present invention, the distance between the current target point and the current position of the unmanned mobile machine is sequentially calculated from among the points taught as a series of points in the point tracking method. However, when the distance becomes less than a certain distance or when the distance gradually increases, the next point in the series of points is set as a new target point instead of the current target point, and unmanned movement The guidance and control of the unmanned mobile machine is performed again based on the current position of the machine.
以下、本発明を添付図面を参照して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
まず、無人移動機械として前輪操舵の四輪車を適用し、
その四輪車の現在位置を求める方法の一例について説明
する。First, we applied a front-wheel steering four-wheel vehicle as an unmanned mobile machine,
An example of a method for determining the current position of the four-wheeled vehicle will be explained.
この四輪車には、車輪に取り付けたパルスエンコーダか
ら出力されるパルスの数を計数することにより車両の走
行距離を計測する走行距離計と、車両の進行方向を計測
するための船舶用ジャイロコンパスとを搭載する。This four-wheeled vehicle is equipped with an odometer that measures the distance traveled by counting the number of pulses output from pulse encoders attached to the wheels, and a marine gyro compass that measures the direction of travel of the vehicle. Equipped with
上記走行距離計およびジャイロコンパスの出力に基づき
、車両の現在位置は走行領域をxy座標゛で表現すると
、次式、
により求めることができる。ここ℃△Sは1すンプリン
グ時間当りの走行距離を示し、αはX軸に対する車体の
傾き(進行方向)を示し、(!o*3’o)は車両の出
発地点の座標を示す。Based on the outputs of the odometer and gyro compass, the current position of the vehicle can be determined by the following equation, if the driving area is expressed in xy coordinates. Here, °CΔS indicates the distance traveled per one sampling time, α indicates the inclination (progressing direction) of the vehicle body with respect to the X-axis, and (!o*3'o) indicates the coordinates of the starting point of the vehicle.
なお、車両の進行方向を計測する手段としては、上記ジ
ャイロコンパスの他に、地磁気センナ、レートジャイロ
、2重種分ジャイロ、振動ジャイロ、レーザージャイロ
又は左右の車輪の回転数差で方向を知るもの等が考えら
れる。また、車両の現在位置は電波測量法などで直接計
測してもよい。In addition to the above-mentioned gyro compass, means for measuring the direction of travel of the vehicle include a geomagnetic sensor, a rate gyro, a dual species gyro, a vibration gyro, a laser gyro, or a device that determines the direction based on the difference in the rotation speed of the left and right wheels. etc. are possible. Further, the current position of the vehicle may be directly measured using radio wave surveying or the like.
次に1予定走行経路をその予定走行経路上における各地
点の点列として教示する場合の各地点間の間隔等につい
て考察する。Next, consideration will be given to the intervals between points, etc. when one planned travel route is taught as a sequence of points on the planned travel route.
ある車両において、車速1 m/ s@eでは車体が横
すべりしない最小旋回半径は4.1mであったが、車速
か大きくなればなるほど、上記最小旋回半径も大きくな
る。In a certain vehicle, at a vehicle speed of 1 m/s@e, the minimum turning radius at which the vehicle body does not skid is 4.1 m, but as the vehicle speed increases, the minimum turning radius also increases.
上記各地間の最適な間隔を定めるのに際し、上記最小旋
回半径を基準にして、その最小旋回半径の115o〜4
倍の間隔とする。これは、最小旋回半径の4倍の16m
以上にすると、コーナリングの旋回で実用上使いものに
ならないステアリングの切り遅れが生じ、逆に”/so
倍の8 mm以下にすると現在位置の計算に時間がかか
りすぎて、ステアリングの切り遅れが生じることから決
定した範囲である。When determining the optimal spacing between each of the above, the minimum turning radius should be 115° to 4°, based on the above minimum turning radius.
The spacing will be double that. This is 16m, which is four times the minimum turning radius.
If this is done above, there will be a delay in steering which is practically useless when cornering, and conversely, "/so
This range was determined because if it were doubled to 8 mm or less, it would take too much time to calculate the current position, resulting in a delay in steering.
