JPS61276269A - Hetero-junction type field-effect transistor - Google Patents
Hetero-junction type field-effect transistorInfo
- Publication number
- JPS61276269A JPS61276269A JP60118527A JP11852785A JPS61276269A JP S61276269 A JPS61276269 A JP S61276269A JP 60118527 A JP60118527 A JP 60118527A JP 11852785 A JP11852785 A JP 11852785A JP S61276269 A JPS61276269 A JP S61276269A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gaas
- undoped
- algaas
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/60—Impurity distributions or concentrations
- H10D62/605—Planar doped, e.g. atomic-plane doped or delta-doped
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
GaAs/AlGaAsヘテロ接合を用い、電子の走行
する結晶領域(GaAs)と電子を供給する結晶領域(
AIGaAs)とを空間的に分離して、電子の不純物散
乱の影響を少なくし、GaAsの高い電子移動度を利用
した電界効果トランジスタが多く開発されている。これ
らのヘテロ接合型FETファミリーの中で本発明ではS
IS型FETの改良を行った。Detailed Description of the Invention [Summary] A GaAs/AlGaAs heterojunction is used to create a crystal region (GaAs) where electrons travel and a crystal region (GaAs) which supplies electrons.
Many field-effect transistors have been developed that utilize the high electron mobility of GaAs by spatially separating GaAs from GaAs to reduce the influence of impurity scattering of electrons. Among these heterozygous FET families, the present invention uses S
We have improved the IS type FET.
本発明は、GaAs/AlGaAsヘテロ接合を用いた
電界効果トランジスタ(FET)の改良に関する。The present invention relates to improvements in field effect transistors (FETs) using GaAs/AlGaAs heterojunctions.
超薄膜GaAsと超薄膜AlGaAsとの積層ヘテロ構
造にドナーを入れると、供給された電子は電子親和力の
強いGaAs層に閉じ込められる。When a donor is introduced into the stacked heterostructure of ultra-thin GaAs and ultra-thin AlGaAs, the supplied electrons are confined in the GaAs layer, which has a strong electron affinity.
このとき、膜面に垂直方向の電子の動きは禁止され名た
め、膜面に沿う方向のみ自由度のもった2次元電子ガス
(2D imensional E 1ectron
Ga5=2DEC)が形成されることが知られている。At this time, the movement of electrons in the direction perpendicular to the film surface is prohibited, so the two-dimensional electron gas (2D dimensional electron gas) has a degree of freedom only in the direction along the film surface.
It is known that Ga5=2DEC) is formed.
半絶縁性基板上に、アンドープGaAs、シリコンをド
ープせるn−AlGaAs、n−GaAs と積層し、
n−AlGaAs層よりアンドープGaAs層とのヘテ
ロ界面に供給される20EGを利用したのがHEMTと
して知られている。On a semi-insulating substrate, undoped GaAs, n-AlGaAs doped with silicon, and n-GaAs are stacked,
HEMT is known as a HEMT that utilizes 20EG supplied from the n-AlGaAs layer to the heterointerface with the undoped GaAs layer.
一方、AlGaAs/GaAsとのヘテロ接合の界面に
充分強い電界を加えことが出来れば、AlGaAs層に
ドナーがドープされなくても、界面に2DEGが形成で
きることが知られていて、この構造のトランジスタはS
I S (Sem1conductor I n5u
la−tor S emiconductor)型FE
Tとして発表されている。On the other hand, it is known that if a sufficiently strong electric field can be applied to the interface of the AlGaAs/GaAs heterojunction, a 2DEG can be formed at the interface even if the AlGaAs layer is not doped with donors. S
I S (Sem1 conductor I n5u
la-tor Semiconductor) type FE
It is announced as T.
本発明はこのSIS型FET構造に関するもので、従来
のSIS構造では、そのしきい値電圧が必ず正となる特
性があり、しきい値電圧がOlまたは負の特性のF、E
Tの開発に向けて改善の努力が行われている。The present invention relates to this SIS type FET structure. In the conventional SIS structure, the threshold voltage always has a positive characteristic, and the threshold voltage is O1 or F, E, which has a negative characteristic.
Efforts are being made to improve the T.
従来のSIS型FETの断面構造を第3図により説明す
る。The cross-sectional structure of a conventional SIS type FET will be explained with reference to FIG.
