[go: up one dir, main page]

JPS61276533A - Eye self-positioning apparatus - Google Patents

Eye self-positioning apparatus

Info

Publication number
JPS61276533A
JPS61276533A JP60118369A JP11836985A JPS61276533A JP S61276533 A JPS61276533 A JP S61276533A JP 60118369 A JP60118369 A JP 60118369A JP 11836985 A JP11836985 A JP 11836985A JP S61276533 A JPS61276533 A JP S61276533A
Authority
JP
Japan
Prior art keywords
eye
self
examined
concave mirror
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60118369A
Other languages
Japanese (ja)
Other versions
JPH0430291B2 (en
Inventor
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60118369A priority Critical patent/JPS61276533A/en
Publication of JPS61276533A publication Critical patent/JPS61276533A/en
Publication of JPH0430291B2 publication Critical patent/JPH0430291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種眼科機器に装備し、被検者自身が被検眼
を眼科機器の適正位置に合わせることができる自己眼位
置合わせ装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a self-eye alignment device that is installed in various ophthalmological equipment and allows the patient to align the eye to be examined to the proper position of the ophthalmological equipment. It is.

[従来の技術] 近年、検者及び被検者双方にとって省力化が可能なよう
に、被検者自身が操作し得る眼科機器の普及が望まれて
いる0例えば、眼圧は血圧と同様に定期的に測定し、家
庭用血圧計のように家庭で眼圧を簡便にしかも正確に測
定できることが望ましい。
[Prior Art] In recent years, it has been desired that ophthalmological equipment that can be operated by the examiner himself/herself will become more widespread so that both the examiner and the examinee can save labor. For example, intraocular pressure is similar to blood pressure. It is desirable to be able to measure intraocular pressure easily and accurately at home, such as with a home sphygmomanometer, by regularly measuring the intraocular pressure.

ところで、眼科機器を被検者自身が操作するに際して、
被検者は自己銀を装置に対して正確に所定位置に合わせ
る必要がある。この位置合わせは、装置と被検眼までの
距離、即ち作動距離(ワーキングディスタンス) WO
を所定の距離にすることと、装置の光軸と被検眼の眼軸
とを一致させるアライメント機構とから成り、1mm以
下程度の精度を必要とする。
By the way, when the patient himself/herself operates the ophthalmological equipment,
The subject must align their own silver precisely in place with respect to the device. This alignment is based on the distance between the device and the eye to be examined, that is, the working distance.
It consists of a predetermined distance, and an alignment mechanism that aligns the optical axis of the device with the eye axis of the eye to be examined, and requires accuracy of about 1 mm or less.

従来のこの種の位置合わせ装置としては、角膜に端子を
押し付ける接触型の形式のものしかなく、この接触形式
の装置では麻酔及び消毒等が必要となり、被検者が容易
に操作できるとは云い難い、このように自己眼位置合わ
せが困難であることが、家庭でも使用できる眼科機器の
普及を妨げる1つの原因ともなっている。
Conventional positioning devices of this type have only been contact-type devices that press terminals against the cornea, and these contact-type devices require anesthesia and disinfection, and cannot be easily operated by the patient. This difficulty in self-aligning the eyes is one of the reasons that prevents the spread of ophthalmological equipment that can be used at home.

[発明の目的] 本発明の目的は、各種眼科装置において、被検者自身が
容易にかつ正確に自己眼を眼科機器の所定の作動距離に
合わせることができる自己眼位置合わせ装置を提供する
ことにある。
[Object of the Invention] An object of the present invention is to provide a self-eye positioning device in various ophthalmological apparatuses that allows the subject to easily and accurately align his or her own eye to a predetermined working distance of the ophthalmological equipment. It is in.

