【発明の詳細な説明】[Detailed description of the invention]
「産業上の利用分野」
本発明は、特定のスチレン―ブタジエンブロツ
ク共重合体の1軸延伸フイルムを用いてガラス容
器を被覆することによるガラス容器の破壊飛散防
止方法に関する。
「従来の技術」
ガラス容器はその透明性の故に内容物がよくみ
え、かつ耐薬品性、耐溶剤性、耐候性が優れてお
り、かつビンの形状も比較的容易に種々のものが
作れるので古来液体物質を始め種々の物質の容器
として極めて広い範囲に用いられて来た、しかし
ながら、ガラス容器はその素材の性質上、衝撃に
対して弱く、容器を落下させたりあるいは打撃を
与えると比較的容易に破損し、あるいは温度の急
変に対して通常脆弱であり破損しやすい。
特に炭酸飲料水を収容した場合のように内圧を
有するガラスビンの場合、急激なビンの振とうあ
るいはビンの温度の急変によつてビンの歪が増
し、あるいはビンの内圧急増によつてビンが破裂
することがある。この場合、破裂によつて生じた
ガラスの破片は四方に飛散し、人や器物を傷つけ
る原因となる。
また多量の内容物を収容したガラスビンのよう
な場合には、重量が大きくなるため落下させ易
く、その場合ビンは破壊する危険性が高く、破壊
すれればやはりガラスの破片が四方に飛散するこ
とになる。
このようにガラス容器はそのもろさゆえに破壊
飛散しやすく、危険であるために、従来から各種
の破壊飛散防止方法が提案されてきた。その中
で、比較的効果の高い方法としては、特開昭48−
28014、特開昭48−34919、特開昭48−69681等に
開示されている、ガラス容器に共役ジオレフイン
―モノビニル置換芳香族化合物ブロツク共重合体
等をコーテイングする方法があり、さらに最近で
はブロツク共重合体のかわりにSBRラテツクスを
用いる方法も実際に行なわれている。しかしなが
ら、ガラス容器へのコーテイングはプロセスが複
雑であるばかりでなく、ガラス容器を再使用する
際にコーテイング物を除去するのが困難であると
いう欠点を有していた。
本発明者は、シユリンク被覆によりガラス容器
を保護する技術について鋭意検討を行つたが、従
来シユリンクフイルムとして多く用いられている
ポリ塩化ビニルフイルムでは、低温特性に劣るた
めに低温での破壊飛散防止効果が充分ではなかつ
た。
「発明が解決しようとする問題点」
すなわち、従来は、ガラス容器に対する被覆お
よび除去のプロセスが容易であり、被覆後の外観
に優れ、しかもガラス容器が実際に使用される環
境で充分な破壊飛散防止効果を有する素材は見つ
かつておらず、これらをすべて満足する技術は存
在していなかつた。
「問題点を解決するための手段」
本発明者は、さらに各種の素材について、ガラ
ス容器への被覆性と破壊飛散防止効果の検討を行
つた。その結果、特定のスチレン―ブタジエンブ
ロツク共重合体の1軸延伸フイルムを用いること
によつて、ガラス容器への被覆性に優れ、さらに
破壊飛散防止効果も優れた被覆が得られることを
見い出し本発明を完成した。
すなわち本発明は、スチレンとブタジエンの重
量比が60:40〜95:5であり、ポリスチレンブロ
ツクの数平均分子量が10000ないし70000であるス
チレン―ブタジエンブロツク共重合体からなり、
その延伸方向における100℃の熱収縮率が15%以
上、引張弾性率が7000Kg/cm2以上である1軸延伸
フイルムを用い、該1軸延伸フイルムがガラス容
器の全表面積のすくなくとも60%を被覆するよう
に、ガラス容器に対してに加熱収縮被覆すること
を特徴とするガラス容器の破壊飛散防止方法であ
る。
また本発明は以下の実施態様を提供する。
(1) スチレン―ブタジエンブロツク共重合体が2
個以上のポリスチレンブロツクを有している特
許請求の範囲第1項記載の破壊飛散防止方法。
(2)スチレン―ブタジエンブロツク共重合体一般式
(イ)(S−B)o n=3〜10
(ロ)S(B−S)o n=2〜10
(ハ)B(S−S)o n=2〜10
(ニ)〔(B−S)o〕n+2X
n=2〜10及びm=1〜10
(ホ)〔(S−B)o〕n+2X
n=2〜10及びm=1〜10
(ヘ)〔(B−S)oB〕n+2X
n=2〜10及びm=1〜10
(ト)〔(S−B)oS〕n+2X
n=1〜10及びm=1〜10
(上式においてSはポリスチレンブロツク、B
はブタジエンブロツクであり、Xはカツプリン
グ剤の残基又は多官能有機リチウム化合物の重
合開始剤の残基を示す。)で表されたものであ
る特許請求の範囲第1項記載の破壊飛散防止方
法。
(3) ポリスチレンブロツクの数平均分子量が、
15000ないし60000である特許請求の範囲第1項
記載の破壊飛散防止方法。
(4) スチレンとブタジエンとの重量比が70:30〜
90:10である特許請求の範囲第1項記載の破壊
飛散防止方法。
(5) スチレンとブタジエンとの重量比が75:25〜
85:15である特許請求の範囲第1項記載の破壊
飛散防止方法。
(6) 1軸延伸フイルムがテンター横1軸延伸フイ
ルムである特許請求の範囲第1項記載の破壊飛
散防止方法。
(7) 1軸延伸フイルムが、延伸温度60ないし150
℃、延伸倍率1.5ないし8倍で実質的に1軸延
伸したフイルムである特許請求の範囲第1項記
載の破壊飛散防止方法。
(8) 1軸延伸フイルムの100℃における横方向の
熱収縮率が40ないし90%、縦方向の熱収縮率が
15%未満で、しかも横方向の引張弾性率が
10000Kg/cm2以上である特許請求の範囲第1項
記載の破壊飛散防止方法。