半絶縁性GaAs基板1にアンドープGaAs層2を約
1μm1次いで、アンドープAlGaAs3が約500
人種層されている。更にゲート電極5のコンタクト層と
してn”−GaAs層4が0.1μm積層される。ソー
ス、ドレインのコンタクト領域の不純物の導入の後、ソ
ース電極6、ドレイン電極7が形成されてトランジスタ
が完成する。A semi-insulating GaAs substrate 1 is coated with an undoped GaAs layer 2 of about 1 μm, and then an undoped AlGaAs layer of about 500 μm thick is coated on the semi-insulating GaAs substrate 1.
It is racially stratified. Further, an n''-GaAs layer 4 of 0.1 μm is laminated as a contact layer for the gate electrode 5. After introducing impurities into the source and drain contact regions, a source electrode 6 and a drain electrode 7 are formed to complete the transistor. .
この時のエネルギーバンド図は第4図のごとく−になる
。第4図(a)はゲート電極に電圧が印加されない時の
状態であり、第4図(b)はゲート電極に正電圧を印加
した状態を示す。The energy band diagram at this time becomes negative as shown in FIG. FIG. 4(a) shows the state when no voltage is applied to the gate electrode, and FIG. 4(b) shows the state when a positive voltage is applied to the gate electrode.
図より明らかにゲート電圧vc”0の状態ではGaAs
/AlGaAsヘテロ界面には20EGが形成されない
のでドレイン電流は流れない。It is clear from the figure that in the state of gate voltage vc"0, GaAs
Since 20EG is not formed at the /AlGaAs hetero interface, no drain current flows.
VG >0.3〜0.4vとなって、始めてヘテロ界面
に2DECが形成されて、ドレイン電流が流れ始める。Only when VG becomes >0.3 to 0.4v, 2DEC is formed at the hetero interface, and the drain current begins to flow.
上記に述べた、従来のSIS FET構造ではゲート
電圧に正電圧を印加しない場合は、ドレイン電流が流れ
ず、FETのしきい値電圧は常に正の値をとることであ
る。In the conventional SIS FET structure described above, if a positive voltage is not applied to the gate voltage, no drain current flows and the threshold voltage of the FET always takes a positive value.
このためFET特性としては、SIS型は常にエンハン
スメントモードで動作することになる。Therefore, in terms of FET characteristics, the SIS type always operates in enhancement mode.
SIS型構造で、そのしきい値電圧を自由に制御してデ
ィプレッションモードのFETも製作可能なる技術が要
望されている。There is a need for a technology that can freely control the threshold voltage of the SIS type structure and manufacture depletion mode FETs.
上記問題点は、従来のSIS FETのアンドープA
lGaAs層の構造に下記のごときnドープ層を加える
ことによって解決される。The above problem is caused by the undoped A of the conventional SIS FET.
This problem is solved by adding the following n-doped layer to the structure of the lGaAs layer.
即ち、アンドープAlGaAs層内にn型GaAs層を
形成するか、あるいはn型プレーナドーピング層を挟ん
だGaAs層を設ける方法等により数10Å以下の極め
て薄いGaAsドーピング層を加えることにより解決さ
れる。That is, this problem can be solved by forming an n-type GaAs layer within the undoped AlGaAs layer, or by adding an extremely thin GaAs doping layer of several tens of angstroms or less by forming GaAs layers sandwiching an n-type planar doping layer.
上記のごとく非常に薄いn型ドーピング層を設けること
により、ゲート電圧が0の状態においても、この層にお
けるコンダクションバンドの底かヘテロ界面でのフェル
ミレベルよりも低くなる。By providing a very thin n-type doped layer as described above, even when the gate voltage is 0, the bottom of the conduction band in this layer is lower than the Fermi level at the hetero interface.
このようなエネルギーバンド構造を取ることにより、ヘ
テロ界面には2DEGが供給されてn型チャネル層を形
成する。By adopting such an energy band structure, 2DEG is supplied to the hetero interface to form an n-type channel layer.
n型のプレーナドーピング量、あるいはドーピング層の
ヘテロ界面よりの位置を制御することにより、FET特
性のしきい値を所望の値に選ぶことも出来る。By controlling the amount of n-type planar doping or the position of the doped layer from the hetero interface, the threshold value of the FET characteristics can be selected to a desired value.
本発明による一実施例を図面により詳細説明する。第1
図はその構造断面図であるが、従来の技術の項において
用いた符号と同一のものは説明を省略する。An embodiment according to the present invention will be described in detail with reference to the drawings. 1st
Although the figure is a cross-sectional view of the structure, explanations of the same reference numerals used in the section of the prior art will be omitted.
半絶縁性GaAs基板1上にアンドープGaAs2を積
層する工程は変わらない。The process of laminating undoped GaAs 2 on the semi-insulating GaAs substrate 1 remains unchanged.