[発明の概要] 上述の目的を達成するための本発明の要旨は、被検眼が
眼科機器の所定の作動距離に位置した場合に、被検眼の
前眼部から出射した光がほぼ平行光束として被検眼に戻
るように、反射光学系を前記眼科機器の光軸と一致させ
て被検眼の前方に配置したことを特徴とする自己眼位置
合わせ装置である。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is that when the eye to be examined is located at a predetermined working distance of an ophthalmological device, the light emitted from the anterior segment of the eye to be examined is transformed into a substantially parallel beam of light. This self-eye positioning device is characterized in that a reflective optical system is arranged in front of the eye to be examined, aligned with the optical axis of the ophthalmological equipment so as to return to the eye to be examined.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図は第1の実施例を非接触眼圧計に適用した装置の
主要部の構成図であり、装置の光軸01上には眼科装置
の作動距離を焦点距離とする凹面鏡lが配置されており
、眼圧計に適用するために凹面鏡1の中心には開口部が
設けられ、その開口部にはノズル1aが貫通されている
。そして光軸01上に位置した被検眼Eに、図示しない
空気圧縮装置によりノズル1aを介して空気を吹き付け
、この吹き付けられた空気の圧力に対する被検眼Eの角
膜の変形によって、被検眼Eの眼圧を測定できるように
なっている。
FIG. 1 is a configuration diagram of the main parts of a device in which the first embodiment is applied to a non-contact tonometer. A concave mirror l whose focal length is the working distance of the ophthalmological device is arranged on the optical axis 01 of the device. In order to apply it to a tonometer, an opening is provided at the center of the concave mirror 1, and a nozzle 1a passes through the opening. Then, air is blown onto the eye E located on the optical axis 01 through a nozzle 1a by an air compressor (not shown), and the cornea of the eye E is deformed in response to the pressure of the blown air. It is possible to measure pressure.

眼圧測定に際して、一定の圧力を被検眼Eに与えるため
には、被検眼Eの眼軸がノズル1aの軸と一致し、しか
も被検眼Eはノズル1aから所定の作動距離に位置して
いなければならない、なお、ノズル1aの軸は光軸01
と一致しているので、被検眼Eのアライメントは眼軸と
光軸01とを一致させればよいことになる。
In order to apply a constant pressure to the eye E during intraocular pressure measurement, the eye axis of the eye E must match the axis of the nozzle 1a, and the eye E must be located at a predetermined working distance from the nozzle 1a. Note that the axis of nozzle 1a is optical axis 01.
Therefore, the alignment of the eye E to be examined can be made by aligning the eye axis with the optical axis 01.

ところで調節を休ませた正視眼においては、無限遠にあ
る物体が網膜上に像を結像する。従って、凹面鏡1の焦
点位置f1に被検眼Eが位置すると、被検眼Eの如何な
る位置から発した光束でも、凹面鏡1によって平行光束
として反射されるので、被検者には自己の被検眼Eの像
E゛が凹面鏡l内に鮮明に見えることになる。従って、
眼圧測定装置の作動圧ownをflとすると、flを焦
点距離とする凹面鏡1、即ち曲率半径rl= 2 fl
の凹面鏡1を光軸01上に配し、被検眼Eの像E゛が鮮
明に見える位置に被検者が自己の被検眼Eを位置させる
ことにより、被検眼Eを凹面鏡lの焦点距離H,即も装
置の作動距離flに古史させスことができる。また、被
検眼Eの眼軸を光軸O1に一致させるアライメントは、
凹面鏡1の中心に被検眼Eを位置させることにより達成
することができる。
By the way, in an emmetropic eye with rested accommodation, an object at infinity forms an image on the retina. Therefore, when the eye E to be examined is located at the focal position f1 of the concave mirror 1, any light beam emitted from any position on the eye E will be reflected as a parallel beam by the concave mirror 1, and the examinee will be able to see his or her own eye E. The image E' will be clearly visible within the concave mirror l. Therefore,
If the operating pressure own of the intraocular pressure measuring device is fl, then the concave mirror 1 whose focal length is fl, that is, the radius of curvature rl = 2 fl
A concave mirror 1 is placed on the optical axis 01, and the subject positions his or her own eye E at a position where the image E' of the eye E is clearly visible. , the working distance fl of the device can be determined immediately. In addition, alignment to match the eye axis of the eye E to be examined with the optical axis O1 is as follows:
This can be achieved by positioning the eye E to be examined at the center of the concave mirror 1.

