JPS61275504A - Mixed pressure turbine - Google Patents
Mixed pressure turbineInfo
- Publication number
- JPS61275504A JPS61275504A JP11704885A JP11704885A JPS61275504A JP S61275504 A JPS61275504 A JP S61275504A JP 11704885 A JP11704885 A JP 11704885A JP 11704885 A JP11704885 A JP 11704885A JP S61275504 A JPS61275504 A JP S61275504A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- steam passage
- passage
- secondary steam
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002265 prevention Effects 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 241000251468 Actinopterygii Species 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000013142 basic testing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
タービン初段落から導入された一次蒸気にタービン途中
段落から導入された二次蒸気を合流さ仕る混圧式タービ
ンに係り、特に二次蒸気の一次蒸気の合流点付近の構造
に関する。[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a mixed pressure turbine that combines primary steam introduced from the first stage of the turbine with secondary steam introduced from an intermediate stage of the turbine. Concerning the structure near the steam confluence.
(発明の技術的背景とその問題点)
地熱発電プラントでは、井戸が比較的浅く地熱蒸気の圧
力・温度が余り高くない場合、地熱蒸気の有効利用のた
めに混圧式タービンを用いた二段フラッシュ式地熱ター
ビンが広く採用されている。(Technical background of the invention and its problems) In geothermal power plants, when the well is relatively shallow and the pressure and temperature of the geothermal steam is not very high, a two-stage flash using a mixed pressure turbine is used to effectively utilize the geothermal steam. Geothermal turbines are widely used.
この二段フラッシュ式地熱タービンは第12図に示され
るように井戸1から地熱蒸気を取り出し、この地熱蒸気
を一次蒸気フラッシュタンク2において熱水と飽和蒸気
とに分離する。この飽和蒸気は、−水魚気管3を通って
一水魚気へとしてタービン初段落4から一次蒸気通路5
に流入される。As shown in FIG. 12, this two-stage flash type geothermal turbine extracts geothermal steam from a well 1 and separates this geothermal steam into hot water and saturated steam in a primary steam flash tank 2. This saturated steam passes through the water/fish trachea 3 to the water/fish air from the turbine first stage 4 to the primary steam passage 5.
is flowing into the country.
上記分離された熱水は、−水魚気フラッシュタンク2よ
りも低圧の二次蒸気フラッシュタンク6に送られ、フラ
ッシュされて飽和蒸気と熱水とに分離される。この熱水
は還元井戸7に戻され、飽和蒸気は二次蒸気管8を通う
て、二次蒸気Bとしてタービン途中段落の二次蒸気通路
9に流入される。The separated hot water is sent to a secondary steam flash tank 6 whose pressure is lower than that of the flash tank 2, where it is flashed and separated into saturated steam and hot water. This hot water is returned to the reduction well 7, and the saturated steam passes through the secondary steam pipe 8 and flows as secondary steam B into the secondary steam passage 9 in the middle stage of the turbine.
この二次蒸気通路9を流出した二次蒸気Bは、第13図
に示されたように一次蒸気通路5に流入し、上流段落で
既に仕事をしてきたシ水魚気へと合流づ°る。このとき
、二次蒸気Bは合流地点での一次蒸気の軸流速度に比べ
てかなり小さいため一次蒸気に完全に混合せず、合流地
点より下流側では、二次蒸気がケーシング10側に流れ
、−水魚気がロータ1191.すなわちノズル12や羽
根13のルート側を流れて、それぞれ仕事を行う。こう
して混圧式タービンの採用により、地熱エネルギーを一
次蒸気と二次蒸気の形で有効に活用できる。The secondary steam B that has flowed out of the secondary steam passage 9 flows into the primary steam passage 5 as shown in FIG. 13, and joins the water that has already worked in the upstream stage. At this time, the secondary steam B is considerably smaller than the axial flow velocity of the primary steam at the confluence point, so it does not completely mix with the primary steam, and on the downstream side of the confluence point, the secondary steam flows toward the casing 10. -Waterfish air rotor 1191. In other words, it flows along the root side of the nozzle 12 and the blades 13 and performs their respective work. In this way, by adopting a mixed pressure turbine, geothermal energy can be effectively utilized in the form of primary steam and secondary steam.
発電プラントでは電力需要mの変動に応じてタービンの
部分負荷運転が要求され、混圧式タービンでは、この部
分負荷運転時、二次蒸気量の調整が行われている。とこ
ろが従来の混圧式タービンは、二次蒸気量の減少により
、全圧損失やタービン羽根の損傷などの問題が生ずる。In a power generation plant, partial load operation of the turbine is required in response to fluctuations in electric power demand m, and in a mixed pressure turbine, the amount of secondary steam is adjusted during this partial load operation. However, conventional mixed pressure turbines suffer from problems such as total pressure loss and damage to turbine blades due to a decrease in the amount of secondary steam.
これは以下に詳述する原因により発生する。部分負荷運
転のために第14図に示されたように二次蒸気量が零と
なると、一次蒸気通路5は二次蒸気通路9の出口部9a
において二次蒸気の流入が無いため、急激に拡大する。This occurs due to the reasons detailed below. When the amount of secondary steam becomes zero due to partial load operation as shown in FIG.
Because there is no inflow of secondary steam, it expands rapidly.
しかし−水魚気Aは、このような一次蒸気通路の急激な
拡大に追従できず、この拡大部で渦を伴う大きな剥離領
域14を生ずる。また、これの反作用により、合流地点
より下流側の羽根13のルート付近にも渦を伴う剥離領
域15もしくは逆流領域が発生する。これらの両頭ti
R14゜15により、大きな全圧損失が発生すると同時
に、流れが周方向に不均一となり、羽根13に対して励
振力が発生し、羽根を損傷し、その寿命を短くする。第
15図は二次蒸気の流入が無い場合のノズル12i:i
後の動圧分布を示したもので、横軸は周方向位置θを表
し、縦軸は合流点直前の動圧の平均値を基準値として無
次元化したノズル12の直後の動圧C1を表わしている
。実1i1Rで示した羽根ルート部や破線Tで示したチ
ップ部は一点鎖線Pで示した流路中央に比べて動圧の減
少が著しく、かつ周方向変動が大きく、これらの部分が
剥離領域となり、渦が発生していることが分る。However, the water/fish air A cannot follow such a rapid expansion of the primary steam passage, and a large separation area 14 with vortices is generated at this expansion portion. Further, due to this reaction, a separation region 15 or a reverse flow region accompanied by a vortex is generated near the root of the blade 13 on the downstream side of the merging point. These double-headed ti
Due to R14°15, a large total pressure loss occurs, and at the same time, the flow becomes non-uniform in the circumferential direction, and an exciting force is generated on the blade 13, damaging the blade and shortening its life. Figure 15 shows the nozzle 12i:i when there is no inflow of secondary steam.
The graph shows the subsequent dynamic pressure distribution, where the horizontal axis represents the circumferential position θ, and the vertical axis represents the dynamic pressure C1 immediately after the nozzle 12, which has been made dimensionless using the average value of the dynamic pressure immediately before the confluence as the reference value. It represents. In the blade root part shown in Actual 1i1R and the tip part shown by the broken line T, the dynamic pressure decreases significantly compared to the center of the flow path shown by the dashed line P, and the fluctuation in the circumferential direction is large, and these parts become the separation area. It can be seen that a vortex is generated.
以上部分負荷運転のため二次蒸気の流入が無くなった場
合に生ずる問題を述べたが、従来の混圧式タービンは二
次蒸気が流入している場合にも次のような問題が生じて
いた。The problems that occur when there is no inflow of secondary steam due to partial load operation have been described above, but in conventional mixed pressure turbines, the following problems also occurred when secondary steam was flowing in.
従来の混圧式タービンは、第13図に示されたように二
次蒸気Bが一次蒸気Aに対し、はぼ直角に流入すると共
にこの流入速度が周方向に不均一であるため、合流点で
渦運動を伴う二次流れが発生し、−次気流に垂直方向に
二次蒸気の運動エネルギーが大部分消費され大きなエネ
ルギ損失を招いていた。さらに二次蒸気Bの流速は一水
魚気へよりも遅いけれども合流地点で約60m/s〜1
00m/Sにも達し、また*mは場合によっては一次蒸
気流量の50%にも達するため、二次蒸気速度路9から
の二次蒸気Bは最大90°にもなる流路変化に追従でき
ず、ノズルダ・イヤフラム外輪やケーシング10との境
界層に剥離領wt16が生じ渦損失を招く。第16図は
、二次蒸気流」が−水魚気の30%である場合の合流点
直後のノズル下流での動圧分布を示したもので、実線R
はルート部での動圧を表わし、ここにおいて−水魚気と
二次蒸気との衝突による全圧損失が著しく、さらに90
°に及ぶ二次蒸気の方向変換のために静圧が上昇し、大
きな動圧降下が発生していることを示している。破線■
はチップ部での動圧を表わし、上記剥離領域16のため
に動圧が降下していることを示している。−直鎖11P
は中・央部での動圧を示している。ルート部R、チップ
部T、中央部Pともすべて動圧の周方向変動が大きいが
、これは二次蒸気速度が周方向に不均一であること、及
び上記二次流れの発生や、剥離領域の発生により、−水
魚気流の周方向不均一が増幅されたことに起因する。こ
のような速度の周方向不均一は、羽根に対する励振力を
発生させ、自励振動(フラッタ)等の発生により羽根の
寿命を短縮させる原因となる。In a conventional mixed pressure turbine, as shown in Fig. 13, secondary steam B flows into primary steam A at a nearly right angle, and the speed of this inflow is non-uniform in the circumferential direction. A secondary flow accompanied by a vortical motion is generated, and most of the kinetic energy of the secondary steam is consumed in a direction perpendicular to the secondary airflow, resulting in a large energy loss. Furthermore, although the flow velocity of the secondary steam B is slower than that of the primary steam, it is approximately 60 m/s to 1 at the confluence point.
00 m/S, and *m can reach 50% of the primary steam flow rate in some cases, so the secondary steam B from the secondary steam velocity path 9 can follow flow path changes of up to 90°. First, a separation region wt16 is generated in the boundary layer between the nozzle diaphragm outer ring and the casing 10, causing vortex loss. Figure 16 shows the dynamic pressure distribution downstream of the nozzle immediately after the confluence when the secondary steam flow is -30% of the water, fish, and air, and the solid line R
represents the dynamic pressure at the root, where the total pressure loss due to the collision between water, fish, and secondary steam is significant, and 90
This shows that the static pressure increases due to the direction change of the secondary steam over a degree of degree, and a large dynamic pressure drop occurs. Broken line ■
represents the dynamic pressure at the tip portion, and shows that the dynamic pressure is lowered due to the peeled region 16. -Linear 11P
indicates the dynamic pressure at the center. The root part R, tip part T, and center part P all have large fluctuations in the circumferential direction of the dynamic pressure. This is due to the fact that the circumferential non-uniformity of the airflow is amplified. Such non-uniformity in the circumferential direction of the speed generates an excitation force on the blade, causing self-excited vibration (flutter) and the like to shorten the life of the blade.
さらに二次蒸気の合流地点における全圧損失の分だけ二
段フラッシュタンク6内の蒸気圧力が上昇してフラッシ
ュ蒸気量が減少してしまうという問題があった。Furthermore, there is a problem in that the steam pressure in the two-stage flash tank 6 increases by the total pressure loss at the confluence point of the secondary steam, resulting in a decrease in the amount of flash steam.
(発明の目的〕
そこで、本発明の目的は流れの全圧損失を大幅に低減し
、かつまた流れの周方向速度を均一化して効率を大幅に
向上させた混圧式タービンを提供することにある。(Objective of the Invention) Therefore, the object of the present invention is to provide a mixed pressure turbine that significantly reduces the total pressure loss of the flow and also equalizes the circumferential velocity of the flow, thereby greatly improving the efficiency. .
この目的を達成するために、本願の第1発明は、タービ
ンロータに沿って形成され、タービン初段落より流入し
た一次蒸気がタービンを回転させるため流通する一次蒸
気通路と、タービン途中段落に形成され、出口端におい
て上記一次蒸気通路に所定角度で接続され、二次蒸気を
タービン途中段落から上記一次蒸気通路へ導入する二次
蒸気通路とを具備する混圧式タービンにおいて、上記二
次蒸気通路出ロ端イ1近に設けられ、上記二次蒸気通路
を開閉する遮蔽部材を具備することを特徴とするもので
あり、第2の発明は、上記二次蒸気通路の出口部付近を
上記一次蒸気通路の下流の方に向つて傾斜延在させ、こ
の傾斜部の延長線とロータ中心線とのなす角度αが0<
α≦π/3を満足させるようにしたことを特徴とするも
のである。In order to achieve this object, the first invention of the present application provides a primary steam passage formed along the turbine rotor through which primary steam flowing from the first stage of the turbine flows to rotate the turbine, and a primary steam passage formed in the middle stage of the turbine. , a mixed pressure turbine comprising a secondary steam passage connected at a predetermined angle to the primary steam passage at an outlet end and introducing secondary steam into the primary steam passage from an intermediate stage of the turbine; The present invention is characterized by comprising a shielding member provided near the end A1 to open and close the secondary steam passage. The angle α between the extended line of this slope and the rotor center line is 0<
It is characterized in that α≦π/3 is satisfied.
以下、本発明による混圧式タービンの一実施例を第12
図乃至第14図と同一部分に同一符号を付して示した第
1図乃至第11図を参照して説明する。Hereinafter, one embodiment of the mixed pressure turbine according to the present invention will be described as a 12th embodiment.
The explanation will be made with reference to FIGS. 1 to 11, in which the same parts as in FIGS. 1 to 14 are denoted by the same reference numerals.
第1図と第2図において、−水魚気Aはタービン初段落
4より一次蒸気通路5に流入する。この一次蒸気通路5
はタービンケーシング10とタービンロータ11との間
にロータ11に沿ってリング状に形成されている。二次
蒸気通路9はタービン途中段落に設けられ、この通路9
の出口部9aはケーシング10とこの通路9を軸方向に
挟んだ上流側ノズルダイヤフラム外輪17J3よび下流
側ノズルダイセフラム外輪18とによって形成されて゛
いる。この二次蒸気通路9の出口部9aは、一次蒸気通
路5の下流に向って滑かに傾斜している。In FIGS. 1 and 2, water, fish, and air A flows into the primary steam passage 5 from the first stage 4 of the turbine. This primary steam passage 5
is formed in a ring shape along the rotor 11 between the turbine casing 10 and the turbine rotor 11. The secondary steam passage 9 is provided in the middle stage of the turbine, and this passage 9
The outlet portion 9a is formed by the casing 10, an upstream nozzle diaphragm outer ring 17J3, and a downstream nozzle diaphragm outer ring 18 that sandwich the passage 9 in the axial direction. The outlet portion 9a of the secondary steam passage 9 is smoothly inclined toward the downstream side of the primary steam passage 5.
この傾斜は、出口部9aの延長線とロータ11の中心軸
とのなす角度α(以下、二次蒸気流出角という。)が0
<α≦π/3を満足するように定められている。This inclination means that the angle α (hereinafter referred to as secondary steam outflow angle) between the extension line of the outlet portion 9a and the central axis of the rotor 11 is 0.
It is determined to satisfy <α≦π/3.
この二次蒸気通路出口部9aには、二次蒸気通路9を開
閉できる遮蔽部材19が設けられている。A shielding member 19 that can open and close the secondary steam passage 9 is provided at the secondary steam passage outlet 9a.
この遮蔽部材19は、通路9の下流側ノズルダイヤフラ
ム外輪18から通路9内に吐出したリング状回転板20
と、二次蒸気通路9の下流側ケーシグ10から通路9内
に突出したリング状固定板21とから構成されている。This shielding member 19 includes a ring-shaped rotary plate 20 discharged into the passage 9 from the nozzle diaphragm outer ring 18 on the downstream side of the passage 9.
and a ring-shaped fixing plate 21 protruding into the passage 9 from the casing 10 on the downstream side of the secondary steam passage 9.
回転板20は第3図〜第5図に示されたように、等角度
間隔で配列された複数枚の矩形状突片20aから構成さ
れ、これらの突片20aの周方向長さ11と隣接する突
片20aの間の間隙すなわち開口の周方向長さ92とは
ほぼ等しくなるように定められている。As shown in FIGS. 3 to 5, the rotating plate 20 is composed of a plurality of rectangular protrusions 20a arranged at equal angular intervals, and adjacent to the circumferential length 11 of these protrusions 20a. The gap between the projecting pieces 20a, that is, the circumferential length 92 of the opening is determined to be approximately equal to the circumferential length 92 of the opening.
固定板21も回転板20と同形で・、等間隔の複数の矩
形突片21aから構成されている。また回転板20ど固
定板21とは互いに二次蒸気の流れ方向にかさなり合っ
ている。したがって第1図および第4図のように回転板
20aと固定板21の突片21aとが完全に重なり合っ
た時、二次蒸気通路9はその全横断面積の約50%が開
放し、第2図および第5図のように両突片20aと21
8とが互い違いとなったとき通路9は完全に遮蔽され全
■となる。The fixed plate 21 also has the same shape as the rotary plate 20 and is composed of a plurality of rectangular protrusions 21a spaced at equal intervals. Further, the rotating plate 20 and the fixed plate 21 overlap each other in the flow direction of the secondary steam. Therefore, when the rotary plate 20a and the protrusion 21a of the fixed plate 21 completely overlap as shown in FIGS. 1 and 4, about 50% of the total cross-sectional area of the secondary steam passage 9 is opened, and the second Both projecting pieces 20a and 21 as shown in the figure and FIG.
When the passages 8 and 8 are alternated, the passage 9 is completely shielded and becomes a total square.
二次蒸気通路9の直後の下流側ノズルダイヤフラム外輪
18は、他のノズルダイヤフラム外輪と異なりケーシン
グ10の円周溝22によって周方向に回転可能に支持さ
れている。これを詳述すると、ケーシング10の溝22
にはその外周壁と下流111jll壁−とにそれぞれ複
数個のコロ23.24が周方向にほぼ等角度間隔に取り
付けられている。The downstream nozzle diaphragm outer ring 18 immediately after the secondary steam passage 9 is rotatably supported in the circumferential direction by the circumferential groove 22 of the casing 10, unlike the other nozzle diaphragm outer rings. To explain this in detail, the groove 22 of the casing 10
A plurality of rollers 23 and 24 are attached to the outer circumferential wall and the downstream wall at approximately equal angular intervals in the circumferential direction.
これらのコロ23.24によって下流側外輪18は周方
向に回転可能に支持されている。この外輪18の外周面
には第3図に示されたように鋸歯状の溝25が等角度間
隔で形成されている。この溝25の間隔寸なわらピッチ
は上記突片20a。The downstream outer ring 18 is rotatably supported in the circumferential direction by these rollers 23 and 24. As shown in FIG. 3, sawtooth grooves 25 are formed on the outer peripheral surface of the outer ring 18 at equal angular intervals. The pitch of the grooves 25 is the same as that of the protrusion 20a.
21aのピッチの半分に定められている。ケーシング1
0には、?lN23に保合可能な回転阻止部材26が興
通し、この回転阻止部材26はケーシング外部より長手
方向に摺動操作可能で逼り、溝25に係合したとき外輪
18の回転を阻止し、そこから退出したときその回転を
許容する。この回転阻止部材26と外輪18との位置関
係は、部材26が成る溝25に係合したとき例えば突片
20aと218とが完全に重なり合って、すなわち位相
が同相となり、二次蒸気通路9を開放し、またその隣り
の11’!25に係合したとき、突片20aと218と
が逆位相となり通路9を遮蔽するように定められている
。It is set at half the pitch of 21a. Casing 1
For 0? A rotation prevention member 26 that can be secured to the lN 23 is provided, and the rotation prevention member 26 is slidable and tight in the longitudinal direction from the outside of the casing, and when engaged with the groove 25, prevents rotation of the outer ring 18 and prevents the outer ring 18 from rotating. Allow rotation when exiting from. The positional relationship between the rotation preventing member 26 and the outer ring 18 is such that when the member 26 engages with the groove 25, for example, the protrusions 20a and 218 completely overlap, that is, they are in phase, and the secondary steam passage 9 is Open and 11' next to it again! 25, the protrusions 20a and 218 are in opposite phase and are designed to block the passage 9.
また通路出口部9aの遮蔽部材19は、全n状態のとき
一時蒸気通路5の外周壁の一部を形成するとともに下流
側に向って外方へ傾斜しており、これによって通路9の
直前の段落の羽根27から通路9の直後の段落のノズル
12にかけての一次蒸気通路5を漸次拡大している。前
段落羽根27から後段落ノズル12までの遮蔽部材19
を含めた一次蒸気通路外周壁の傾斜角は次のように定め
られている。すなわち、羽根27の出口とノズル12の
入口との軸方向座標XをそれぞれXB。Further, the shielding member 19 of the passage outlet portion 9a forms a part of the outer circumferential wall of the temporary steam passage 5 when in the full n state, and is inclined outwardly toward the downstream side. The primary steam passage 5 from the stage vane 27 to the stage nozzle 12 immediately after the passage 9 is gradually expanded. Shielding member 19 from the front stage blade 27 to the rear stage nozzle 12
The angle of inclination of the outer peripheral wall of the primary steam passage including That is, the axial coordinates X of the outlet of the blade 27 and the inlet of the nozzle 12 are respectively XB.
XAとし、子午面における上記外周壁の任意点における
傾斜角をβとしたとき平均傾斜角β(以下、平均開口角
と称する。)は次の時で定義される。When XA is the inclination angle at an arbitrary point of the outer peripheral wall in the meridian plane, the average inclination angle β (hereinafter referred to as the average opening angle) is defined as follows.
ここで分子の積分は子午面で切った外周壁に沿う線積分
を表している。上記遮蔽部材19を含めた外周壁の傾斜
は、以上のように定義された平均開口角βを用いてO≦
β≦0.3πを満足するように定められている。Here, the integral of the numerator represents the line integral along the outer peripheral wall cut along the meridian plane. The inclination of the outer peripheral wall including the shielding member 19 is determined as O≦ using the average opening angle β defined as above.
It is determined to satisfy β≦0.3π.
以下、本発明による混圧式タービンの作用を説明する。Hereinafter, the operation of the mixed pressure turbine according to the present invention will be explained.
(a>遮蔽部材の全m時
第1図と第4図に示されたように、回転板20と固定板
21とが同相となり遮蔽部材19が全問状態であると、
二次蒸気Bは二次蒸気通路9を通過中にその通路にそっ
て徐々に方向を変えながら第4図に示された遮蔽部材1
9の等間隔の多数の開口部19aを通過する際に周方向
に均一化されπ
て□以下の流出角αでもって一水魚気Δに穏やかに合流
する。(a>When the shielding member is fully m) As shown in FIGS. 1 and 4, when the rotating plate 20 and the fixed plate 21 are in phase and the shielding member 19 is in the full state,
While passing through the secondary steam passage 9, the secondary steam B gradually changes direction along the secondary steam passage 9, and the shielding member 1 shown in FIG.
