[go: up one dir, main page]

JPS61275286A - Production of phosphatidylcholine - Google Patents

Production of phosphatidylcholine

Info

Publication number
JPS61275286A
JPS61275286A JP11432885A JP11432885A JPS61275286A JP S61275286 A JPS61275286 A JP S61275286A JP 11432885 A JP11432885 A JP 11432885A JP 11432885 A JP11432885 A JP 11432885A JP S61275286 A JPS61275286 A JP S61275286A
Authority
JP
Japan
Prior art keywords
fatty acid
acid
solvent
catalyst
fatty acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11432885A
Other languages
Japanese (ja)
Inventor
Sachiko Murakami
幸子 村上
Yasuhisa Noguchi
野口 泰久
Hidenori Konishi
小西 秀則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP11432885A priority Critical patent/JPS61275286A/en
Publication of JPS61275286A publication Critical patent/JPS61275286A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high-quality substance useful in the field of drug without using a heavy metal such as cadmium and a solvent and causing problems of heavy metal contamination, treatment of waste water, etc., by reacting glycerophosphorylcholine with an activated fatty acid in the presence of a catalyst in the absence of a solvent. CONSTITUTION:Glycerophophorylcholine, is blended with an activated fatty acid (especially preferably 8-24C natural or synthetic saturated or unsaturated fatty acid anhydride, chloride, or imidazole derivative) as raw materials in the absence of a solvent, preferably uniformly stirred by a homogenizer into a creamy state, reacted at room temperature -60 deg.C for 2-72hr while allowing it to stand, to give the aimed compound. For example, when a fatty acid anhydride is used as the raw material, dimethylaminopyridine, pyrrolidinopyridine, etc., are preferably used as a catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重金属を使用しない新しいホスファチジルコリ
ンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a new method for producing phosphatidylcholine without using heavy metals.

〔従来の技術〕[Conventional technology]

リン脂質は細胞の生体膜の成分として存在しており、生
体膜では2分子構造を持った二重層膜を形成し、タンパ
ク質、コレステロール等とともに物質の透過、選択的輸
送等の生命現象に欠くことのできない機能を果している
。生体中には主にホス7アチジルコリン(以下PCと記
す)、ホスファチジルエタノールアミン、ホスファチジ
ルセリン、ホスファチジルイノシトール、スフィンゴミ
エリン等のリン脂質が存在し、このうちPCは一般にレ
シチンと呼ばれ、生体中に最も多く存在し、特にその重
要性が認められている。これらのリン脂質に共通した特
徴は親水基と疎水基をその分子内に持つことであり、こ
れによりリン脂質に特徴的なリポソームと呼ばれる小胞
を作ることができ、あるいは基板上にラングミュア−・
ブロジェットの方法により分子が配向した薄膜を作るこ
とができる。
Phospholipids exist as components of biological membranes of cells, where they form a bilayer membrane with a bimolecular structure, and together with proteins, cholesterol, etc., they are essential for biological phenomena such as permeation of substances and selective transport. It performs functions that cannot be performed. There are mainly phospholipids such as phos-7-acytidylcholine (hereinafter referred to as PC), phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and sphingomyelin in living organisms. Among these, PC is generally called lecithin and is the most abundant in living organisms. There are many of them, and their importance is recognized. A common feature of these phospholipids is that they have a hydrophilic group and a hydrophobic group within their molecules, which allows them to form vesicles called liposomes, which are characteristic of phospholipids, or to form vesicles called liposomes on a substrate.
Blodgett's method allows the creation of thin films with oriented molecules.

天然のリン脂質は工業的にはすでに天然乳化剤として、
食品、化粧品業界等で利用される一方、その生理活性作
用を利用した医薬への展開が行われている。
Natural phospholipids are already used industrially as natural emulsifiers.
While it is used in the food and cosmetics industries, it is also being developed into medicine that takes advantage of its physiologically active effects.