即ち、眼圧測定装置の作動圧11jlWDの2倍の曲率
半径を有する凹面鏡lを光軸01上に配し、被検者はこ
の凹面鏡1の中心に鮮明に自己の被検眼Eの像E′を見
るように、自己の被検眼Eを位置させることにより、容
易に自分で被検眼Eの位置合わせを行うことができる。
That is, a concave mirror l having a radius of curvature twice the operating pressure 11jlWD of the intraocular pressure measuring device is arranged on the optical axis 01, and the subject can clearly see an image E' of his or her own eye E at the center of this concave mirror 1. By positioning the subject's eye E so that the subject's eye E is seen, the patient can easily align the subject's eye E by oneself.

このように、正視眼の被検者については正確に位置合わ
せができるが、近視眼及び遠視眼の被検者についてはど
のようになるかを考察してみる。
In this way, accurate positioning is possible for subjects with emmetropia, but let's consider what happens to subjects with myopic eyes and hyperopic eyes.

近視眼の被検者の場合には、凹面鏡1の焦点位置f1に
被検眼Eを位置させると、無限遠にあるかのように見え
る像E°は被検眼Eの網膜の前方に像を結ぶことになる
。従って、像E゛を合焦した状態で見ようとすると、被
検者は自己眼を凹面鏡1の焦点位置f1、つまり作動圧
#讐りよりも僅かに凹面鏡1に近い距離に位置させなけ
ればならない。
In the case of a myopic subject, when the subject's eye E is positioned at the focal position f1 of the concave mirror 1, an image E° that appears to be at infinity will be focused in front of the retina of the subject's eye E. become. Therefore, in order to view the image E' in focus, the subject must position his or her own eye at the focus position f1 of the concave mirror 1, that is, at a distance slightly closer to the concave mirror 1 than the operating pressure #. .

また、遠視眼の被検者の場合には、凹面鏡1の焦点位置
f1に被検眼Eを位置させると、無限遠にあるように見
える像E′は被検眼Eの網膜の後方に像を結ぶため、像
E′を合焦した状態で見ようとすると、被検者は自己眼
を凹面鏡1の焦点距離f1つまり作動圧fiWDよりも
僅かに凹面鏡1から遠去かった所に位置させる必要があ
る。
In addition, in the case of a hyperopic subject, when the subject's eye E is positioned at the focal position f1 of the concave mirror 1, an image E' that appears to be at infinity is focused behind the retina of the subject's eye E. Therefore, in order to view the image E' in focus, the subject needs to position his/her own eye at a location slightly further away from the concave mirror 1 than the focal length f1 of the concave mirror 1, that is, the operating pressure fiWD. .

このように被検者の視度によって多少作動距離冒りが異
なってしまうが、このことによる眼圧測定値への影響は
少ない6例えば、作動距離10+am、即ち曲率半径2
0mmの凹面鏡1を設置した装置においては、一般的な
近視眼と遠視眼の範囲である一4〜+4ディオプタの被
検眼については次のようになる。つまり、−4デイオプ
タの近視眼の被検眼Eにとって、像E′が鮮明に見える
のは像、     E’′!′(被検眼E #)ら25
″°離F″′位置1形成54たときであり、この場合に
作動距離WDは正視眼の被検者に対して約0.4mm短
くなる。逆に、+4デイオプタの遠視眼Eの場合には作
動距離WDが0.4ma+長くなる。ところで、眼圧測
定装置及び通常の眼科装置の精度は1mm以下程度であ
るから、約0.4mm程度の作動距離WDの誤差は眼圧
測定装置への影響は少ない、そして、凹面鏡1からの反
射光はほぼ平行光束の範囲とみなせる。
In this way, the working distance differs to some extent depending on the subject's diopter, but this has little effect on the intraocular pressure measurement.
In an apparatus equipped with a concave mirror 1 of 0 mm, the following conditions apply to the eye to be examined, which is in the range of 14 to +4 diopters, which is the range of general myopic and hyperopic eyes. In other words, for the -4 dayopter myopic eye E, the image E' is clearly visible as the image E''! '(Eye to be examined E #) et al. 25
``° separation F'''' position 1 formation 54. In this case, the working distance WD is approximately 0.4 mm shorter for an emmetropic subject. Conversely, in the case of a hyperopic eye E with +4 day optics, the working distance WD becomes 0.4 ma+ longer. By the way, since the accuracy of the intraocular pressure measuring device and normal ophthalmological equipment is about 1 mm or less, an error in the working distance WD of about 0.4 mm has little effect on the intraocular pressure measuring device, and the reflection from the concave mirror 1 Light can be regarded as approximately a parallel beam of light.