(9) 1軸延伸フイルムが延伸横方向にチユーブ化
されたフイルムである特許請求の範囲第1項記
載の破壊飛散防止方法。
(10) 加熱収縮被覆が、チユーブ化された1軸延伸
フイルムをガラス容器にかぶせ、加熱収縮によ
り密着させることである特許請求の範囲第1項
記載の破壊飛散防止方法。
以下、本発明を詳細に説明する。
本発明で使用するスチレン―ブタジエンブロツ
ク共重合体は、少なくとも1個、好ましくは2個
以上のポリスチレンブロツクと少なくとも1個の
ブタジエンブロツクを有するブロツク共重合体で
ある。ここで、ブタジエンブロツクとは、ポリブ
タジエンブロツクまたはブタジエンを50重量%以
上、好ましくは70重量%以上、さらに好ましくは
90重量%以上含む重合体ブロツクであり、この重
合体ブロツクが含み得る共重合単量体としてはス
チレン、イソプレン等があげられる。ブタジエン
ブロツクが共重合体である場合の共重合単量体
は、重合体ブロツク中に均一に分布していてもよ
く、またテーパー(漸減)状に分布していてもよ
い。
本発明で使用するブロツク共重合体のスチレン
とブタジエンの重量比は60:40〜95:5、好まし
くは70:30〜90:10、さらに好ましくは、75:25
〜85:15であり、好ましい範囲程フイルムの剛性
と破壊飛散防止効果のバランスに優れる。
本発明で使用するブロツク共重合体のポリスチ
レンブロツクの数平均分子量は10000ないし
70000、好ましくは15000ないし60000、さらに好
ましくは20000ないし50000であり、数平均分子量
が10000より小さいとフイルム強度が低く、破壊
飛散防止効果が小さくなり、70000より大きいと
1軸延伸性が不足し、加熱収縮被覆がやりにくく
なる。
なお、ポリスチレンブロツクの数平均分子量
は、例えばゲルパーミエーシヨンクロマトグラフ
イー(GPC)で測定することにより求めること
ができる。
本発明で使用するブロツク共重合体は下式で表
わされる非ブロツク率が15%以下、好ましくは10
%以下、さらに好ましくは5%以下であることが
フイルムの剛性を向上させるために有効である
が、目的によつては15%以上でも使用可能であ
る。
"Industrial Application Field" The present invention relates to a method for preventing glass containers from breaking and scattering by coating the glass containers with a uniaxially stretched film of a specific styrene-butadiene block copolymer. ``Prior art'' Glass containers allow the contents to be clearly seen due to their transparency, and they also have excellent chemical resistance, solvent resistance, and weather resistance, and they can be made into a variety of bottle shapes relatively easily. Since ancient times, glass containers have been widely used as containers for various substances, including liquid substances.However, due to the nature of the material, glass containers are weak against shock, and if dropped or given a blow, they will be relatively susceptible to damage. They are easily damaged and are usually vulnerable to sudden changes in temperature. In particular, in the case of glass bottles that have internal pressure, such as those containing carbonated beverages, rapid shaking of the bottle or sudden changes in the temperature of the bottle may increase the distortion of the bottle, or the bottle may burst due to a sudden increase in the internal pressure. There are things to do. In this case, glass fragments generated by the bursting scatter in all directions, causing injury to people and property. Also, in the case of a glass bottle containing a large amount of contents, it is easy to drop because of