また、上記のようにして決定される所定間隔の各地点の
点列は、その点列中の隣接する3つの地点によって定ま
る円の曲率半径が少なくとも上記最小旋回半径よりも大
きくなるように決定することが好ましい。なお、車体が
横すべりせずに旋回できる最小旋回半径は単速か大きく
なればなるほど大きくなるので、高速運転時の各地点間
の間隔は低速運転時に比べて長くとる必要があり、同様
に高速運転時の隣接する3つの地点によって定まる円の
曲率半径も低速運転時に比べて大きくとる必要がある。Further, the point sequence of each point at a predetermined interval determined as described above is determined such that the radius of curvature of a circle determined by three adjacent points in the point sequence is at least larger than the above-mentioned minimum turning radius. It is preferable. Note that the minimum turning radius at which the vehicle can turn without skidding increases as the speed increases, so the intervals between each point during high-speed driving need to be longer than when driving at low speeds; The radius of curvature of the circle defined by three adjacent points at the time also needs to be larger than during low-speed operation.
以上のよ51C1,て車両の現在位置および進行方向が
実時間で計測できるものとし、車両の予定走行経路が目
標点列として教示されると、地点追従方式はその与えら
れた点列に追従するように舵角指令を与えて操舵制御す
る。As shown in 51C1 above, it is assumed that the current position and traveling direction of the vehicle can be measured in real time, and when the planned travel route of the vehicle is taught as a target point sequence, the point tracking method follows the given point sequence. The steering is controlled by giving the steering angle command as follows.
ここで、四輪車を等価二輪車で代表するという一般に広
く利用される表現方法で記述しく第1図)、上記舵角指
令について説明する。Here, the above-mentioned steering angle command will be explained using a widely used expression method (Fig. 1) in which a four-wheeled vehicle is represented by an equivalent two-wheeled vehicle.
いま、車両の操舵輪の座標がT (zt 、 yt )
、目標地点の座標がP(sp、yp)とすると、X軸と
線分PTとのなす角αは次式のようKなる。Now, the coordinates of the steering wheels of the vehicle are T (zt, yt)
, the coordinates of the target point are P (sp, yp), then the angle α between the X axis and the line segment PT is K as shown in the following equation.
したがって、車両の進行方行をψt とすると、舵角指
令θは、次式、
θ=α−ψ
で表わすことができる。Therefore, if the direction of travel of the vehicle is ψt, the steering angle command θ can be expressed by the following equation: θ=α−ψ.
よって、車両の現在位置(st、yt)と進行方向ψt
を観測し、上記第(3)弐によって目標地点P(xpe
yp )に追従する・K必要な舵角指令θを求める
ことができる。Therefore, the current position (st, yt) of the vehicle and the traveling direction ψt
Observe the target point P (xpe
It is possible to obtain the necessary steering angle command θ that follows yp ).
ところか、実際にはステアリングの特性、外乱などKよ
り、目標地点に到達できなかったり、到達したとしても
蛇行したりする。そこで、これを解決するために、次の
2つの方法を用いる。However, in reality, due to steering characteristics, external disturbances, and other factors, the vehicle may not be able to reach the target point, or even if it does reach it, it will meander. Therefore, in order to solve this problem, the following two methods are used.
まず、第1に、目標地点に一定の範囲を与えて、この範
囲内に車両が入ると、目標地点に到達したものとみなし
、次の地点を新たな目標地点とする。具体的には、第2
図に示すよ5に目標地点Pを中心に半径比の円内な目標
地点の範囲とし、目標地点Pと車両の現在位置Tとの距
離aを計算し、この距離aが半径l(、よりも小さく・
ならば目標地点に到達したものとみなす。First, a certain range is given to the target point, and when a vehicle enters this range, it is assumed that the target point has been reached, and the next point is set as a new target point. Specifically, the second
As shown in Figure 5, the range of target points is set within a circle of radius ratio with target point P as the center, and the distance a between target point P and the current position T of the vehicle is calculated. Also small
If so, it is assumed that the target point has been reached.
第2K、車両が上記目標地点に到達したものとみなす範
囲に到達できずに通過してしまう場合には、その目標地
点通過時点から次の地点を新たな目標地点とする。ここ
で、目標地点通過時点の判断は次のようにする。2nd K: If the vehicle passes through the target point without reaching the range in which it is considered to have reached the target point, the next point from the time of passing the target point is set as a new target point. Here, the determination of when the vehicle passes the target point is as follows.
第3図に示すように車両の現在位置なTt、単位時間前
の位置をTt−Hとして各車両の位置毎における目標地
点Pまでの距離’trat−sを計算し、次式の条件、
at>at−r ・◆+(4)の
成立時点を目標地点を通過した時点として判断する。As shown in FIG. 3, the distance 'trat-s to the target point P at each vehicle position is calculated by setting the vehicle's current position Tt and the position a unit time ago as Tt-H, and then calculating the distance 'trat-s' to the target point P for each vehicle position, and using the following equation, at >at-r ・The time point when ◆+(4) is established is determined as the time point when the target point is passed.