When passing through a large number of equally spaced openings 19a of 9, it is made uniform in the circumferential direction and gently merges into the water Δ with an outflow angle α of less than □.
このため渦や剥離の発生が抑えられ、合流部での全圧損
失が大幅に低減され、また流れの周方向変動も少なく合
流部下流の羽根に加わる非定常流体力が小さくなり羽根
の寿命を1.5〜2.0倍程度も延ばすことができる。As a result, the occurrence of vortices and separation is suppressed, the total pressure loss at the merging section is significantly reduced, and there is also little circumferential flow fluctuation, which reduces the unsteady fluid force applied to the blades downstream of the merging section, thereby extending the life of the blades. It can be extended by about 1.5 to 2.0 times.
さらに二次蒸気はπ
□以下の流入角で合流するので、−次蒸気と直ぐには混
合せず湿り度の低い二次蒸気が羽根のチップ側を流れ、
湿り度の高い一次蒸気は羽根のルート側を流れる。この
ため湿り蒸気による羽根先端部の浸蝕が軽減される。Furthermore, since the secondary steam merges at an inlet angle of less than π □, the secondary steam with low humidity flows on the tip side of the blade without immediately mixing with the secondary steam.
The highly humid primary steam flows along the root side of the blade. Therefore, erosion of the tip of the blade due to wet steam is reduced.
上述した諸効果をグラフを用いて以下に例3iFする。The above-mentioned effects will be described in Example 3 below using graphs.
第6図は、流路モデルを用いた基礎試験の結果を示した
グラフで、横軸に二次蒸気流出角αをとり縦軸に全圧損
失係数a、bをとっている。合流による全圧損失をh、
合流後の平均速度をv2゜−次蒸気と二次蒸気のそれぞ
れの流路断面積をA、A、2.−水魚気流量を01.二
次蒸気流山をQ2としたとき、蒸気係数a、bは次式で
定義される。FIG. 6 is a graph showing the results of a basic test using a channel model, in which the horizontal axis represents the secondary steam outflow angle α and the vertical axis represents the total pressure loss coefficients a and b. The total pressure loss due to merging is h,
The average velocity after merging is v2°.The cross-sectional area of each of the secondary steam and secondary steam is A, A, 2. - Water and fish air flow rate 01. When the secondary steam flow mountain is Q2, the steam coefficients a and b are defined by the following equations.
係数a、bはmの関数であるので、第6図ではm−2の
ときのa、bを示しである。このグラフから分かるよう
に、二次蒸気流出角αが0〜□では係数a、bが比較的
小さく、したがってこの間は全圧損失も小さく、したが
ってこの間は全圧損失も小さいが、しかじ□を越える係
数a、bか急激に上昇するので、全圧損失も急、上昇す
る。流出角が0≦α≦π/3である水元べて全圧損失が
少なくとも半分以下となっている。Since the coefficients a and b are functions of m, FIG. 6 shows a and b when m-2. As can be seen from this graph, when the secondary steam outflow angle α is 0 to □, the coefficients a and b are relatively small, and therefore the total pressure loss is also small during this period. Since the coefficients a and b that exceed the threshold value rise rapidly, the total pressure loss also rises rapidly. The total pressure loss is at least half or less for all water sources where the outflow angle is 0≦α≦π/3.
第7図は、蒸気実施例において二次蒸気Bの流量を一次
蒸気Aの30%としたときのノズル12直侵の動圧分布
の周方向変化を示したもので第16図の従来の混圧式タ
ービンに比べて動圧損失が減少し、かつまた周方向変動
も充分小さくなっていることが分る。FIG. 7 shows the change in the circumferential direction of the dynamic pressure distribution of direct penetration into the nozzle 12 when the flow rate of secondary steam B is 30% of the primary steam A in the steam example, and shows the change in the circumferential direction of the dynamic pressure distribution directly intruding into the nozzle 12. It can be seen that the dynamic pressure loss is reduced compared to the pressure type turbine, and the fluctuation in the circumferential direction is also sufficiently small.
第8図は羽根13に加わる振動の原因である非定常流体
力を表わしたもので、横軸に羽根13の高さ方向位IH
をとり、縦軸に定常流体力F。Figure 8 shows the unsteady fluid force that is the cause of vibrations applied to the blade 13, and the horizontal axis represents the height direction IH of the blade 13.
, and the vertical axis is the steady fluid force F.
「 無次元化した非定常流体力Fuをとっである。" Let us take the dimensionless unsteady fluid force Fu.
実INで示した本実施例の混圧式タービンは破線0で示
した第12図の従来の混圧式タービンに比(b)遮蔽部
材の全m時。The mixed pressure turbine of this embodiment, indicated by the actual IN, is compared to the conventional mixed pressure turbine of FIG. 12, indicated by the broken line 0. (b) Total m of the shielding member.
運転途中で二次蒸気Bを止め、負荷を下げる必要が生じ
たときには、第3図に示きれた回転阻止部材26を一時
的に引き上げてノズルダイヤフラム外輪18の満25と
の係合を解く。ノズル12には流出する蒸気の反動力が
常時働いており、この反動力の周方向成分はノズルダイ
ヤフラム外輪18をロータ11の回転の反対方向に回転
させるトルクとなっている。したがって、回転阻止部材
26と満25との係合を解くと、ノズルダイヤフラム外
輪18はロータと逆方向 回転した回転板20を固定板
21に対して回動させる。この回転が溝25の1ピッチ
分行なわれた時に回転阻止部材26を溝25に係合させ
ることにより外輪18の回転が阻止され、回転板20と
固定板21との位酋関係が逆相となり遮蔽部材19は第
2図と第5図に示されたように全閉となる。When it becomes necessary to stop the secondary steam B and reduce the load during operation, the rotation blocking member 26 shown in FIG. 3 is temporarily pulled up to disengage the nozzle diaphragm outer ring 18 from the nozzle 25. The reaction force of the steam flowing out is always acting on the nozzle 12, and the circumferential component of this reaction force becomes a torque that rotates the nozzle diaphragm outer ring 18 in the opposite direction to the rotation of the rotor 11. Therefore, when the rotation blocking member 26 and the ring 25 are disengaged, the nozzle diaphragm outer ring 18 rotates the rotating plate 20, which has rotated in the opposite direction to the rotor, relative to the fixed plate 21. When this rotation is completed by one pitch of the groove 25, the rotation of the outer ring 18 is prevented by engaging the rotation prevention member 26 with the groove 25, and the positional relationship between the rotary plate 20 and the fixed plate 21 becomes reversed. The shielding member 19 is fully closed as shown in FIGS. 2 and 5.
これにより二次蒸気通路9は出口部9aにおいて完全に
遮蔽されて、遮蔽部材19によって平均開口角βが0.
3π以下の漸次拡大流路が形成される。前段羽根27を
流出した一次蒸気Aはこの漸次拡大流路を通過する際に
渦や剥離などを生ずることなく穏やかに拡がり後段ノズ
ル12に流入する。もちろん二次蒸気通路9は完全に遮
蔽されているので、−次蒸気が二次蒸気通路9内に漏洩
して損失を生ずることはない。As a result, the secondary steam passage 9 is completely shielded at the outlet portion 9a, and the average opening angle β is 0.
A gradually expanding flow path of 3π or less is formed. When the primary steam A that has flowed out of the front stage vane 27 passes through this gradually expanding flow path, it spreads gently without creating any eddies or separation, and flows into the rear stage nozzle 12. Of course, since the secondary steam passage 9 is completely shielded, the secondary steam will not leak into the secondary steam passage 9 and cause any loss.
第9図は一次蒸気通路の外周面の平均間口角βと流れの
全圧損失係数ことの関係を示したもので全圧損失係数は
、本実施例の平均間口角範囲である0〜0.3πでは非
常に小さいが0.3πを越えると急激に大きくなり、特
に第14図に示したπ
従来の混圧式タービンに相当するβζ□では約1.3に
も達し、本実施例の約2倍以上になっていることが分る
。FIG. 9 shows the relationship between the average frontage angle β of the outer peripheral surface of the primary steam passage and the flow total pressure loss coefficient.The total pressure loss coefficient is within the average frontage angle range of 0 to 0. At 3π, it is very small, but when it exceeds 0.3π, it increases rapidly, especially at βζ□, which corresponds to the conventional mixed pressure turbine shown in FIG. It turns out that it has more than doubled.
第10図は遮蔽部材19を全閉としたときのノズル12
の下流の動圧方向分布を示したもので、ルート部Rとチ
ップ部Tでの動圧低下が第15図の従来タービンに比べ
て大幅に軽減され、また周方向変動も充分に小さくなっ
ていることが分る。FIG. 10 shows the nozzle 12 when the shielding member 19 is fully closed.
This figure shows the distribution of dynamic pressure in the downstream direction of the turbine.The drop in dynamic pressure at the root section R and tip section T is significantly reduced compared to the conventional turbine shown in Fig. 15, and circumferential fluctuations are also sufficiently small. I know that there is.
これは本実施例では第14図の剥離領域14゜15の発
生が防止されているためであると考えられる。This is considered to be because the occurrence of the peeled areas 14.degree. 15 in FIG. 14 is prevented in this example.
第11図は遮蔽部材を全閉としたときの羽根13に加わ
る非定常流体力の半径方向分布を示したもので、実1i
1Nで示した本実施例では、点線0−Cよ5、。−、ッ
、□、エユ、□8o、羽根13への励振力が大幅に軽減
されていることが分る。Figure 11 shows the radial distribution of the unsteady fluid force applied to the blade 13 when the shielding member is fully closed.
In this embodiment, the dotted line 0-C is 5, which is indicated by 1N. It can be seen that the excitation force to the blade 13 is significantly reduced.
なお、全開から全開への、また全開から全閉への遮蔽部
材19の切換の際に操作される回転阻止部材26には、
これを下方向、すなわち満25との係合方向に付勢り′
るバネを付設するとよい。これにより溝25との係合の
ために回転阻止部材26を下降させるタイミングを、満
25の1ピッチ分の外輪18の回転完了に厳密に一致さ
せる必要がなくなり、それよりもかなり前に設定するこ
とができる。Note that the rotation prevention member 26 that is operated when switching the shielding member 19 from fully open to fully open or from fully open to fully closed includes:
This is biased downward, that is, in the direction of engagement with the full 25'.
It is recommended to attach a spring that As a result, the timing for lowering the rotation blocking member 26 to engage with the groove 25 does not have to be exactly aligned with the completion of rotation of the outer ring 18 by one pitch of full 25, but can be set much earlier than that. be able to.
上述の実施例では、ノズルダイヤフラム外輪18を回転
可能とし、これに回転板20を固設して、作業蒸気の反
力を利用して、回転板20を回動させたが、本発明はこ
れに限るものでなく、ノズルダイヤフラム外輪18を固
定し、回転板20をこの外輪18と独立に回転可能に構
成し、これをパルスモータなどで回転駆動させてもよい
。また、二次蒸気の方向変換を助長し、流れを周方向に
一層均一化するために二次蒸気通路9内に偏流板や案内
翼を設けてもよい。In the above-described embodiment, the nozzle diaphragm outer ring 18 is made rotatable, the rotary plate 20 is fixedly attached to the nozzle diaphragm outer ring 18, and the rotary plate 20 is rotated using the reaction force of the working steam. However, the present invention is not limited to this, and the nozzle diaphragm outer ring 18 may be fixed, the rotary plate 20 may be configured to be rotatable independently of the outer ring 18, and may be rotationally driven by a pulse motor or the like. Further, a drift plate or a guide vane may be provided in the secondary steam passage 9 in order to promote direction change of the secondary steam and make the flow more uniform in the circumferential direction.
以上の説明から明らかなように、第1の発明によれば、
二次蒸気通路の出口部付近に二次蒸気通路を開閉可能な
遮蔽部材を設けたので、部分負荷運転時に遮蔽部材を全
閉し、二次蒸気通路を遮蔽することにより、−次蒸気が
二次蒸気通路へ漏洩することを防止できるとともに二次
蒸気通路との接続部での一次蒸気の乱れを防止でき、全
圧損失を大幅に軽減することができる。As is clear from the above description, according to the first invention,
A shielding member that can open and close the secondary steam passageway is provided near the outlet of the secondary steam passageway, so by fully closing the shielding member and shielding the secondary steam passageway during partial load operation, secondary steam can be It is possible to prevent leakage to the secondary steam passage, and also to prevent turbulence of the primary steam at the connection with the secondary steam passage, and to significantly reduce total pressure loss.
また、第2の発明によれば、二次蒸気通路の出口部付近
の傾斜角αを0≦α≦π/3にしたので、二次蒸気が滑
らかに一次蒸気に合流し、全圧損失を大幅に低減でき、
また羽根に加わる励振力を軽減できる。さらに湿り度の
小さい二次蒸気が羽根先端を流れるので湿り蒸気に起因
する羽根の侵蝕を防止できる。Further, according to the second invention, since the inclination angle α near the outlet of the secondary steam passage is set to 0≦α≦π/3, the secondary steam smoothly merges with the primary steam, reducing the total pressure loss. can be significantly reduced,
Also, the excitation force applied to the blades can be reduced. Furthermore, since secondary steam with low humidity flows through the tips of the blades, erosion of the blades caused by wet steam can be prevented.
第1図と第2図は本発明による混圧式タービンの一実施
例を示した縦断面図で、第1図は遮蔽板が全開した状態
を、第2図は全閉した状態をそれぞれ示している。第3
図は第1図のノズルダイヤフラム外輪と回転阻止部材と
の関係を示した横断面図、第4図と第5図はそれぞれ第
1図のIV−IV線断面図と第2図のv−vsi断面図
、第6図乃至第11図は本発明の流体特性を示したグラ
フ、第12図は従来の二段フラッシュ式地熱タービンを
示した概略図、第13図と第14図はそれぞれ第12図
の要部を拡大して示した縦断面図、第15図と第16図
は第12図のタービンの流体特性を示したグラフである
。
4・・・タービン初段落、5・・・一次蒸気通路、9・
・・二次蒸気通路、9a・・・二次蒸気通路出口部、1
9・・・遮蔽部材、20・・・回転板、21・・・固定
板、A・・・−水蒸気、B・・・二次蒸気。
出願人代理人 猪 設 清
第1図
第2図
第3図
第6図
第7図
羽根の高さ位IHr
第8図
平均開口角β
第9図
第1O図
第11図
第13図Figures 1 and 2 are longitudinal sectional views showing an embodiment of the mixed pressure turbine according to the present invention, with Figure 1 showing the shield plate fully open and Figure 2 showing the shield plate fully closed. There is. Third
The figure is a cross-sectional view showing the relationship between the nozzle diaphragm outer ring and the rotation prevention member in Figure 1, and Figures 4 and 5 are sectional views taken along lines IV--IV in Figure 1 and v-vsi in Figure 2, respectively. 12 is a schematic diagram showing a conventional two-stage flash geothermal turbine, and FIGS. 13 and 14 are graphs showing the fluid characteristics of the present invention. 15 and 16 are graphs showing the fluid characteristics of the turbine shown in FIG. 12. FIGS. 4... Turbine first stage, 5... Primary steam passage, 9...
...Secondary steam passage, 9a...Secondary steam passage outlet part, 1
9... Shielding member, 20... Rotating plate, 21... Fixed plate, A...-water vapor, B... secondary steam. Applicant's representative Setsu Ino Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 Blade height IHr Figure 8 Average aperture angle β Figure 9 Figure 1O Figure 11 Figure 13
Claims (1)
より流入した一次蒸気がタービンを回転させるために流
通する一次蒸気通路と、タービン途中段落に形成され、
出口端において上記一次蒸気通路に所定角度で接続され
、二次蒸気をタービン途中段落から上記一次蒸気通路へ
導入する二次蒸気通路とを具備する混圧式タービンにお
いて、上記二次蒸気通路出口端付近に設けられ、上記二
次蒸気通路を開閉する遮蔽部材を具備することを特徴と
する混圧式タービン。 2、上記二次蒸気通路の延長線とロータ中心軸とのなす
角度αが0≦α≦π/3を満足することを特徴とする特
許請求の範囲第1項に記載の混圧式タービン。 3、上記遮蔽部材は、上記二次蒸気通路を遮蔽した状態
のとき、上記一次蒸気通路の外周壁を形成し、この外周
壁は上記一次蒸気通路が下流側に向って拡大するように
ロータ中心軸に対して傾斜し、この平均傾斜角@β@は
0≦β≦0.3πを満足することを特徴とする特許請求
の範囲第2項に記載の混圧式タービン。 4、上記遮蔽部材は、上記二次蒸気通路中に配置され、
所定間隔の複数の開口を有するリング状固定板と、この
固定板に重り合うように配置され、上記固定板開口に対
応した複数の開口を有する回動可能なリング状回転板と
を含み、この回転板の回動により上記二次蒸気通路の開
閉を行うことを特徴とする特許請求の範囲第1項に記載
の混圧式タービン。 5、上記回転板は、上記二次蒸気通路直後のノズルダイ
ヤフラム外輪に固設され、このノズルダイヤフラム外輪
は周方向に回転可能にタービンケーシングに支持される
とともにタービン外部から操作可能な回転阻止部材によ
ってた回転を阻止されていることを特徴とする特許請求
の範囲第4項に記載の混圧式タービン。 6、タービンロータに沿って形成され、タービン初段落
より流入した一次蒸気タービンを回転させるために流通
する一次蒸気通路と、タービン途中段落に形成され、出
口端において上記一次蒸気通路に所定角度で接続され、
二次蒸気をタービン途中段落から上記一次蒸気通路へ導
入する二次蒸気通路とを具備する混圧式タービンにおい
て、上記二次蒸気蒸気通路の出口部付近は、上記一次蒸
気通路の下流の方に向かって傾斜延在し、この傾斜部の
延長線とロータ中心線とのなす角度αが0<α≦π/3
を満足することを特徴とする混圧式タービン。[Claims] 1. A primary steam passage formed along the turbine rotor, through which primary steam flowing from the first stage of the turbine flows to rotate the turbine, and a primary steam passage formed in the middle stage of the turbine,
In a mixed pressure turbine comprising a secondary steam passage connected at a predetermined angle to the primary steam passage at an outlet end and introducing secondary steam into the primary steam passage from an intermediate stage of the turbine, near the exit end of the secondary steam passage. A mixed pressure turbine, characterized in that it is provided with a shielding member that opens and closes the secondary steam passage. 2. The mixed pressure turbine according to claim 1, wherein the angle α between the extension line of the secondary steam passage and the rotor center axis satisfies 0≦α≦π/3. 3. The shielding member forms an outer circumferential wall of the primary steam passage when the secondary steam passage is shielded, and this outer circumferential wall is arranged at the center of the rotor so that the primary steam passage expands toward the downstream side. The mixed pressure turbine according to claim 2, wherein the turbine is inclined with respect to the axis, and the average inclination angle @β@ satisfies 0≦β≦0.3π. 4. The shielding member is disposed in the secondary steam passage,
The present invention includes a ring-shaped fixing plate having a plurality of openings at predetermined intervals, and a rotatable ring-shaped rotating plate arranged so as to overlap this fixing plate and having a plurality of openings corresponding to the fixing plate openings, 2. The mixed pressure turbine according to claim 1, wherein the secondary steam passage is opened and closed by rotation of a rotating plate. 5. The rotary plate is fixed to the nozzle diaphragm outer ring immediately after the secondary steam passage, and the nozzle diaphragm outer ring is supported by the turbine casing so as to be rotatable in the circumferential direction, and is supported by a rotation prevention member that can be operated from outside the turbine. 5. The mixed pressure turbine according to claim 4, wherein the mixed pressure turbine is prevented from rotating. 6. A primary steam passage formed along the turbine rotor and flowing through to rotate the primary steam turbine that flows in from the first stage of the turbine, and a primary steam passage formed in the middle stage of the turbine and connected to the primary steam passage at the outlet end at a predetermined angle. is,
In a mixed pressure turbine equipped with a secondary steam passage that introduces secondary steam from a stage midway through the turbine to the primary steam passage, the vicinity of the outlet of the secondary steam passage is directed toward the downstream side of the primary steam passage. The angle α between the extension line of this slope and the rotor center line is 0<α≦π/3.
A mixed pressure turbine characterized by satisfying the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11704885A JPS61275504A (en) | 1985-05-30 | 1985-05-30 | Mixed pressure turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11704885A JPS61275504A (en) | 1985-05-30 | 1985-05-30 | Mixed pressure turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61275504A true JPS61275504A (en) | 1986-12-05 |
Family
ID=14702133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11704885A Pending JPS61275504A (en) | 1985-05-30 | 1985-05-30 | Mixed pressure turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61275504A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10301970B2 (en) | 2015-06-18 | 2019-05-28 | Mitsubishi Hitachi Power Systems, Ltd. | Axial turbine |
-
1985
- 1985-05-30 JP JP11704885A patent/JPS61275504A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10301970B2 (en) | 2015-06-18 | 2019-05-28 | Mitsubishi Hitachi Power Systems, Ltd. | Axial turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2658914C (en) | Impulse turbine for use in bi-directional flows | |
JP5279400B2 (en) | Turbomachine diffuser | |
JP5964263B2 (en) | Rotor cascade of axial flow turbine and axial flow turbine | |
JP2007321721A (en) | Axial flow turbine stage and axial flow turbine | |
JP2009085185A (en) | Axial flow turbine and axial flow turbine stage structure | |
JPS6138103A (en) | Step for steam turbine | |
JPH03100302A (en) | Axial-flow turbine | |
EP3106615B1 (en) | Axial turbine | |
JPS61275504A (en) | Mixed pressure turbine | |
JPS5951104A (en) | Internal structure of turbine stage | |
JP2006207556A (en) | Turbine blade train | |
AU2013200683B2 (en) | Impulse turbine for use in bi-directional flows | |
JPH0478803B2 (en) | ||
JPH0925898A (en) | Axial fan and air separator used therefor | |
JP2017141815A (en) | Flow alignment devices to improve diffuser performance | |
JPH0893404A (en) | Turbine nozzle and turbine rotor blade | |
RU2715459C1 (en) | Turbo compressor with above-rotor device | |
JP7356285B2 (en) | axial flow turbine | |
JPS6332963B2 (en) | ||
JPH03903A (en) | Axial flow turbine nozzle diaphragm | |
JPS58202306A (en) | Mixed pressure turbine | |
Sezal et al. | Introduction of circumferentially non-uniform variable guide vanes in the inlet plenum of a centrifugal compressor for minimum losses and flow distortion | |
JP2020037904A (en) | Axial turbine | |
JPH0426695Y2 (en) | ||
JPS59128905A (en) | Mixed pressure type turbine |