このように、第1の実施例によって十分に精度の良い自
己眼の位置合わせを行うことができるが、更に凹面鏡1
に対して被検眼Eと反対側の光軸01上の適当な位置に
図示しない光源を配置させると、ノズル1aを通して角
膜反射像ができ、十分に小さいその角膜反射像を見なか
らアライメントを実行することにより、容易にアライメ
ントを達成することができる。また、凹面鏡1に写った
光源の角膜反射像を見る前に、パイプ状のノズル1aを
介して光源を見るようにすると、被検眼Eの眼軸はほぼ
光軸01と一致するので、アライメントを更に迅速に行
うことができる。
In this way, the first embodiment allows for sufficiently accurate positioning of the own eye, but in addition, the concave mirror 1
When a light source (not shown) is placed at an appropriate position on the optical axis 01 on the opposite side of the eye E, a corneal reflection image is created through the nozzle 1a, and alignment is performed without looking at the sufficiently small corneal reflection image. By doing so, alignment can be easily achieved. Furthermore, if the light source is viewed through the pipe-shaped nozzle 1a before viewing the corneal reflection image of the light source reflected on the concave mirror 1, the ocular axis of the eye E to be examined will approximately coincide with the optical axis 01, so alignment will be necessary. It can be done even more quickly.

第2図は赤外レフラクトメータに用いた第2の実施例で
あり、先の実施例と同様に被検眼Eの眼前に凹面鏡2が
配置され、その後方に対物レンズ3が同一光軸02上に
設けられている。そして、凹面鏡2は可視光反射、赤外
光透過のグイクロイックミラーとなっている。この実施
例では、測定用赤外光を対物レンズ3の後方から被検眼
Eに投射し1通常の赤外レフラクトメータと同様に作用
させるが、被検者は自分で凹面鏡2を用いて可視光によ
り先の実施例と同様に、被検眼Eが所定の作動距離にあ
ることを確認することができる。
FIG. 2 shows a second embodiment used in an infrared refractometer, in which a concave mirror 2 is placed in front of the subject's eye E as in the previous embodiment, and an objective lens 3 is placed behind it with the same optical axis 02. is placed above. The concave mirror 2 is a guichroic mirror that reflects visible light and transmits infrared light. In this embodiment, infrared light for measurement is projected onto the subject's eye E from behind the objective lens 3 and acts in the same way as a normal infrared refractometer. Using light, it can be confirmed that the eye E to be examined is at a predetermined working distance, as in the previous embodiment.

第3図は第3の実施例の構成図であり、第1の実施例と
同様に非接触眼圧計に適用したものである。自己眼位置
合わせ装置は光軸o3上に順次に配置された眼圧測定装
置の一部を成す集光レンズ4、例えばハーフミラ−から
成る凹面鏡5.2個一対の光源6から成り、一対の光源
6の中心が光軸03上に位置するように配されている。
FIG. 3 is a block diagram of the third embodiment, which is applied to a non-contact tonometer like the first embodiment. The self-eye alignment device consists of a condenser lens 4, for example, a concave mirror 5 made of a half mirror, and a pair of light sources 6, which are part of the intraocular pressure measuring device arranged sequentially on the optical axis o3. 6 is arranged so that the center thereof is located on the optical axis 03.

ここで、凹面鏡5は集光レンズ4の焦点位置f2に配さ
れ、光源6は凹面鏡5の曲率半径r2の位置に設置され
ている。
Here, the concave mirror 5 is placed at the focal point f2 of the condenser lens 4, and the light source 6 is placed at a position with a radius of curvature r2 of the concave mirror 5.