次いで、アンドープAlGaAs層3を約200人種層
する。AlGaAs層のAIの混晶比率Xは0.4に選
ばれる。Next, about 200 undoped AlGaAs layers 3 are formed. The mixed crystal ratio X of AI in the AlGaAs layer is selected to be 0.4.
次いでアンドープGaAs層8を10人積層させた後、
シリコンをプレーナドープする。プレーナドープ層9で
の面ドープ量は、5×1011〜lXl0”cm−”に
選ばれる。Next, after stacking 10 undoped GaAs layers 8,
Planar dope silicon. The planar doping amount in the planar doped layer 9 is selected to be 5.times.10.sup.11 to 1.times.10"cm.sup.-".
再度、アンドープC,aAsli8を10人成長させて
、その上にアンドープAlGaAs層3を300人成長
させる。この場合のAlGaAs層のX値も、同じく0
.4と選ばれる。Again, 10 layers of undoped C, aAsli 8 are grown, and 300 layers of undoped AlGaAs layer 3 are grown thereon. The X value of the AlGaAs layer in this case is also 0.
.. It is selected as 4.
最後にn”−GaAs(不純物濃度No=5xlO’7
cm−’)層4を0,1μm成長させることにより素子
部の形成を終わる。Finally, n”-GaAs (impurity concentration No = 5xlO'7
The formation of the element portion is completed by growing the layer 4 (cm-') to a thickness of 0.1 μm.
上記の本発明構造FETのゲート電圧vG=0でのエネ
ルギーバンド図を第2図に示す。従来のSIS構造のv
6〉0と同様にヘテロ界面との間にバンドの曲がりを発
生させることが出来るので、ヘテロ界面に2DECのチ
ャネル層が形成される。FIG. 2 shows an energy band diagram of the above-described FET having the structure of the present invention at gate voltage vG=0. v of conventional SIS structure
Similar to 6>0, band bending can be generated between the hetero interface and a 2DEC channel layer is formed at the hetero interface.
FET特性として、しきい値電圧・を負とすることも可
能となる。As a FET characteristic, it is also possible to make the threshold voltage negative.
本発明ではプレーナドープ層9のドーピング量及びAl
GaAs層3内でのドーピング位置を制御することによ
りFET特性のしきい値を自由に制御することが可能で
ある。In the present invention, the doping amount of the planar doped layer 9 and the Al
By controlling the doping position within the GaAs layer 3, it is possible to freely control the threshold value of the FET characteristics.
以上に説明せるごとく、本発明の構造よりなるヘテロ接
合型電界効果トランジスタにより、FE、T特性として
、従来のSIS型のごときエンハンスメントモードは勿
論のこと、更にディプレッションモード特性をもった高
速トランジスタの製作が可能となる。As explained above, by using the heterojunction field effect transistor having the structure of the present invention, a high-speed transistor with FE and T characteristics not only has enhancement mode characteristics like the conventional SIS type, but also has depletion mode characteristics. becomes possible.
第1図は本発明にかかわるヘテロ接合型電界効果トラン
ジスタの構造断面図、
第2図は本発明のエネルギーバンド図、第3図は従来の
SIS型FETの構造断面図、第4図(al、 (b)
はSIS型FETのエネルギーバンド図、
を示す。
図面において、
1は半絶縁性GaAs基板、
2.8はアンドープGaAs層、
3はアンドープAlGaAs層、
4はn”−GaAs層、
5はゲート電極、
6はソース電極、
7はドレイン電極、
9はn型プレーナドーピング層、
をそれぞれ示す。
不発ejll+:かi・めjヘテロ路・会呟嬉1図
ンt\タシ≦、9J7s 工+II、?−−ノYχシト
ごCンフfX 2図Fig. 1 is a structural cross-sectional view of a heterojunction field effect transistor according to the present invention, Fig. 2 is an energy band diagram of the present invention, Fig. 3 is a structural cross-sectional view of a conventional SIS type FET, and Fig. 4 (al, (b)
shows the energy band diagram of the SIS type FET. In the drawings, 1 is a semi-insulating GaAs substrate, 2.8 is an undoped GaAs layer, 3 is an undoped AlGaAs layer, 4 is an n''-GaAs layer, 5 is a gate electrode, 6 is a source electrode, 7 is a drain electrode, and 9 is a drain electrode. The n-type planar doping layer is shown respectively.
Claims (1)
ンドープAlGaAs層(3)が積層され、 該AlGaAs層(3)上にはn型GaAs層(4)、
あるいは金属を積層してゲート電極(5)を形成し、前
記アンドープGaAs層(2)とアンドープAlGaA
s層(3)とのヘテロ接合面の2次元電子ガスをチャネ
ル層とせる電界効果トランジスタにおいて、前記アンド
ープAlGaAs層内にn型GaAs層あるいは、n型
プレーナドーピング層(9)を挟んだGaAs層(8)
を設けたことを特徴とするヘテロ接合型電界効果トラン
ジスタ。[Claims] An undoped GaAs layer (2) and then an undoped AlGaAs layer (3) are laminated on the substrate (1), and on the AlGaAs layer (3), an n-type GaAs layer (4),
Alternatively, the gate electrode (5) is formed by stacking metals, and the undoped GaAs layer (2) and the undoped AlGaA
In a field effect transistor in which a two-dimensional electron gas at the heterojunction surface with the s-layer (3) is used as a channel layer, an n-type GaAs layer or a GaAs layer sandwiching an n-type planar doping layer (9) within the undoped AlGaAs layer. (8)
A heterojunction field effect transistor characterized by being provided with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60118527A JPS61276269A (en) | 1985-05-30 | 1985-05-30 | Hetero-junction type field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60118527A JPS61276269A (en) | 1985-05-30 | 1985-05-30 | Hetero-junction type field-effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61276269A true JPS61276269A (en) | 1986-12-06 |
Family
ID=14738807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60118527A Pending JPS61276269A (en) | 1985-05-30 | 1985-05-30 | Hetero-junction type field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61276269A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS645074A (en) * | 1987-06-26 | 1989-01-10 | Sharp Kk | Field effect transistor |
US5234849A (en) * | 1991-05-17 | 1993-08-10 | Sony Corporation | Method of preparing a high electron mobility field effect transistor |
FR2689683A1 (en) * | 1992-04-07 | 1993-10-08 | Thomson Composants Microondes | Semiconductor device with complementary transistors |
US5284782A (en) * | 1991-09-12 | 1994-02-08 | Pohang Iron & Steel Co., Ltd. | Process for formation of delta-doped quantum well field effect transistor |
-
1985
- 1985-05-30 JP JP60118527A patent/JPS61276269A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS645074A (en) * | 1987-06-26 | 1989-01-10 | Sharp Kk | Field effect transistor |
US5234849A (en) * | 1991-05-17 | 1993-08-10 | Sony Corporation | Method of preparing a high electron mobility field effect transistor |
US5284782A (en) * | 1991-09-12 | 1994-02-08 | Pohang Iron & Steel Co., Ltd. | Process for formation of delta-doped quantum well field effect transistor |
FR2689683A1 (en) * | 1992-04-07 | 1993-10-08 | Thomson Composants Microondes | Semiconductor device with complementary transistors |
US5367183A (en) * | 1992-04-07 | 1994-11-22 | Thomson-Csf Semiconducteurs Specifiques | Semiconductor device with complementary transistors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5081511A (en) | Heterojunction field effect transistor with monolayers in channel region | |
CA1242287A (en) | Semiconductor device exhibiting negative transconductance | |
JPH0783107B2 (en) | Field effect transistor | |
JPH024140B2 (en) | ||
JPS61276269A (en) | Hetero-junction type field-effect transistor | |
JPH0312769B2 (en) | ||
JP2965358B2 (en) | Field-effect transistor | |
JP2661556B2 (en) | Field effect type semiconductor device | |
JPS61147577A (en) | Complementary semiconductor device | |
JP2571583B2 (en) | III-V compound semiconductor field effect transistor | |
JPS63278277A (en) | Compound semiconductor device | |
JPH0328065B2 (en) | ||
JP2500459B2 (en) | Heterojunction field effect transistor | |
JP3054216B2 (en) | Semiconductor device | |
JP2546994B2 (en) | High-speed field effect semiconductor device | |
JP2655594B2 (en) | Integrated semiconductor device | |
JPS60235476A (en) | Semiconductor device | |
JP2679127B2 (en) | Field effect transistor | |
JPH0513462A (en) | Compound semiconductor structure | |
JPH1050727A (en) | Semiconductor device | |
JPS60136380A (en) | semiconductor equipment | |
JP2000208722A (en) | Semiconductor device and its manufacture | |
JPH05102190A (en) | Compound-semiconductor heterojunction-gate field-effect transistor | |
JPS61171170A (en) | semiconductor equipment | |
JPH06295926A (en) | Semiconductor device including field-effect transistor |