上記第1.第2の方法を用いて新たな目標地点を決定す
ることにより、例えは路面の凹凸によりハンドルが取ら
れたり、障害物のために所定経路を迂回して走行した後
も、予定走行経路に復帰することが可能である。Above 1. By determining a new target point using the second method, for example, even if the steering wheel is taken off due to an uneven road surface or the driver has detoured from the predetermined route due to an obstacle, the user can return to the planned travel route. It is possible to do so.
次に、上記方法を第4図に示すフローチャートを用いて
説明する。Next, the above method will be explained using the flowchart shown in FIG.
まず、車両の現在位置Ttを測定しくステップ10)、
この測定した現在位置Ttと目標地点Pとの距離atを
計算する(ステップ11)。First, step 10) measures the current position Tt of the vehicle.
The distance at between the measured current position Tt and the target point P is calculated (step 11).
次K、上記算出した距離at が予め設定した所定の半
径Rよりも小さいか否かを判別する(ステップ12)。Next, it is determined whether the distance at calculated above is smaller than a predetermined radius R (step 12).
a t < Hのときには目標地点PK到達したものと
みなしてステップ13に移行し、ステップ13では予定
走行経路として与えられた点列の次の地点を新たな目標
地点にしてステップ10に戻す。at≧凡のときKは目
標地点Pに到達していないので、ステップ14に移行す
る。When a t < H, it is assumed that the target point PK has been reached, and the process moves to step 13. In step 13, the next point in the sequence of points given as the planned travel route is set as a new target point, and the process returns to step 10. When at≧normal, K has not reached the target point P, so the process moves to step 14.
ステップ14はatが単位時間前のat−1よりも大き
いか否かを判別する。a t)a t−1のときにi1
車両が目標地点Pから遠ざかるのでこの時点を目標地点
Pを通過した時点として判断してステップ13に移行す
る。at≦at−、のときには車両は目標地点Pに近づ
きつつあるのでステップ15に移行する。なお、新たな
目標地点を設定した後、最初に距離atを計算したとき
には単位時間前のat、が存在しないのでこのステップ
14は飛ばすようにする。Step 14 determines whether at is greater than at-1 a unit time ago. a t) a i1 when t-1
Since the vehicle is moving away from the target point P, this point is determined to be the point in time when the vehicle has passed the target point P, and the process moves to step 13. When at≦at-, the vehicle is approaching the target point P, so the process moves to step 15. Note that when the distance at is calculated for the first time after setting a new target point, there is no at before the unit time, so step 14 is skipped.
ステップ15は前記第(3)式に基・づいて舵角指令θ
を計算し、ステップ16は舵角指令を操舵装置に出力す
る。Step 15 is a steering angle command θ based on the above equation (3).
is calculated, and step 16 outputs a steering angle command to the steering device.
そして、atをat−1に書き換え(ステップ17)、
単位時間△tの経過後、再びステップ10に移行する。Then, rewrite at to at-1 (step 17),
After the unit time Δt has elapsed, the process returns to step 10.
第5図はこの制御方法を四輪車に適用し、実際に走行さ
せた結果を示すグラフである。同図において、実線で示
した実際の走行経路は、左右前輪を結ぶ線分の中心点の
軌跡を表わしたものである。また、予定走行経路は直線
と半径6mの円弧で設定し、目標地点間隔は59Cmと
した。なお、図面を見やすくするために、目標地点を2
m間隔で表示している。FIG. 5 is a graph showing the results of applying this control method to a four-wheeled vehicle and actually driving the vehicle. In the figure, the actual driving route shown by the solid line represents the locus of the center point of the line segment connecting the left and right front wheels. In addition, the planned travel route was set as a straight line and a circular arc with a radius of 6 m, and the interval between target points was 59 cm. In addition, to make the drawing easier to read, the target point is set to 2.
Displayed at m intervals.