最近リン脂質は水中で2分子構造をとった2重層膜を持
つリポソームと呼ばれる閉鎖小胞体を形成することが知
られ、その用途が種々考えられている。たとえば医学、
薬学分野においては薬剤運搬体、人工血液等へ、また工
学的分野においては人工細抱への展開が考えられている
。そして最近ではリン脂質の作る薄膜をエレクトロニク
スへ応用し、絶縁性膜などへの展開が考えられている。
Recently, it has been known that phospholipids form closed endoplasmic reticulum called liposomes, which have a bilayer membrane and have a bimolecular structure in water, and various uses for this are being considered. For example, medicine
In the pharmaceutical field, it is being considered for use in drug carriers, artificial blood, etc., and in the engineering field, it is being considered for use in artificial blood cells. Recently, thin films made from phospholipids are being applied to electronics, and the development of insulating films is being considered.

しかしながらいずれの用途においても現在は天然リン脂
質が用いられているが、リン脂質が混合物であるために
再現性が悪く、また強度不足のためにリン脂質本来の機
能を工業的に応用するに至っていない。これらの用途に
応用するためにはその目的に応じ九構造、強度を持った
リン脂質が嘱望されており、その丸めに種々の試みがな
されている。たとえばリン脂質を薬剤運搬体用リポソー
ムとして用いるためには生体内分解酵素の影響をあまシ
受けず、しかも機能を果した後は分解される必要がある
。その丸めにリポソームの一部に重酵素により分解を受
けにくいエーテル結合を持ったリン脂質を用いることが
試みられている。また薄膜としての利用を考えたときに
は、その強度を増す丸めに重合性リン脂質が好ましいと
されている。
However, natural phospholipids are currently used for both purposes, but because phospholipids are mixtures, reproducibility is poor and their strength is insufficient, making it difficult to apply the original functions of phospholipids industrially. not present. In order to be applied to these uses, phospholipids having a structure and strength depending on the purpose are desired, and various attempts have been made to round them out. For example, in order to use phospholipids as liposomes for drug carriers, they must be unaffected by degrading enzymes in the body and must be decomposed after fulfilling their function. For rounding, attempts have been made to use phospholipids with ether bonds that are less susceptible to decomposition by heavy enzymes as part of the liposomes. Furthermore, when considering the use as a thin film, polymerizable phospholipids are said to be preferable for rounding to increase its strength.

従来よりPCの合成法として全合成法、半合成法が知ら
れているが(ビアー(Baer)ら、ジャーナルオプザ
アメリカンケミカルソサイアテイー(JAC8)旦ユ(
4)、761 (1939)、  ジャーナルオプパイ
オロジカルケミストリ−(J、 Biol、 Chem
、)230.447(1958)、ジャーナルオプザア
メリカンケミカルノサイアティー(JAC8)72゜9
42(1950))、全合成法は工程数が多く、工業化
は困難である。半合成法はグリセロホスホリルコリン(
以下GPCと記す)と活性脂肪酸とからPCを合成する
方法であ〕、GPCとしてはカドミウム塩等の重金属塩
を使用している。活性化脂肪酸としては、(1)脂肪酸
を酸クロリド化して用いる方法(カナディアンジャーナ
ルオプバイオケミストリーエンドフイジオaジー(Ca
n、 J。
Total synthesis method and semi-synthesis method have been known as methods for synthesizing PC (Baer et al., Journal of the American Chemical Society (JAC8)),
4), 761 (1939), Journal Opiological Chemistry (J, Biol, Chem
) 230.447 (1958), Journal of American Chemical Science (JAC8) 72°9
42 (1950)), the total synthesis method requires a large number of steps and is difficult to industrialize. The semi-synthetic method is glycerophosphorylcholine (
This is a method of synthesizing PC from (hereinafter referred to as GPC) and active fatty acids], and heavy metal salts such as cadmium salts are used as GPC. Activated fatty acids include (1) a method of converting fatty acids into acid chlorides (Canadian Journal Opbiochemistry Endophysiology (Ca)
n, J.