眼圧測定装置を構成するシリンダ7は光軸03に対し斜
めに配置されており、集光レンズ4はシリンダ7の一部
に嵌め込まれている。集光レンズ4の中央部にはノズル
4aが貫通されており、シリンダ7内にはピストン8が
内設されている。シリンダ7の位置合わせ用光路に挿入
される光路部9は透明材料によって形成され、位置合わ
せ用光束を妨害しないようになっている。そして、眼圧
測定時にはピストン8の移動により、シリンダ7内の空
気が集光レンズ4のノズル4aを介して被検眼Eに吹き
付けられ、眼圧を測定できるようになっている。
A cylinder 7 constituting the intraocular pressure measuring device is arranged obliquely to the optical axis 03, and the condenser lens 4 is fitted into a part of the cylinder 7. A nozzle 4a passes through the center of the condensing lens 4, and a piston 8 is installed inside the cylinder 7. The optical path portion 9 inserted into the alignment optical path of the cylinder 7 is formed of a transparent material so as not to interfere with the alignment light beam. When measuring the intraocular pressure, the piston 8 moves, and the air in the cylinder 7 is blown onto the eye E through the nozzle 4a of the condensing lens 4, so that the intraocular pressure can be measured.

位置合わせを実行する際には、光源6から発した光束は
凹面鏡5を透過し、更にシリンダ7の光路部9を透過し
た後に、集光レンズ4で屈折し被検眼Eの角膜に到達す
る。そして、角膜で反射され集光レンズ4によって屈折
した後に凹面鏡5で反射され、更に集光レンズ4により
平行光束とされる。
When positioning is performed, the light beam emitted from the light source 6 passes through the concave mirror 5 and further passes through the optical path section 9 of the cylinder 7, and then is refracted by the condenser lens 4 and reaches the cornea of the eye E to be examined. The light is then reflected by the cornea, refracted by the condensing lens 4, reflected by the concave mirror 5, and further converted into a parallel beam by the condensing lens 4.

このとき、調節を行っていない正視眼が光fIA6の凹
面鏡5で反対された角膜反射像を見たとすれば、光源6
からの光束は網膜上に到達している筈であるから、被検
眼Eの角膜には平行光束が入射していることになる、従
って、集光レンズ4の焦点位置f2に凹面鏡5が配され
ているので、光源6の集光レンズ4に平行光束として入
射した角膜反射像は、集光レンズ4の焦点位置f2に存
在する凹面鏡5によって反射され、集光レンズ4に入射
後に再び平行光束となり角膜に入射することになる。
At this time, if the emmetropic eye without accommodation sees the corneal reflection image opposed by the concave mirror 5 of the light fIA6, then the light source 6
Since the light beam from the eye should have reached the retina, a parallel light beam is incident on the cornea of the eye E. Therefore, the concave mirror 5 is arranged at the focal position f2 of the condenser lens 4. Therefore, the corneal reflected image that enters the condenser lens 4 of the light source 6 as a parallel light beam is reflected by the concave mirror 5 located at the focal position f2 of the condenser lens 4, and becomes a parallel light beam again after entering the condenser lens 4. It will enter the cornea.

このような角膜反射光束にするためには、角膜入射光束
は角膜の焦点位置、即ち網膜に向かう方向に入射しなけ
ればならない、つまり、集光レンズ4を介しての光源6
と、実際には像を結ばないが光束の進行状態を考えると
き、そこにあると考えてよい光源像4° との関係を考
えてみると、凹面鏡5は集光レンズ4の焦点位置にあり
、光源6は集光レンズ4に関して角膜の焦点位置と共役
であるから、凹面鏡5を通過する光束は反射・屈折され
ずにそのまま直進することになる。従って、被検者が自
己の角膜の反射像を鮮明に見たとき、作動距離WDも所
定の距離に合っていることになる。
In order to obtain such a corneal reflected light flux, the corneal incident light flux must enter the focal position of the cornea, that is, in the direction toward the retina.
Considering the relationship between this and the light source image 4°, which does not actually form an image but can be considered to exist when considering the traveling state of the light beam, the concave mirror 5 is at the focal point of the condenser lens 4. Since the light source 6 is conjugate with the focal position of the cornea with respect to the condenser lens 4, the light beam passing through the concave mirror 5 will not be reflected or refracted and will proceed straight. Therefore, when the subject clearly sees the reflected image of his or her own cornea, the working distance WD also matches the predetermined distance.