車両は前輪操舵、後輪駆動の四輪電気自動車で、ホイル
ベースが2.13m である。また、車両の方向検出に
はジャイロコンパスを用い、車両の現在位置は車輪に取
り付けたパルスエンコーダから得られる走行距離と、車
両の進行方向とから得ている。また、操舵輪の最犬切り
角は30°である。走行実験はアスファルト路面で行な
い、車速は4km/hとした。The vehicle is a four-wheel electric vehicle with front wheel steering and rear wheel drive, with a wheelbase of 2.13 m. A gyro compass is used to detect the direction of the vehicle, and the current position of the vehicle is obtained from the travel distance obtained from pulse encoders attached to the wheels and the direction of travel of the vehicle. Further, the maximum turning angle of the steering wheels is 30°. The driving experiment was conducted on an asphalt road surface, and the vehicle speed was 4 km/h.
サンプリングタイムはステアリング系の応答に合わせて
130m sec ごとに制御したが、図示のように
十分な誘導精度を得ることができた。Although the sampling time was controlled every 130 m sec according to the response of the steering system, sufficient guidance accuracy could be obtained as shown in the figure.
演算時間はアセンブラで10m5ecで笑現できる。従
って、残りの120m5ecは他の制御動作、例えば障
害物センサの制御や、自己診断機能、するいはマンマシ
ンインタフェース機能ニ使用する余裕がある。The calculation time can be realized in assembler in 10m5ec. Therefore, the remaining 120 m5ec can be used for other control operations, such as obstacle sensor control, self-diagnosis function, or man-machine interface function.
なお、本発明方法は四輪車に限らず、例えば三輪車、両
輪独立軍、クローラ車、全方向移動車、六輪車、二足歩
行機械、多足歩行機、その他、無人移動機械であれはい
かなるものでも適用できる。The method of the present invention is applicable not only to four-wheeled vehicles, but also to tricycles, two-wheeled vehicles, crawler vehicles, omnidirectional vehicles, six-wheeled vehicles, bipedal walking machines, multi-legged walking machines, and any other unmanned moving machines. It can also be applied to things.
以上説明したように本発明によれは、予定走行経路が点
列として教示された場合に、その点列中の成る地点から
次の地点への目標地点の更新が極めて円滑に行なわれ、
目標地点を見失うことがない。逆に、無人誘導機械がス
テアリングの切り遅れや外乱などによって正確に目標地
点に到達しなくても目標地点が確実に更新されるため、
目標地点の与え方の自由度が大きくなる。例えば、曲線
経路などを含む予定走行経路上を正確に辿る場合、目標
地点間の間隔は演算処理できる範囲内においてできるだ
け短い万が好ましいが、この間隔が短すぎて無人移動機
械がそのステアリングの遅れなどによって目標地点に到
達できないような場合でも、目標地点を見失うことかな
い。As explained above, according to the present invention, when a planned travel route is taught as a sequence of points, updating of a target point from a point in the sequence of points to the next point is performed extremely smoothly,
Never lose sight of your target location. Conversely, even if the unmanned guidance machine does not reach the target point accurately due to steering delays or disturbances, the target point will be updated reliably.
The degree of freedom in assigning target points increases. For example, when accurately following a planned travel route that includes a curved route, it is preferable that the interval between target points be as short as possible within the range that can be processed, but if this interval is too short, the unmanned mobile machine will be delayed in its steering. Even if you cannot reach the target point due to reasons such as this, you will not lose sight of the target point.
第1図は地点追従方式における舵角指令の求め方を説明
するために用いた図、第2図および第3図はそれぞれ本
発明方法を説明するために用いた図、第4図は本発明方
法の処理手順の一例を示すフローチャート、第5図は本
発明方法による実験内容を示すグラフ、第6図は従来の
地点追従方式を説明するために用いた図である。
響+1
出願人代理人 木 村 高 久 ・i、 −、
+
第1図
第2図 第3図
第4図Figure 1 is a diagram used to explain how to obtain a steering angle command in the point tracking method, Figures 2 and 3 are diagrams used to explain the method of the present invention, and Figure 4 is a diagram used to explain the method of the present invention. FIG. 5 is a flowchart showing an example of the processing procedure of the method, FIG. 5 is a graph showing the contents of an experiment using the method of the present invention, and FIG. 6 is a diagram used to explain the conventional point tracking method. Hibiki+1 Applicant's agent Takahisa Kimura ・i, -,
+ Figure 1 Figure 2 Figure 3 Figure 4
Claims (4)
上における各地点の点列として教示し、前記無人移動機
械の現在位置を計測しながら、該無人移動機械が前記教
示された各地点を順次追従するように該無人移動機械を
誘導する方法において、 前記点列として教示された各地点のうち、 現在の目標地点と前記無人移動機械の現在位置との距離
を逐次算出し、その距離が一定距離以下となったとき若
しくはその距離が除々に長くなったとき、前記点列の次
の地点を新たな目標地点とすることを特徴とする地点追
従方式による無人移動機械の誘導方法。(1) Teach the unmanned mobile machine a planned travel route as a series of points on the planned travel route, and while measuring the current position of the unmanned mobile machine, the unmanned mobile machine moves to each of the taught points. In the method of guiding the unmanned mobile machine to follow the unmanned mobile machine sequentially, the distance between the current target point and the current position of the unmanned mobile machine is calculated one after another among the points taught as the point sequence, and the distance is calculated. A method for guiding an unmanned mobile machine using a point following method, characterized in that when the distance becomes less than a certain distance or when the distance gradually increases, the next point in the series of points is set as a new target point.