Biochem、 Phymiol、 37.953 
(1959) )、(2)脂肪酸をイミダゾール塩とし
て用いる方法(特開昭51−91213、ヘルメッテル
(H@rmetter )ら、ケミストリーエンドフイ
ジックスオプリビズ(Chern、 Phys、 Li
pida 1981 、且g、xtt))、および(3
)脂肪酸を酸無水物として用いる方法(レーゲン(Re
gen )ら、ジャーナルオプザアメリカンケミカルソ
サイアティー(JAC8)(1982)。
Biochem, Phymiol, 37.953
(1959)), (2) Method of using fatty acids as imidazole salts (JP-A-51-91213, H@rmetter et al., Chemistry Endophysics Opriviz (Cern, Phys, Li)
pida 1981, and (g, xtt)), and (3
) A method using fatty acids as acid anhydrides (Regen
Gen) et al., Journal of the American Chemical Society (JAC8) (1982).

L乞土、791)が知られている。791) is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の半合成法においては、合成の出発原料であるGP
Cが非常に吸湿性が強く室温で高粘性物となシ取シ扱い
が困難であることから、GPCK塩化カドミウムを作用
させて塩化カドミウム塩として扱い易い結晶状にして用
いられてきた。
In the conventional semi-synthetic method, GP, which is the starting material for synthesis,
Because C is extremely hygroscopic and highly viscous at room temperature, it is difficult to handle, so it has been used as a crystalline cadmium chloride salt that is easy to handle by reacting with GPCK cadmium chloride.

現在重金属の人体に与える害は重大な問題となっており
、カドミウムはイタイタイ病の原因とされ、塩化カドミ
ウム等の重金属を使うことは好ましくない。またGPC
の塩化カドミウム塩を用いてPCを合成すると、GPC
の塩化カドミウム塩合成工程およびカドミウム塩の除去
工程が必要になるため、工業的に困難さを伴う上、その
廃棄にも多大な費用が必要とされるなど多くの問題点が
ある。
Currently, the harm caused by heavy metals to the human body is a serious problem, and cadmium is said to be the cause of Itai-tai disease, so it is not desirable to use heavy metals such as cadmium chloride. Also GPC
When PC is synthesized using cadmium chloride salt, GPC
Since this method requires a cadmium chloride salt synthesis step and a cadmium salt removal step, it is not only industrially difficult, but also requires a great deal of cost to dispose of.

本発明は以上のような問題点を解決するためのものであ
り、塩化カドミウムを使用することなく簡単な工程によ
り容易にPCを得ることが可能なPCの製造方法を提供
することを目的としている。
The present invention is intended to solve the above-mentioned problems, and aims to provide a method for manufacturing PC that can easily obtain PC through simple steps without using cadmium chloride. .

〔問題点を解決するための手段〕 本発明は、GPCと活性化脂肪酸とを触媒の存在下に無
溶媒で混合し反応させることを特徴とするpcの製造方
法である。
[Means for Solving the Problems] The present invention is a method for producing PC, which is characterized in that GPC and activated fatty acids are mixed and reacted in the presence of a catalyst without a solvent.

本発明において製造の対象となるPCは次の一般式(1
)で表わされる化合物である。
The PC to be manufactured in the present invention has the following general formula (1
) is a compound represented by

本発明の原料であるGPCは、合成されるPCの骨格と
なるものであり、主に大豆や卵黄等の天然レシチンを分
離精製後、あるいはそのま、を加水分解またはアルコリ
シスして得ることができる。
GPC, which is the raw material of the present invention, serves as the skeleton of synthesized PC, and can be obtained mainly by hydrolysis or alcoholysis of natural lecithin from soybean or egg yolk after separation and purification, or as it is. .