第4図は第3の実施例において、被検眼Eが見た視野を
示したものであり、光源6は光軸03を中心に対に配置
されているので、アライメント及び作動圧gIWDが適
切であれば、第4図(a)に示すように被検眼者にはノ
ズル4aの左右に光源像6゛が鮮明に見えることになる
。ところが、作動距離WDは適切であってもアライメン
トが不完全であれば、第4図(b)に示すように鮮明な
2個の光源像4°がノズル4aから偏心した位置に見え
ることになる。
FIG. 4 shows the field of view seen by the eye E in the third embodiment, and since the light sources 6 are arranged in pairs around the optical axis 03, the alignment and operating pressure gIWD are appropriate. If there is, the subject's eye will clearly see light source images 6' on the left and right sides of the nozzle 4a, as shown in FIG. 4(a). However, even if the working distance WD is appropriate, if the alignment is incomplete, two clear light source images of 4° will be seen at positions eccentric from the nozzle 4a, as shown in FIG. 4(b). .

また、アライメントは適切であるが作動距離WDが不完
全である場合には、第4図(C)に示すように光源像4
°がノズル4aの左右にぼけて見える。更に、アライメ
ント及び作動距離WDが共に不完全の場合には、ぼけた
光源像4°が偏心した位置に見えることは云うまでもな
い、従って、被検者は光源像4°が(a)に示すように
見えるまで自己眼を移動させることにより、正確な位置
合わせを実行することができる。
In addition, when the alignment is appropriate but the working distance WD is incomplete, the light source image 4 is
° appears blurred to the left and right of the nozzle 4a. Furthermore, if both the alignment and the working distance WD are imperfect, it goes without saying that the blurred light source image 4° will appear at an eccentric position. Accurate alignment can be performed by moving the self-eye until it appears as shown.

なお、第3の実施例においても、作動距離WDの式にf
eが含まれることからも判るように、第1、第2の実施
例と同様に被検者の視度によって僅かに作動距離誓りが
異なってくるが、・これも測定値に殆ど影響を及ぼすこ
とはない、この第3の実施例において反射光学系の位置
については、凸面鏡とすればその位置は図示されている
凹面鏡5の位置と集光レンズ4との間であればよい、ま
た、凹面鏡とすれば図示されている凹面鏡5と光源6と
の間に配置すればよい、ただし、その場合にはその位置
における反射光束の広がり角に適応した曲率を有する曲
面鏡とすることが必要となる。また、被検眼Eと集光レ
ンズ4との間に反射光学系を配置する場合には、平面鏡
とすることができる。
Note that also in the third embodiment, f is added to the formula of the working distance WD.
As can be seen from the inclusion of e, the working distance differs slightly depending on the subject's diopter, as in the first and second embodiments, but this also has little effect on the measured value. Regarding the position of the reflective optical system in this third embodiment, if it is a convex mirror, its position may be between the position of the concave mirror 5 shown in the figure and the condensing lens 4. If a concave mirror is used, it may be placed between the illustrated concave mirror 5 and the light source 6. However, in that case, it is necessary to use a curved mirror with a curvature adapted to the spread angle of the reflected light beam at that position. Become. Furthermore, when a reflective optical system is disposed between the eye E and the condensing lens 4, a plane mirror can be used.

上述の実施例は非接触眼圧計、レフラクトメータに適用
した場合について説明したが、他の眼科機器においても
上述の実施例の位置合わせ用装置を組み込むだけで、同
様に正確な位置合わせを行うことができる。この際の位
置合わせ用光路と、他の眼科機器の測定用光路とを一致
させる場合には、反射光学系を波長によって使い分け、
測定光と位置合わせ光とを分岐・分離する等の手段を採
用することも考えられる。
Although the above-mentioned embodiment has been described in the case where it is applied to a non-contact tonometer and a refractometer, similarly accurate positioning can be achieved in other ophthalmic instruments by simply incorporating the positioning device of the above-mentioned embodiment. be able to. When matching the alignment optical path at this time with the measurement optical path of other ophthalmological equipment, use reflective optical systems depending on the wavelength.
It is also conceivable to adopt means such as branching and separating the measurement light and the alignment light.

[発明の効果] 以上説明したように本発明に係る自己眼位置合わせ装置
は、眼科機器の軸と一致させた装置の光軸上に反射光学
系を設け、それに写った自己の被検眼像又は角膜反射像
等の合焦状態及び位置を適切な状態にすることにより、
被検者自身が自己眼の位置合わせを容易にかつ高精度に
行い得るようにしたので、被検者自身が操作する眼科機
器に有為に適用できる。
[Effects of the Invention] As explained above, the self-eye positioning device according to the present invention has a reflective optical system on the optical axis of the device that is aligned with the axis of the ophthalmological equipment, and the self-eye alignment device according to the present invention has a reflective optical system on the optical axis of the device that is aligned with the axis of the ophthalmological equipment, and the self-eye alignment device according to the present invention has a reflective optical system on the optical axis of the device that is aligned with the axis of the ophthalmological equipment. By adjusting the focus and position of the corneal reflection image, etc.,
Since the examinee himself/herself can easily and highly accurately align his/her own eyes, the present invention can be usefully applied to ophthalmological equipment operated by the examinee himself/herself.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る自己眼位置合わせ装置の実施例を示
すものであり、第1図、第2図、第3図はそれぞれ第1
、第2、第3の実施例の構成図、第4図は第3の実施例
における被検者の視野の状態の説明図であり、(a)は
位置合わせが適切な場合、(b)は作動距離のみ適切な
場合、(C)はアライメントのみ適切な場合である。 符号1.2は凹面鏡、3は対物レンズ、4は集光レンズ
、5は凹面鏡、6は光源、7はシリンダ、8はピストン
である。 特許出願人  キャノン株式会社 第1図
The drawings show an embodiment of the self-eye alignment device according to the present invention, and FIGS.
, a configuration diagram of the second and third embodiments, and FIG. 4 is an explanatory diagram of the state of the subject's visual field in the third embodiment, where (a) is when the alignment is appropriate, (b) is (C) is a case where only the working distance is appropriate, and (C) is a case where only the alignment is appropriate. 1.2 is a concave mirror, 3 is an objective lens, 4 is a condensing lens, 5 is a concave mirror, 6 is a light source, 7 is a cylinder, and 8 is a piston. Patent applicant Canon Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 1、被検眼が眼科機器の所定の作動距離に位置した場合
に、被検眼の前眼部から出射した光がほぼ平行光束とし
て被検眼に戻るように、反射光学系を前記眼科機器の光
軸と一致させて被検眼の前方に配置したことを特徴とす
る自己眼位置合わせ装置。 2、前記反射光学系をハーフミラーとした特許請求の範
囲第1項に記載の自己眼位置合わせ装置。 3、前記反射光学系を凹面鏡として、前記反射光学系で
反射された被検眼像を被検眼により視認するようにした
特許請求の範囲第1項に記載の自己眼位置合わせ装置。 4、前記反射光学系を凸面鏡とし、該凸面鏡の後方に被
検眼の角膜反射像を形成するための視標光源を配するよ
うにした特許請求の範囲第1項に記載の自己眼位置合わ
せ装置。 5、前記視標光源は一対とし、その中心が光軸上に位置
するようにした特許請求の範囲第4項に記載の自己眼位
置合わせ装置。
[Claims] 1. A reflective optical system is provided so that when the eye to be examined is located at a predetermined working distance of the ophthalmological equipment, the light emitted from the anterior segment of the eye to be examined returns to the eye as a substantially parallel beam. A self-eye positioning device characterized in that the self-eye positioning device is arranged in front of the eye to be examined so as to be aligned with the optical axis of the ophthalmological equipment. 2. The self-eye alignment device according to claim 1, wherein the reflective optical system is a half mirror. 3. The self-eye positioning device according to claim 1, wherein the reflective optical system is a concave mirror, and the eye image reflected by the reflective optical system is visually recognized by the eye to be examined. 4. The self-eye positioning device according to claim 1, wherein the reflective optical system is a convex mirror, and a target light source for forming a corneal reflection image of the eye to be examined is arranged behind the convex mirror. . 5. The self-eye alignment device according to claim 4, wherein the optotype light sources are a pair, the center of which is located on the optical axis.
JP60118369A 1985-05-31 1985-05-31 Eye self-positioning apparatus Granted JPS61276533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60118369A JPS61276533A (en) 1985-05-31 1985-05-31 Eye self-positioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118369A JPS61276533A (en) 1985-05-31 1985-05-31 Eye self-positioning apparatus