前記予定走行経路上の各地点を走行するときの走行速度
によっては横すべりが発生しない最小旋回半径の1/5
0〜4倍の長さとする特許請求の範囲第(1)項記載の
地点追従方式による無人移動機械の誘導方法。(2) The interval between the points at each point is 1/5 of the minimum turning radius at which no sideslip occurs, depending on the speed at which the unmanned mobile machine travels through each point on the planned travel route.
A method for guiding an unmanned mobile machine using a point tracking system according to claim (1), wherein the length is 0 to 4 times longer.
の地点によって定まる円の半径が、該地点を前記無人移
動機械が走行するときの走行速度によっては横すべりが
発生しない最小旋回半径よりも大きくなるように教示す
る特許請求の範囲第(1)項記載の地点追従方式による
無人移動機械の誘導方法。(3) The point sequence at each point is such that the radius of the circle determined by three adjacent points in the point sequence is the minimum turning point at which sideslip will not occur depending on the speed at which the unmanned mobile machine travels through the point. A method for guiding an unmanned mobile machine using a point tracking method according to claim (1), wherein the point tracking method is taught to be larger than the radius.
地点に到達したものとみなせる距離である特許請求の範
囲第(1)項記載の地点追従方式による無人移動機械の
誘導方法。(4) The method for guiding an unmanned mobile machine using a point following method according to claim (1), wherein the certain distance is a distance at which the unmanned mobile machine can be considered to have reached the current target point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60120275A JPH0827652B2 (en) | 1985-06-03 | 1985-06-03 | Guidance method for unmanned mobile machines by point tracking method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60120275A JPH0827652B2 (en) | 1985-06-03 | 1985-06-03 | Guidance method for unmanned mobile machines by point tracking method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7214851A Division JP2640446B2 (en) | 1995-08-23 | 1995-08-23 | Guidance device of unmanned mobile machine by point tracking method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61278912A true JPS61278912A (en) | 1986-12-09 |
JPH0827652B2 JPH0827652B2 (en) | 1996-03-21 |
Family
ID=14782199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60120275A Expired - Lifetime JPH0827652B2 (en) | 1985-06-03 | 1985-06-03 | Guidance method for unmanned mobile machines by point tracking method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0827652B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01280807A (en) * | 1988-05-06 | 1989-11-13 | Komatsu Ltd | Method and device for guiding traveling object |
JPH0256006A (en) * | 1988-08-22 | 1990-02-26 | Meidensha Corp | Running control system for unmanned car |
JPH0256007A (en) * | 1988-08-22 | 1990-02-26 | Meidensha Corp | Running control system for unmanned car |
JPH09146639A (en) * | 1995-11-24 | 1997-06-06 | Nippon Yusoki Co Ltd | Steering control method for autonomous automated guided vehicle |
JP2000132228A (en) * | 1998-10-23 | 2000-05-12 | Hitachi Zosen Corp | How to guide moving objects |
JP2000276226A (en) * | 1988-04-09 | 2000-10-06 | Sega Enterp Ltd | Competition game equipment |
JP2012084021A (en) * | 2010-10-13 | 2012-04-26 | Equos Research Co Ltd | Travel controller |
JP2015060388A (en) * | 2013-09-18 | 2015-03-30 | 村田機械株式会社 | Autonomous traveling carriage, planned travel route data processing method, and program |
WO2019064950A1 (en) * | 2017-09-29 | 2019-04-04 | ヤンマー株式会社 | Automatic travel system |
JP2020158093A (en) * | 2019-03-27 | 2020-10-01 | 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 | Vessel navigation system and navigation method for the same |
JP2022103651A (en) * | 2020-12-28 | 2022-07-08 | 井関農機株式会社 | Work vehicle control system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59111508A (en) * | 1982-12-16 | 1984-06-27 | Agency Of Ind Science & Technol | Automatic car guiding method using point follow-up system |
-
1985