天然レシチンの分離はシリカゲルカラム、活性アルミナ
カラム等を用い、クロロホルム/メタノール系混合溶媒
等で溶出させて行われる。精製あるいは粗レシチンから
GPCを得るには、テトラブチルアンモニウムヒドロキ
サイド等の4級アルキ本発明の次の原料である脂肪酸と
しては天然もしくは合成の飽和または不飽和脂肪酸が使
用でき、特に炭素数8〜24のものが好まし込。このよ
うな脂肪酸としてはミリスチン酸、パルミチン酸、ステ
アリン酸、オレイン酸、リノール酸、エイコサペンタエ
ン酸、ドコサヘキサエン醗等の天然由来の脂肪酸、ある
いは2.4オクタデカジエン酸のような分子内に重合性
基を持つものや他に7二二ル基などを持った合成脂肪酸
があシ、これらを目的に応じて単独に用いたり、あるい
は自由に組合せて用いることができる。重合性基を持つ
脂肪酸を使用すると重合性のPCを製造することができ
る。
Natural lecithin is separated using a silica gel column, activated alumina column, etc., and eluted with a chloroform/methanol mixed solvent. To obtain GPC from purified or crude lecithin, a quaternary alkali such as tetrabutylammonium hydroxide can be used.Natural or synthetic saturated or unsaturated fatty acids can be used as the next raw material fatty acids of the present invention, especially those having 8 to 8 carbon atoms. 24 is preferred. Such fatty acids include naturally occurring fatty acids such as myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, or polymerizable fatty acids within the molecule such as 2.4-octadecadienoic acid. Synthetic fatty acids with groups such as those with 7-2 groups, and synthetic fatty acids with other groups such as 722 groups can be used alone or in any combination depending on the purpose. Polymerizable PC can be produced by using a fatty acid having a polymerizable group.

前記脂肪酸を活性化脂肪酸にするには、酸無水物の場合
はN、N’−ジシクロへキシル力ルポジイミ)”(以下
DCCと記す)、l−シクロへキシル−3−(2−モル
ホリノエチル)カルボジイミド、N、N’−ジイソプロ
ピルカルボジイミド、1−シクロへキシル−3−(4−
ジエチルアミノシクロヘキシル)カルボジイミド、1−
エチル−3−(ジエチルアミノグロビル)カルボジイミ
ドなどのカルボジイミド系縮合剤を用いて脂肪酸を酸無
水物とするのが好ましい。このはか飽和酸などの場合は
無水酢酸と反応させたシ、その酸クロリドと反応させる
ことによって酸無水物を得ることができる。
In order to convert the fatty acid into an activated fatty acid, in the case of an acid anhydride, N,N'-dicyclohexyl (hereinafter referred to as DCC), l-cyclohexyl-3-(2-morpholinoethyl) Carbodiimide, N,N'-diisopropylcarbodiimide, 1-cyclohexyl-3-(4-
diethylaminocyclohexyl)carbodiimide, 1-
It is preferable to convert the fatty acid into an acid anhydride using a carbodiimide condensing agent such as ethyl-3-(diethylaminoglobil)carbodiimide. In the case of this slightly saturated acid, an acid anhydride can be obtained by reacting it with acetic anhydride and then reacting it with its acid chloride.

脂肪酸クロル化物の場合はチオニルクロリド、三塩化リ
ン、五塩化リン等と脂肪酸を反応させることによって得
られる。脂肪酸イミダゾール化物は脂肪酸をN、N’−
カルボニルジイミダゾールと反応させることにより得ら
れる。
In the case of fatty acid chlorides, they can be obtained by reacting fatty acids with thionyl chloride, phosphorus trichloride, phosphorus pentachloride, etc. Fatty acid imidazolates convert fatty acids into N,N'-
Obtained by reaction with carbonyldiimidazole.

本発明で使用する触媒はGPCと活性化脂肪酸とを反応
させてPCを生成させるための触媒であシ、PCの異性
化を生しさせない穏やかなものが好ましい。脂肪酸無水
物の場合はジメチルアミノピリジン(以下DMAPと記
す)、ピロリジノピリジン(以下PPYと記す)、脂肪
酸クロル化物の場合はピリジン、脂肪酸イミダゾール化
物の場合はイミダゾールアルカリ金属塩などが好ましい
The catalyst used in the present invention is a catalyst for producing PC by reacting GPC with an activated fatty acid, and is preferably a mild catalyst that does not cause isomerization of PC. Preferred examples include dimethylaminopyridine (hereinafter referred to as DMAP) and pyrrolidinopyridine (hereinafter referred to as PPY) in the case of fatty acid anhydrides, pyridine in the case of fatty acid chlorides, and imidazole alkali metal salts in the case of fatty acid imidazolates.

PCの製造方法は、GPCと脂肪酸無水物、脂肪酸塩化
物あるいは脂肪酸イミダゾール等の活性化脂肪酸と触媒
とを混合し、ホモジナイザーで均一に攪拌してクリーム
状にした後に、常温〜60℃で2〜72時間静置反応さ
せることにより行なう。
The method for manufacturing PC is to mix GPC, activated fatty acids such as fatty acid anhydrides, fatty acid chlorides, or fatty acid imidazole, and a catalyst, stir uniformly with a homogenizer to form a cream, and then heat the mixture at room temperature to 60°C for 2 to 30 minutes. This is carried out by allowing the reaction to stand for 72 hours.

例えば、脂肪酸無水物を用いる場合には、あらかじめ合
成して得た酸無水物を用いてもよいが、次の方法で反応
させることもできる。すなわちDCC等のカルボジイミ
ド系縮合剤を脂肪酸と等モに以上用r、G P C、脂
肪酸、カルボジイミド系縮合剤および触媒を同時に仕込
み反応させる。このときの反応は模式的に下記(If)
式で示される。
For example, when using a fatty acid anhydride, an acid anhydride synthesized in advance may be used, but the reaction can also be carried out by the following method. That is, a carbodiimide condensing agent such as DCC is mixed with a fatty acid, GPC, a fatty acid, a carbodiimide condensing agent, and a catalyst are simultaneously charged and reacted. The reaction at this time is schematically shown below (If)
It is shown by the formula.

土DMAP          ’ この反応は、反応系にDCC等の縮合剤が存在すると、
脂肪酸がDMAP等の触媒とは反応せず、縮合剤と反応
して酸無水物化することを利用するものであり、(If
)式ではDCCにより脂肪酸・を酸無水物化し、それを
GPCと反応させてPCを生成させ、副生じた遊離脂肪
酸を再びDCCにより酸無水物化して反応に用いる。
SodDMAP' This reaction occurs when a condensing agent such as DCC is present in the reaction system.
It utilizes the fact that fatty acids do not react with catalysts such as DMAP, but react with condensing agents to form acid anhydrides.
) In the formula, a fatty acid is converted into an acid anhydride by DCC, then reacted with GPC to generate PC, and the free fatty acid produced as a by-product is again converted into an acid anhydride by DCC and used for the reaction.

このように反応によって遊離する脂肪酸を常に過剰の縮
合剤と反応させて酸無水物とし、これをGPCと反応さ
せると、脂肪酸を酸無水物へとリサイクル使用すること
になシ、反応に必要な脂肪酸量が削減できるとともに、
高価な触媒も遊離脂肪酸と塩を作らず、少量でも効力を
発揮することになる。
In this way, if the fatty acids liberated by the reaction are always reacted with an excess of condensing agent to form acid anhydrides, and this is then reacted with GPC, the fatty acids are recycled into acid anhydrides. In addition to reducing the amount of fatty acids,
Expensive catalysts also do not produce free fatty acids and salts, and are effective even in small amounts.

縮合剤の必要量は脂肪酸と等モル以上であればよく、大
過剰に添加してもPCの収率を下げることはないが、脂
肪酸のモル数の2倍量までが適当である。縮合剤は反応
の経過とともに適時添加してもよく、予め反応開始時に
必要量を全て添加してもよい。
The required amount of the condensing agent may be at least equimolar to the fatty acid, and even if added in large excess, the yield of PC will not be lowered, but an amount up to twice the number of moles of the fatty acid is suitable. The condensing agent may be added at appropriate times during the course of the reaction, or may be added in the required amount in advance at the start of the reaction.

反応終了後、ろ別、濃縮、精製を行い精製PCを得る。After the reaction is completed, filtration, concentration, and purification are performed to obtain purified PC.

原料である脂肪酸を選ぶことにより、用途に応じて種々
の構造および強度を有するPCが製造される。
By selecting the fatty acid as the raw material, PC can be manufactured with various structures and strengths depending on the application.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、GPCと活性化脂肪酸とを触媒の存在
下に無溶媒で混合して反応させることにより、カドミウ
ム塩等の重金属および溶媒を用いる必要がないので、重
金属汚染の心配がなく、また廃液処理や溶媒回収の工程
が不要である。したがって、簡単な工程および装置によ
り高収率で高品質のPCを製造することができる。
According to the present invention, by mixing and reacting GPC and activated fatty acids without a solvent in the presence of a catalyst, there is no need to use heavy metals such as cadmium salts and solvents, so there is no need to worry about heavy metal contamination. Furthermore, there is no need for waste liquid treatment or solvent recovery steps. Therefore, high-yield, high-quality PC can be manufactured using simple steps and equipment.

〔実施例〕〔Example〕

以下参考例および実施例に基づいて本発明を具体的に説
明する。
The present invention will be specifically described below based on Reference Examples and Examples.

参考例−1 市[卵黄レシチン100fをベンゼン800m1に溶解
し、攪拌しつつテトラブチルアンモニウムヒドロキサイ
ド10チメタノール溶液1001Fを加えた。沈殿が析
出し始めてから30分間攪拌を続け、その後30分靜装
した。底に沈殿した粗GPCをデカ/チージョンで回収
し、ベンゼンで洗浄した。次いで一20℃に冷却したア
セトン11に粗GPCを投入し、沈殿を得た。アセトン
再沈を同様に再び〈シ返し、エステル等の不純物を含ま
ない粗GPCを回収した。この粗GPCをメタノールに
溶解し、不溶分を遠心分離により除いた。
Reference Example 1 100 F of egg yolk lecithin was dissolved in 800 ml of benzene, and 1001 F of tetrabutylammonium hydroxide 10 timeethanol solution was added while stirring. Stirring was continued for 30 minutes after precipitation started, and then the mixture was kept quiet for 30 minutes. Crude GPC precipitated at the bottom was collected with Deka/Cheeseon and washed with benzene. Then, the crude GPC was poured into acetone 11 cooled to -20°C to obtain a precipitate. The acetone reprecipitation was repeated in the same manner, and crude GPC containing no impurities such as esters was recovered. This crude GPC was dissolved in methanol, and insoluble matter was removed by centrifugation.

上澄をエバポレーションし、33?の綜apcを得た。Evaporate the supernatant, 33? APC of 100% was obtained.

′参考例−2 パルミチン酸20F(0,078モル)とDCC8、O
f (0,04モル)を乾燥クロロホルム中で5℃、1
5時間反応させた。析出したジシクロへキシルフレアを
ろ別し、ろ液を濃縮して粗パルミチン酸無水物を得た。
'Reference example-2 Palmitic acid 20F (0,078 mol) and DCC8, O
f (0.04 mol) in dry chloroform at 5°C for 1
The reaction was allowed to proceed for 5 hours. The precipitated dicyclohexyl flare was filtered off, and the filtrate was concentrated to obtain crude palmitic anhydride.

この粗パルミチン酸無水物をクロロホルムを溶出剤とし
て、シリカゲルカラムで分離し、純バルミチン酸無水物
13.6F(0,028七ル)を得た。
This crude palmitic anhydride was separated on a silica gel column using chloroform as an eluent to obtain 13.6 F (0,0287 l) of pure palmitic anhydride.

以下に上記の反応式を示す。The above reaction formula is shown below.

DCC 実施例−1 参考例−1の方法により得たl![cpctosPと参
考例−2の方法により得たパルミチン酸無水物401及
びDIAP19Fとを良く混合し、ホモジナイザーで5
分間攪拌し、室温にて48時間静置反応させた。反応後
、メタノールを加え、その溶液をイオン交換樹脂アンバ
ーライト200C(ロームアンドハース社商標)のカラ
ムに通し、DMAPを除いた。流出液を濃縮し、シリカ
ゲルカラムで溶出剤としてクロμホルム/メタノール/
水=65/25/4を用いて精製することにより、シバ
ルミチン酸ホスファチジルコリン(DPPC)15、5
 Fを得た。
DCC Example-1 l! obtained by the method of Reference Example-1! [CpctosP, palmitic acid anhydride 401 and DIAP19F obtained by the method of Reference Example-2 were mixed well, and mixed with a homogenizer for 50 minutes.
The mixture was stirred for a minute and left to react at room temperature for 48 hours. After the reaction, methanol was added, and the solution was passed through a column of ion exchange resin Amberlite 200C (trademark of Rohm and Haas) to remove DMAP. The effluent was concentrated and passed through a silica gel column using chloro μform/methanol/
By purifying with water = 65/25/4, phosphatidylcholine cybalmitate (DPPC) 15,5
I got an F.

なお、PCの同定は、薄層クロマトグラフィーのスポッ
トの位置とNMR(核磁気共鳴)吸収スペクトルとを標
準物質と比較して行なった。
Note that PC was identified by comparing the spot position of thin layer chromatography and the NMR (nuclear magnetic resonance) absorption spectrum with a standard substance.

実施例−2 参考例−1の方法により得た一GPC10rとパルミチ
ン酸602、DCC50S’及びDMAP19fを良く
混合し、ホそジナイザーで5分間攪拌し、室温にて48
時間静置反応させた。これにメタノールを加え、その溶
液をアンバーライト200Cのカラムに通し、DMAP
を除いた。以下実施例−1と同様に精製してDPPC1
6,Ofを得た。   ゛ 実施例−3 参考例−1の方法と同様にして得たGPC5F、ステア
リン酸クロリド151F及びピリジン3.22とを良く
混合し、ホモジナイザーで5分間攪拌し、室温にて2時
間静置反応させた。反応混合物を一20℃のアセトン5
0〇−中に投入し沈殿物を得た。この沈殿物をろ別し、
実施例−1と同様にシリカゲルカラムを用いて精製し、
ジステアリン酸ホスファチジルコリン8.51を得た。
Example-2 One GPC10r obtained by the method of Reference Example-1, palmitic acid 602, DCC50S' and DMAP19f were mixed well, stirred for 5 minutes with a homogenizer, and heated to 48% at room temperature.
The reaction was allowed to stand for a period of time. Methanol was added to this, the solution was passed through an Amberlite 200C column, and DMAP
was excluded. Below, DPPC1 was purified in the same manner as in Example-1.
I got 6,Of.゛Example-3 GPC5F obtained in the same manner as in Reference Example-1, stearic acid chloride 151F, and pyridine 3.22 were mixed well, stirred with a homogenizer for 5 minutes, and left to react at room temperature for 2 hours. Ta. The reaction mixture was diluted with acetone at 20°C.
00- to obtain a precipitate. Filter this precipitate,
Purified using a silica gel column in the same manner as Example-1,
8.51 of phosphatidylcholine distearate was obtained.

実施例−4 参考例−1の方法により得た1iGpcxor、オレイ
ン酸60?、DC050FおよびDMAP19?を良く
混合し、ホモジナイザーで5分間攪拌し、室温にて48
時間静置反応させた。反応後は実施例−1と同様にして
、ジオレイン酸ホスファチジルコリン15.8Fを得た
Example-4 1iGpcxor obtained by the method of Reference Example-1, oleic acid 60? , DC050F and DMAP19? Mix well, stir with a homogenizer for 5 minutes, and stir at room temperature for 48 minutes.
The reaction was allowed to stand for a period of time. After the reaction, phosphatidylcholine dioleate 15.8F was obtained in the same manner as in Example-1.

Claims (3)

【特許請求の範囲】[Claims] (1)グリセロホスホリルコリンと活性化脂肪酸とを触
媒の存在下に無溶媒で混合し反応させることを特徴とす
るホスファチジルコリンの製造方法。
(1) A method for producing phosphatidylcholine, which comprises mixing and reacting glycerophosphorylcholine and activated fatty acid in the presence of a catalyst without a solvent.
(2)活性化脂肪酸が炭素数8〜24の天然もしくは合
成の飽和または不飽和脂肪酸の無水物、クロル化物ある
いはイミダゾール化物である特許請求の範囲第1項記載
の製造方法。
(2) The production method according to claim 1, wherein the activated fatty acid is an anhydride, a chloride, or an imidazolate of a natural or synthetic saturated or unsaturated fatty acid having 8 to 24 carbon atoms.
(3)脂肪酸無水物がホスファチジルコリン合成時に脂
肪酸および脂肪酸と等モル以上のカルボジイミド系縮合
剤により合成されるものである特許請求の範囲第2項記
載の製造方法。
(3) The production method according to claim 2, wherein the fatty acid anhydride is synthesized using a fatty acid and a carbodiimide condensing agent in an amount equal to or more than the same molar amount as the fatty acid during the synthesis of phosphatidylcholine.
JP11432885A 1985-05-29 1985-05-29 Production of phosphatidylcholine Pending JPS61275286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11432885A JPS61275286A (en) 1985-05-29 1985-05-29 Production of phosphatidylcholine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11432885A JPS61275286A (en) 1985-05-29 1985-05-29 Production of phosphatidylcholine

Publications (1)

Publication Number Publication Date
JPS61275286A true JPS61275286A (en) 1986-12-05

Family

ID=14635070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11432885A Pending JPS61275286A (en) 1985-05-29 1985-05-29 Production of phosphatidylcholine

Country Status (1)

Country Link
JP (1) JPS61275286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282393A (en) * 1990-10-31 1992-10-07 A Nattermann & Cie Gmbh Process for producing phosphatidyl choline derivative

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255798A (en) * 1984-05-30 1985-12-17 Nippon Seika Kk Preparation of phosphatidylcholine derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255798A (en) * 1984-05-30 1985-12-17 Nippon Seika Kk Preparation of phosphatidylcholine derivative

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282393A (en) * 1990-10-31 1992-10-07 A Nattermann & Cie Gmbh Process for producing phosphatidyl choline derivative
US5321145A (en) * 1990-10-31 1994-06-14 A. Nattermann & Cie. Gmbh Process of producing phosphatidylcholine derivatives

Similar Documents

Publication Publication Date Title
JP4226324B2 (en) Carboxylic acid type lipid
JPS61129190A (en) Polymerizable glycerophospholipid
JPS61275286A (en) Production of phosphatidylcholine
JPS61275287A (en) Production of synthetic phosphatidylcholine
US4387232A (en) Process for preparing N-acylcarnosine
CA1068291A (en) Process for preparing 1,2-diacyl-3-glycerylphosphorylcholines
JPS6185396A (en) Preparation of phosphatidylcholine
JPS5940839B2 (en) Method for producing mixed acid type 1,2-diacyl-3-glycerylphosphorylcholines
JP4412427B2 (en) Process for producing mixed acid type 1,2-diacyl-3-glycerophospholipid
JPS606958B2 (en) Antibiotic purification method
JPS61207396A (en) Production of phosphatidylcholine
JPH0279990A (en) Production of phosphatidylserine
JPS629599B2 (en)
JPH0372079B2 (en)
US5152999A (en) Liposome preparation
JPS63123389A (en) Production of phospholipid-d-serine derivative by enzymatic method
JP2887617B2 (en) Method for producing phosphatidylcholine
JPS6187689A (en) Production of phosphatidylcholine
JPS61180793A (en) Production of phosphatidylcholine
JPS6216439A (en) Production of phosphatidylcholine
JPH0572915B2 (en)
JPH0940632A (en) Diacylglycerol derivative
JP2884105B2 (en) Method for producing phosphatidylcholine
JPS61158990A (en) Production of glycerophosphorylcholine
JPS61129191A (en) Glycerophospholipid containing decosahexaenoic acid