its weight, and in that case there is a high risk of the bottle breaking, and if it is broken, glass fragments will scatter in all directions. become. As described above, glass containers are easily broken and shattered due to their fragility, which is dangerous, so various methods for preventing them from being shattered and shattered have been proposed. Among them, a relatively effective method is
28014, JP-A-48-34919, JP-A-48-69681, etc., there is a method of coating a glass container with a conjugated diolefin-monovinyl-substituted aromatic compound block copolymer. A method using SBR latex instead of a polymer is also in practice. However, coating glass containers not only requires a complicated process, but also has the disadvantage that it is difficult to remove the coating when reusing the glass container. The inventors of the present invention have conducted intensive studies on the technology of protecting glass containers with Shrink coating, but since polyvinyl chloride film, which has been commonly used as Shrink film, has poor low-temperature properties, it is difficult to prevent breakage and scattering at low temperatures. The effect was not sufficient. ``Problems to be Solved by the Invention'' In other words, in the past, the process of coating and removing glass containers was easy, the appearance after coating was excellent, and the glass containers had sufficient breakage and scattering properties in the environment where the glass containers were actually used. No material has been found that has a preventive effect, and no technology exists that satisfies all of these requirements. "Means for Solving the Problems" The present inventor further investigated the coating properties of various materials on glass containers and the effect of preventing breakage and scattering. As a result, it was discovered that by using a uniaxially stretched film of a specific styrene-butadiene block copolymer, it was possible to obtain a coating that had excellent coating properties on glass containers and also had an excellent effect of preventing breakage and scattering.The present invention is based on the present invention. completed. That is, the present invention comprises a styrene-butadiene block copolymer in which the weight ratio of styrene and butadiene is 60:40 to 95:5, and the number average molecular weight of the polystyrene block is 10,000 to 70,000.
A uniaxially stretched film having a heat shrinkage rate of 15% or more at 100°C in the stretching direction and a tensile modulus of 7000Kg/cm 2 or more is used, and the uniaxially stretched film covers at least 60% of the total surface area of the glass container. This method of preventing glass containers from being shattered and shattered is characterized by applying a heat-shrinkable coating to the glass containers. The present invention also provides the following embodiments. (1) Styrene-butadiene block copolymer is 2
The method for preventing fracture and scattering according to claim 1, comprising at least one polystyrene block. (2) Styrene-butadiene block copolymer general formula (A) (S-B) o n = 3 to 10 (B) S (B-S) o n = 2 to 10 (C) B (S-S) o n=2~10 (d) [(BS) o ] n+2 X n=2~10 and m=1~10 (e) [(S-B) o ] n+2 X n=2 ~10 and m=1-10 (F) [(B-S) o B] n+2 X n=2-10 and m=1-10 (G) [(S-B) o S] n+2 X n = 1 to 10 and m = 1 to 10 (In the above formula, S is a polystyrene block, B
is a butadiene block, and X represents a residue of a coupling agent or a residue of a polymerization initiator of a polyfunctional organolithium compound. ) The method for preventing destruction and scattering according to claim 1. (3) The number average molecular weight of the polystyrene block is
15,000 to 60,000. 15,000 to 60,000. (4) Weight ratio of styrene and butadiene is 70:30~
A method for preventing fracture and scattering according to claim 1, wherein the ratio is 90:10. (5) Weight ratio of styrene and butadiene is 75:25~
85:15, the method for preventing destruction and scattering according to claim 1. (6) The method for preventing fracture and scattering according to claim 1, wherein the uniaxially stretched film is a tenter horizontally uniaxially stretched film. (7) The uniaxially stretched film has a stretching temperature of 60 to 150
The method for preventing fracture and scattering according to claim 1, wherein the film is substantially uniaxially stretched at a temperature of 1.5 to 8 times at a stretching ratio of 1.5 to 8 times. (8) Uniaxially stretched film has a heat shrinkage rate of 40 to 90% in the transverse direction at 100℃, and a heat shrinkage rate in the longitudinal direction of 100℃.
less than 15%, and the transverse tensile modulus is
The method for preventing fracture and scattering according to claim 1, wherein the amount is 10,000 Kg/cm 2 or more. (9) The method for preventing fracture and scattering according to claim 1, wherein the uniaxially stretched film is a film that is tubed in the lateral direction of stretching. (10) The method for preventing fracture and scattering according to claim 1, wherein the heat-shrinkable coating is performed by covering a glass container with a tube-shaped uniaxially stretched film and bringing it into close contact with the glass container by heat-shrinking. The present invention will be explained in detail below. The styrene-butadiene block copolymer used in the present invention is a block copolymer having at least one, preferably two or more, polystyrene blocks and at least one butadiene block. Here, butadiene block refers to polybutadiene block or butadiene in an amount of 50% by weight or more, preferably 70% by weight or more, more preferably
It is a polymer block containing 90% by weight or more, and examples of copolymerized monomers that this polymer block may contain include styrene and isoprene. When the butadiene block is a copolymer, the comonomer may be uniformly distributed in the polymer block, or may be distributed in a tapered manner. The weight ratio of styrene and butadiene in the block copolymer used in the present invention is 60:40 to 95:5, preferably 70:30 to 90:10, more preferably 75:25.
~85:15, and the more preferable the range, the better the balance between film rigidity and fracture and scattering prevention effect. The number average molecular weight of the polystyrene block of the block copolymer used in the present invention is 10,000 to 10,000.
70,000, preferably 15,000 to 60,000, more preferably 20,000 to 50,000; if the number average molecular weight is less than 10,000, the film strength will be low and the effect of preventing fracture and scattering will be small; if it is more than 70,000, uniaxial stretchability will be insufficient; Heat-shrinkable coating becomes difficult. The number average molecular weight of the polystyrene block can be determined by, for example, gel permeation chromatography (GPC). The block copolymer used in the present invention has a non-blocking rate of 15% or less, preferably 10%.
% or less, more preferably 5% or less, is effective for improving the rigidity of the film, but depending on the purpose, it can be used at 15% or more.
【表】
〓の重量 〓 〓含量 〓
[Table] 〓 Weight 〓 〓 Content 〓