Publications (2)

Publication Number Publication Date
JPS61276533A true JPS61276533A (en) 1986-12-06
JPH0430291B2 JPH0430291B2 (en) 1992-05-21

Family

ID=14734996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118369A Granted JPS61276533A (en) 1985-05-31 1985-05-31 Eye self-positioning apparatus

Country Status (1)

Country Link
JP (1) JPS61276533A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289932A (en) * 1990-04-06 1991-12-19 Canon Inc Ophthalmologic apparatus
JP2002165763A (en) * 2000-11-30 2002-06-11 Topcon Corp Non-contact tonometer
JP2007196069A (en) * 2000-02-07 2007-08-09 Reichert Inc Hand-held non-contact tonometer
JP2010535049A (en) * 2007-07-30 2010-11-18 レイン アプライド ダイアノスティクス リミテッド Optical measuring apparatus and optical measuring method
JP2014147802A (en) * 2007-07-30 2014-08-21 Lein Applied Diagnostics Ltd Optical alignment apparatus and optical alignment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289932A (en) * 1990-04-06 1991-12-19 Canon Inc Ophthalmologic apparatus
US6131574A (en) * 1990-04-06 2000-10-17 Canon Kabushiki Kaisha Ophthalmological apparatus
JP2007196069A (en) * 2000-02-07 2007-08-09 Reichert Inc Hand-held non-contact tonometer
JP2002165763A (en) * 2000-11-30 2002-06-11 Topcon Corp Non-contact tonometer
JP2010535049A (en) * 2007-07-30 2010-11-18 レイン アプライド ダイアノスティクス リミテッド Optical measuring apparatus and optical measuring method
JP2014147802A (en) * 2007-07-30 2014-08-21 Lein Applied Diagnostics Ltd Optical alignment apparatus and optical alignment method

Also Published As

Publication number Publication date
JPH0430291B2 (en) 1992-05-21

Similar Documents

Publication Publication Date Title
US6007204A (en) Compact ocular measuring system
CN1794945B (en) Apparatus for eye alignment
JP3916482B2 (en) Ophthalmic equipment
JPS63267331A (en) Non-contact tonometer
JPH04200436A (en) Ophthamologic apparatus
US5120122A (en) Simultaneous stereo fundus camera
US12150709B2 (en) Visual axis identification systems and methods
US4529280A (en) Apparatus for subjectively measuring the refractive power of an eye
JP4623899B2 (en) Eye biometer
CN105942972A (en) Self-adaptive optical imaging system for capillary vessels in inner nuclear layer of retina
JPS61276533A (en) Eye self-positioning apparatus
JPH01265937A (en) Ophthalmologic instrument
US4272165A (en) Optical system for illuminating the ground of the eye
JPS6125371B2 (en)
CN106063700B (en) Rapid capture and imaging method of microvessels below 10 microns in fundus
JP3056800B2 (en) Ophthalmic equipment
JPH03176023A (en) Ophthalmic apparatus
JPH0473038A (en) Refractometer
JP3046600B2 (en) Ophthalmic equipment
JPS59230535A (en) Ophthalmic measuring apparatus
JPH01265938A (en) Contactless ophthalmotonometer
JPH0566806B2 (en)
JP3154533B2 (en) Ophthalmic equipment
JPH0439332B2 (en)
JPS6243533Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term