- 1985-06-03 JP JP60120275A patent/JPH0827652B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59111508A (en) * | 1982-12-16 | 1984-06-27 | Agency Of Ind Science & Technol | Automatic car guiding method using point follow-up system |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000276226A (en) * | 1988-04-09 | 2000-10-06 | Sega Enterp Ltd | Competition game equipment |
JPH01280807A (en) * | 1988-05-06 | 1989-11-13 | Komatsu Ltd | Method and device for guiding traveling object |
JPH0256006A (en) * | 1988-08-22 | 1990-02-26 | Meidensha Corp | Running control system for unmanned car |
JPH0256007A (en) * | 1988-08-22 | 1990-02-26 | Meidensha Corp | Running control system for unmanned car |
JPH09146639A (en) * | 1995-11-24 | 1997-06-06 | Nippon Yusoki Co Ltd | Steering control method for autonomous automated guided vehicle |
JP2000132228A (en) * | 1998-10-23 | 2000-05-12 | Hitachi Zosen Corp | How to guide moving objects |
JP2012084021A (en) * | 2010-10-13 | 2012-04-26 | Equos Research Co Ltd | Travel controller |
JP2015060388A (en) * | 2013-09-18 | 2015-03-30 | 村田機械株式会社 | Autonomous traveling carriage, planned travel route data processing method, and program |
WO2019064950A1 (en) * | 2017-09-29 | 2019-04-04 | ヤンマー株式会社 | Automatic travel system |
JP2019066980A (en) * | 2017-09-29 | 2019-04-25 | ヤンマー株式会社 | Automatic traveling system |
JP2020158093A (en) * | 2019-03-27 | 2020-10-01 | 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 | Vessel navigation system and navigation method for the same |
US11307589B2 (en) | 2019-03-27 | 2022-04-19 | Ship And Ocean Industries R&D Center | Vessel navigation system and navigation method thereof |
JP2022103651A (en) * | 2020-12-28 | 2022-07-08 | 井関農機株式会社 | Work vehicle control system |
Also Published As
Publication number | Publication date |
---|---|
JPH0827652B2 (en) | 1996-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2665738B2 (en) | Guidance Method of Unmanned Mobile Machine by Point Tracking Method | |
US8392104B2 (en) | Avoidance maneuver calculation device, avoidance control device, vehicle having each device, avoidance maneuver calculating method, and avoidance controlling method | |
CN102495631B (en) | Intelligent control method of driverless vehicle tracking desired trajectory | |
AP1448A (en) | A system for relative vehicle navigation. | |
US20230211786A1 (en) | Path-controlling module, associated path-controlling device and associated method | |
JP2001255937A (en) | Automatic traveling controller for vehicle | |
JPH0646364B2 (en) | How to guide an autonomous vehicle | |
JP2020099226A (en) | Controller for automatic travel work vehicle | |
JPH01202581A (en) | Rear wheel steering angle control method in front-rear-wheel-steering vehicle | |
JPS61278912A (en) | Method for guiding unmanned moving machine by spot following system | |
CN114364592A (en) | Method and apparatus for trajectory shape generation for autonomous vehicles | |
JP3269927B2 (en) | Vehicle steering control device | |
JP7020750B2 (en) | How to generate a target trajectory | |
JPS59111508A (en) | Automatic car guiding method using point follow-up system | |
CN108334074B (en) | Control system | |
JP2622579B2 (en) | How to guide moving objects | |
JPH03189805A (en) | Method and device for automatic steering vehicle | |
JP2640446B2 (en) | Guidance device of unmanned mobile machine by point tracking method | |
JPH05333928A (en) | Back traveling control method for unmanned carrier | |
JP3166418B2 (en) | Unmanned guided vehicle steering control method | |
JPH02240705A (en) | Automatic drive controller for vehicle | |
JPS63149265A (en) | Actual rear wheel steering angle control device for vehicle | |
JP2748002B2 (en) | Guidance traveling device for moving objects | |
JPH09282036A (en) | Autonomous traveling vehicle and method and device for controlling the same | |
JP2002091567A (en) | Automated guided vehicle controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |