[go: up one dir, main page]

JPS61272989A - Buried type semiconductor laser element - Google Patents

Buried type semiconductor laser element

Info

Publication number
JPS61272989A
JPS61272989A JP11477985A JP11477985A JPS61272989A JP S61272989 A JPS61272989 A JP S61272989A JP 11477985 A JP11477985 A JP 11477985A JP 11477985 A JP11477985 A JP 11477985A JP S61272989 A JPS61272989 A JP S61272989A
Authority
JP
Japan
Prior art keywords
layer
type
active layer
mesa
constriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11477985A
Other languages
Japanese (ja)
Inventor
Kenji Endo
健司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11477985A priority Critical patent/JPS61272989A/en
Publication of JPS61272989A publication Critical patent/JPS61272989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/221Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve yield on manufacture, and to accomplish stable production by forming the mesa structure of an AlGaAs multilayer thin-film with a constriction, shaping an active layer in the constriction section and burying the mesa structure by a semiconductor layer having forbidden band width wider than the active layer. CONSTITUTION:An N-type Al0.33Ga0.62As clad layer 2, an N-type Al0.32Ga0.63As guide layer 3, an undoped Al0.12Ga0.33As active layer 4, an As wetting layer 13 (0<=y<=0.1), a P-type A4l0.38Ga0.6As clad layer 6 and a P-type Al0.13Ga0.35As cap layer 7 are formed onto an N-type GaAs substrate 1 through the first crystal growth, and a narrow-width mesa shape consisting of the active layer 4 and an intermediate layer 5 is shaped through the next etching process. P-type Al0.33Ga0.62As block layers 8, 9 and a P-type Al0.33Ga0.62As buried layer 10 are formed through the second crystal growth, and mesa sections are buried. The wetting layer 13 having forbidden band width larger than the active layer is shaped onto the upper surface of a constriction section.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光フアイバ通信装置や光情報処理システムに
おいて光源として用いられる埋め込み型半導体レーザ素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an embedded semiconductor laser element used as a light source in an optical fiber communication device or an optical information processing system.

(従来技術とその問題点) 軽量小型で消費電力が少なく直接高速変調が可能な半導
体レーザは、光フアイバ通信装置の光源や光デイスク装
置・レーザビームプリンターなど各種の光情報処理シス
テムの光源として広く利用されククある。これらの用途
の多くでは、基本横モードで安定な動作が得られ、さら
に出力ビームに非点収差のなめ光源が望まれている。昭
和59年春季電子通信学会総合全国大会予稿集1016
やエレクトaニクスレター(Electron、 Le
tt 、 )1984年20巻18号728から730
ページに記載されているメサ〈びれ型埋め込み構造半導
体レーザはこの二つの特性を兼ね備えており、光情報処
理用光源に最適な半導体レーザである。ところが従来の
メサ〈びれ型埋め込み構造半導体レーザには以下に説明
するような問題点があった。
(Prior art and its problems) Semiconductor lasers, which are lightweight, compact, consume little power, and can be directly modulated at high speed, are widely used as light sources for optical fiber communication devices, optical disk devices, laser beam printers, and various other optical information processing systems. I'm tired of being used. For many of these applications, a slanted light source is desired that provides stable operation in the fundamental transverse mode and also has astigmatism in the output beam. Proceedings of the Spring 1981 National Conference of the Institute of Electronics and Communication Engineers 1016
and electronic letter (Electron, Le
tt, ) 1984 Vol. 20 No. 18 728-730
The mesa (fin-type) buried structure semiconductor laser described on this page combines these two characteristics, making it the ideal semiconductor laser for use as a light source for optical information processing. However, the conventional mesa (fin type) buried structure semiconductor laser has the following problems.

第3図は従来のメサくびれ塁埋め込み構造半導体レーザ
の模式的断面図であり、次のようにして作製される。ま
ず第一回目の結晶成長で% It!GaAa基板1上に
n fJlAJ o、s s GatLs! Asクラ
ッド層2、n型)Jo、B Gas、sa  AB  
ガイド層3.アンドープAJo、tt Gao、amλ
B活性層4、p型AJ6,1(ML6.@ As中間層
5、pWAA!*、sa ()aO06! Asクラッ
ド層6、pHんe*、sm  Gae、ms Al!l
キャップ層7が形成される。次のエツチング工程でこの
AJGaAs多層膜はメサ状にエツチングされる。活性
層4に隣接して設けられたA!混結晶比の大きな中間層
°5が選択的にエツチングできることを利用して、活性
層4と中間層50幅をメサの幅よシ狭くし、活性層40
両側部でくびれたメサ形状とされる。このメサ構造は、
第二回目の結晶成長でp型AJo、as Gas、at
 Asブロック層Be Qt p型Alo、as  (
)allJt  As埋め込みjfl 10で埋め込ま
れる。ブロック層9の成長はくびれ部で停止し、この結
果、活性)−4に近接した効果的な電流狭窄構造が形成
さnる。ところが、この第二回目の結晶成長で、メサ形
状のくびれ九部分へn型AA!o、amG5L(1,6
! As埋め込み層10が成長せず活性層4および中間
層5の側面に空洞を生じることがめった。
FIG. 3 is a schematic cross-sectional view of a conventional semiconductor laser with a mesa constriction buried structure, which is manufactured in the following manner. First, in the first crystal growth, % It! n fJlAJ o, s s GatLs! on GaAa substrate 1! As cladding layer 2, n-type) Jo, B Gas, sa AB
Guide layer 3. Undoped AJo, tt Gao, amλ
B active layer 4, p-type AJ6,1 (ML6.@ As intermediate layer 5, pWAA!*, sa ()aO06! As cladding layer 6, pHn e*, sm Gae, ms Al!l
A cap layer 7 is formed. In the next etching step, this AJGaAs multilayer film is etched into a mesa shape. A! provided adjacent to the active layer 4! Taking advantage of the fact that the intermediate layer 5 having a large mixed crystal ratio can be selectively etched, the widths of the active layer 4 and the intermediate layer 50 are made narrower than the width of the mesa.
It has a mesa shape with constrictions on both sides. This mesa structure is
In the second crystal growth, p-type AJo, as Gas, at
As block layer Be Qt p-type Alo, as (
) allJt As embedded jfl 10. The growth of the blocking layer 9 is stopped at the constriction, resulting in the formation of an effective current confinement structure close to the active layer -4. However, in this second crystal growth, n-type AA was formed at the 9th constriction of the mesa shape! o, amG5L(1,6
! It was rare that the As buried layer 10 did not grow and cavities were formed on the sides of the active layer 4 and intermediate layer 5.

空洞の発生により、活性層4と空洞部との屈折率差が大
きすぎるため横モードの高次モード化を招き、さらに、
露出した活性層4の側面から劣化を生じるなどの問題が
生じた。空洞の発生により素子の製造歩留が低下し、し
かもその発生が不規則的なためメサくびれ盟埋め込み構
造半導体レーザの安定な生産の障害になっていた。
Due to the generation of cavities, the refractive index difference between the active layer 4 and the cavity portion is too large, leading to higher-order transverse modes, and furthermore,
Problems such as deterioration occurred from the exposed side surfaces of the active layer 4 occurred. The production of cavities lowers the manufacturing yield of devices, and their irregular occurrence has been an obstacle to stable production of semiconductor lasers with a mesa-constriction-embedded structure.

空洞を生じる原因は、次のように考えられる。The causes of cavities are thought to be as follows.

第二回目の埋め込み成長は液相成長法によりおこなわれ
るが、液相成長法には、エツチングなどの処理を受けた
AlGaAa層表面へのエピタキシャル成長はAl混晶
化が大きい程困難になるという性質がある。メサ構造の
くびれ部には、上面にはAje、ma  ()allj
! 人8クラッド層6.側面にはAJa、sea、、 
As中間層5、下面にはAノOjl Ga(148As
ガイド層3が露出しており、これらの層のAl混晶比は
0.3以上と大きい。さらにくびれているという形状の
影響も加わって、くびれ部への結晶成長の困難性が増し
、空洞を生じるものと考えられるロ  − そこで、本発明の目的は、従来の素子構造にあった上記
問題点を解決し、高い製造歩留りで安定な生産が可能な
メサ〈びれ型埋め込み型半導体レーザ素子を提供するこ
とにある。
The second buried growth is performed using the liquid phase growth method, but the liquid phase growth method has a property that epitaxial growth on the surface of the AlGaAa layer that has been subjected to treatments such as etching becomes more difficult as the Al mixed crystallization increases. be. The constriction of the mesa structure has Aje, ma ()allj on the top surface.
! Person 8 Cladding layer 6. AJa, sea on the side.
As intermediate layer 5, AnoOjl Ga (148As
The guide layer 3 is exposed, and the Al mixed crystal ratio of these layers is as large as 0.3 or more. Furthermore, the effect of the constricted shape increases the difficulty of crystal growth in the constricted part, and it is thought that cavities are created. It is an object of the present invention to provide a mesa (fin type) buried semiconductor laser device which solves the above problems and can be produced stably with a high manufacturing yield.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する埋め込
み型半導体レーザ素子は、くびれのあるAl Ga A
s多層薄膜のメサ構造を有し、活性層がそのくびれの部
分にあり、そのくびれ部分に露出した上面又は下向の結
晶面の少なくとも一つはMの混晶比が0.1以下の半導
体層であり、とのメサ構造が活性層よシも禁制帯幅の広
い半導体層で埋め込まれていることを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, an embedded semiconductor laser device provided by the present invention uses a constricted AlGaA
s A semiconductor that has a mesa structure of a multilayer thin film, the active layer is located at the constriction, and at least one of the upper or downward crystal planes exposed at the constriction has an M mixed crystal ratio of 0.1 or less. It is characterized by a mesa structure in which both the active layer and the active layer are filled with a semiconductor layer with a wide forbidden band width.

(実施例) 第1図は本発明の第1の実施例の模式的断面図であるo
 n屋GaAs基板1上にn型AJo、sa ()at
lJIAs クラッド層2、n型Alo、sa GaO
3@@ Asガイド層3、アンドープAJo、tt G
oo、as As活性層4、p型AlO,I Ga0.
、、 As  中間層5、p* AlyGa 1−yA
s  ウエツティング層13(0≦y≦0.1)、p型
Alo、s a Gao、s t As  クラッド層
6%p型Alo、ti()aO1a! Asキャップ層
7を第一回の結晶成長で形成し、次のエツチング工程で
活性層4と中間層50幅が狭くてくびれているメサ形状
を形成する。
(Embodiment) FIG. 1 is a schematic cross-sectional view of the first embodiment of the present invention.
n-type AJo, sa ()at on nya GaAs substrate 1
lJIAs cladding layer 2, n-type Alo, sa GaO
3@@ As guide layer 3, undoped AJo, tt G
oo, as As active layer 4, p-type AlO, I Ga0.
,, As intermediate layer 5, p* AlyGa 1-yA
s wetting layer 13 (0≦y≦0.1), p-type Alo, s a Gao, s t As cladding layer 6% p-type Alo, ti()aO1a! The As cap layer 7 is formed in the first crystal growth, and in the next etching step, the active layer 4 and the intermediate layer 50 are formed into a narrow mesa shape.

第二回目の結晶成長でp型Alo、sa Gas、at
 As ブロック層Be 9t p型Aj6.H()a
す冨As埋め込み層10を形成しメサ部が埋め込まれる
。この第二回目の結晶成長において、くびれ部上面には
M組成比が0.1よプ小さなウエツテイング層13が露
出している。AJGaAs層上への液相成長はAl混晶
化が0.1以下になると大幅に容易になる性質、がある
。この成長が容易なウエツティング層13の存在に助け
られて本実施例では、メサ構造のくびれ部へAJo、a
s ()a(1,at Al埋め込み層10が容易に成
長する。この結果くびれ部での空洞の発生を大幅に低減
することができ、メサくびれ凰埋め込み構造半導体レー
ザを高歩留りで安定に生産することが可能になった。
In the second crystal growth, p-type Alo, sa Gas, at
As block layer Be 9t p-type Aj6. H()a
A full As buried layer 10 is formed to bury the mesa portion. In this second crystal growth, a wetting layer 13 having an M composition ratio smaller than 0.1 is exposed on the upper surface of the constriction. There is a property that liquid phase growth on the AJGaAs layer becomes much easier when Al mixed crystallization becomes 0.1 or less. In this example, with the help of the wetting layer 13 which is easy to grow, AJo, a
s ( ) a ( 1, at Al buried layer 10 grows easily. As a result, the occurrence of cavities at the neck can be significantly reduced, and semiconductor lasers with a mesa neck buried structure can be produced stably with high yield. It became possible to do so.

クエツティング層13の禁制帯幅が活性層の禁制帯幅よ
りも狭い場合、発振光の一部がツエツティング層13で
吸収され、しきい値の増大、効率の低下を招くことが懸
念される。しかし、本実施例の光導波路では中間層5の
厚さを0.3μm以上に設定すると、ウエツティング層
13へ発振光はほとんど達せず、発振特性を損なうこと
はない。
If the forbidden band width of the quetting layer 13 is narrower than that of the active layer, there is a concern that part of the oscillated light will be absorbed by the queting layer 13, leading to an increase in the threshold value and a decrease in efficiency. However, in the optical waveguide of this embodiment, if the thickness of the intermediate layer 5 is set to 0.3 μm or more, almost no oscillated light reaches the wetting layer 13, and the oscillation characteristics are not impaired.

他の光導波路構造の素子でも同様である。従って、本実
施例によれば、従来構造のメサくびれ型埋め込み構造半
導体レーザと同程度の低しきい値、高効率が達成される
。しかも、本実施例は、横モードの安定性が優れている
点、非点収差のない出力光が得られる点では従来の構造
と変わらない。
The same applies to elements having other optical waveguide structures. Therefore, according to this embodiment, a low threshold value and high efficiency comparable to those of the mesa constriction type buried structure semiconductor laser of the conventional structure can be achieved. Moreover, this embodiment is the same as the conventional structure in that it has excellent transverse mode stability and output light without astigmatism can be obtained.

第2図は本発明の第2の実施例の模式的断面図である。FIG. 2 is a schematic cross-sectional view of a second embodiment of the invention.

本実施例では、第一の実施例と同じ層構造に結晶成長後
、結晶表面からp型不純物の選択拡散を行ない、幅がメ
サ部よりも広く、深さがクエツティング層13よシも深
い領域にわたって導電型をp型にしている。拡散領域の
キャリア濃度は高く、素子抵抗が低減されることに加え
、絶縁連j!!115の間隔を拡散領域の幅まで広げる
ことができ、放熱特性が向上する。
In this example, after crystal growth to the same layer structure as in the first example, p-type impurity is selectively diffused from the crystal surface to form a region wider than the mesa portion and deeper than the questing layer 13. The conductivity type is p-type throughout. The carrier concentration in the diffusion region is high, which not only reduces device resistance but also improves insulation properties. ! 115 can be expanded to the width of the diffusion region, improving heat dissipation characteristics.

上述した2つの実施例では、ウエツティング層にAJ混
晶比が0.1以下のAJGaAs層を用いたが、klの
混晶比が0.1以下のAl()aP、あるいはAJを含
まないInGaAsP層を用いても同様の効果をあげる
ことができる。
In the two embodiments described above, an AJGaAs layer with an AJ crystal ratio of 0.1 or less was used as the wetting layer, but Al()aP with a kl mixed crystal ratio of 0.1 or less or no AJ was used. Similar effects can be achieved by using an InGaAsP layer.

(発明の効果) 以上説明したように、本発明の埋め込み型半導体レーザ
素子は、低しきい値、高効率で非点収差の無い出力が得
られるという従来のメサ〈びれ屋埋め込み構造レーザの
特徴を保ちながら、従来の素子にあった製造歩留の不安
定性を解決して、高歩留を実現し、ひいては製造費の大
幅な低減を可能にした。
(Effects of the Invention) As explained above, the buried semiconductor laser device of the present invention has the characteristics of the conventional mesa buried structure laser that it can provide output with a low threshold value, high efficiency, and no astigmatism. While maintaining this, the instability of manufacturing yields associated with conventional devices has been resolved, achieving high yields and, in turn, making it possible to significantly reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の第1及び第2の実施例の模
式的断面図、第3図は従来素子の模式的断面図である。 卜00n型GaAs基板t2°”n型kl@、am e
ao、atAs’り2ラド層、3 ・・・n 盤AJ 
o、s 糞Ga QJ I  Asガイド層、4・・・
Alo、xt  Gas、as As活性層、s ・p
型AJ@、I As中間層、6p型AA!e、as (
)ao、HAsクラッド層、7−p型AJe、ss  
()5Le、as Asキャップ層、8−I)型A l
 o、、s  Gas、at  Asブロック層、9・
・・p型Alo、sa  ()am、@*  Asブロ
ック層、10−n型Alo、sa  ()ao、st 
 kB埋め込み層、11−1)側電極。 12−n側電極、13 ”・1)fIiAl  Ga、
−yAsAsウ ニティング層(0≦y≦0.1)、14−・・p型不純
物拡散領域、15−・・絶縁薄膜。 代理人 弁理士 本 庄 伸 介 第、1図
1 and 2 are schematic sectional views of first and second embodiments of the present invention, and FIG. 3 is a schematic sectional view of a conventional element.卜00n type GaAs substrate t2°”n type kl@, am e
ao, atAs'ri 2 rad layer, 3...n board AJ
o,s Feces Ga QJ I As guide layer, 4...
Alo, xt Gas, as As active layer, s/p
Type AJ@, I As intermediate layer, 6p type AA! e, as (
) ao, HAs cladding layer, 7-p type AJe, ss
()5Le, as As cap layer, 8-I) type Al
o, s Gas, at As block layer, 9.
...p-type Alo, sa ()am, @* As block layer, 10-n-type Alo, sa ()ao, st
kB buried layer, 11-1) side electrode. 12-n side electrode, 13”・1) fIiAlGa,
-yAsAs uniting layer (0≦y≦0.1), 14-... p-type impurity diffusion region, 15-... insulating thin film. Agent Patent Attorney Shinsuke Honjo No. 1, Figure 1

Claims (1)

【特許請求の範囲】[Claims] くびれのあるAlGaAs多層薄膜のメサ構造を有し、
活性層がそのくびれの部分にあり、そのくびれ部分に露
出した上面又は下面の結晶面の少なくとも一つはAlの
混晶比が0.1以下の半導体層であり、前記メサ構造が
前記活性層よりも禁制帯幅の広い半導体層で埋め込まれ
ていることを特徴とする埋め込み型半導体レーザ素子。
It has a mesa structure of a constricted AlGaAs multilayer thin film,
The active layer is located in the constriction, at least one of the upper or lower crystal planes exposed in the constriction is a semiconductor layer with an Al mixed crystal ratio of 0.1 or less, and the mesa structure is in the active layer. An embedded semiconductor laser element characterized in that it is embedded with a semiconductor layer having a wider forbidden band width.
JP11477985A 1985-05-28 1985-05-28 Buried type semiconductor laser element Pending JPS61272989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11477985A JPS61272989A (en) 1985-05-28 1985-05-28 Buried type semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11477985A JPS61272989A (en) 1985-05-28 1985-05-28 Buried type semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS61272989A true JPS61272989A (en) 1986-12-03

Family

ID=14646469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11477985A Pending JPS61272989A (en) 1985-05-28 1985-05-28 Buried type semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS61272989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6987322B1 (en) * 2021-03-05 2021-12-22 三菱電機株式会社 Optical semiconductor devices and their manufacturing methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6987322B1 (en) * 2021-03-05 2021-12-22 三菱電機株式会社 Optical semiconductor devices and their manufacturing methods
WO2022185508A1 (en) * 2021-03-05 2022-09-09 三菱電機株式会社 Optical semiconductor device and method for producing same

Similar Documents

Publication Publication Date Title
JPH07112091B2 (en) Method of manufacturing embedded semiconductor laser
JPS6085585A (en) Buried type semiconductor laser
JPS6218783A (en) Semiconductor laser element
JPS61272989A (en) Buried type semiconductor laser element
JP2002057409A (en) Semiconductor laser and its fabricating method
JPS61284988A (en) Semiconductor laser element
JPH0560275B2 (en)
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JPS62179790A (en) semiconductor laser
JPS6035591A (en) High performance semiconductor laser device and manufacture thereof
JPS62216389A (en) Method for manufacturing semiconductor light emitting device
JPH03112186A (en) Algainp visible light semiconductor laser
JP2875440B2 (en) Semiconductor laser device and method of manufacturing the same
JP2804533B2 (en) Manufacturing method of semiconductor laser
JPS62176182A (en) Semiconductor laser and manufacture thereof
JPS60224288A (en) Method for manufacturing semiconductor light emitting device
JP2001077466A (en) Semiconductor laser
JPH02240988A (en) semiconductor laser
JPS6167980A (en) Semiconductor laser
JPS62296591A (en) Semiconductor laser
JPH0156522B2 (en)
JPH01196892A (en) Semiconductor laser device
JPH05206566A (en) Manufacture of semiconductor laser element