JPS61271081A - Seawater desalination equipment - Google Patents
Seawater desalination equipmentInfo
- Publication number
- JPS61271081A JPS61271081A JP60111656A JP11165685A JPS61271081A JP S61271081 A JPS61271081 A JP S61271081A JP 60111656 A JP60111656 A JP 60111656A JP 11165685 A JP11165685 A JP 11165685A JP S61271081 A JPS61271081 A JP S61271081A
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- evaporator
- absorber
- salt solution
- regenerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海水の淡水化装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a seawater desalination device.
海水を淡水化する方法としては、海水を常圧また減圧下
で加熱蒸発する方法や逆浸透膜を利用した方法が知られ
ている。しかしながら、蒸発法は海水を加熱蒸発させる
ために多大なエネルギーを消費し、また、蒸気を凝縮さ
せるためにも多大な冷熱源を必要とする。逆浸透膜法は
熱源を必要としないが、膜面へのスケール付着による透
過水量の低減、膜の劣化、透過水の塩濃度の増大といっ
た運転操作上の問題点を抱えており、また、数十Kg/
1wr”という高圧と耐えるべ(装置の建設費も高価と
なる欠点があった。Known methods for desalinating seawater include heating and evaporating seawater under normal pressure or reduced pressure, and using a reverse osmosis membrane. However, the evaporation method consumes a large amount of energy to heat and evaporate seawater, and also requires a large cold source to condense the steam. Although the reverse osmosis membrane method does not require a heat source, it has operational problems such as a reduction in the amount of permeated water due to scale adhesion to the membrane surface, membrane deterioration, and an increase in the salt concentration of the permeated water. 10Kg/
It had to withstand a high pressure of 1 wr" (it had the disadvantage that the construction cost of the equipment was also high).
本発明の目的は上記従来技術の問題点を解決し。 The object of the present invention is to solve the above-mentioned problems of the prior art.
エネルギーの消費量が少な(、かつ、運転操作上の問題
点も少ない海水の淡水化装置を提供することにある。An object of the present invention is to provide a seawater desalination device that consumes less energy (and has fewer operational problems).
本発明は、海水の供給口および排出口を備えるとともに
、海水面によって気相部と液相部に区画される蒸発器と
、海水の塩濃度より高濃度に調合した塩溶液を収容し、
塩溶液の液面によって区画された気相部と液相部のうち
、気相部が前記蒸発器の気相部と連通ずるようにされた
吸収器と、この吸収器の塩溶液を受け入れ、塩溶液中の
水分の一部を真空蒸発させるとともに残りの塩溶液を前
記吸収器に戻すようにされた再生器と、この再生器で真
空蒸発させた蒸気を前記蒸発器からの海水によって冷却
し、凝縮させる凝縮器とからなる。The present invention includes an evaporator that is equipped with a seawater supply port and a seawater discharge port, and is divided into a gas phase portion and a liquid phase portion by the seawater level, and houses a salt solution prepared at a concentration higher than that of seawater,
an absorber in which a gas phase part of a gas phase part and a liquid phase part divided by the liquid level of the salt solution communicates with the gas phase part of the evaporator; and receiving the salt solution in this absorber; A regenerator is configured to evaporate part of the water in the salt solution under vacuum and return the remaining salt solution to the absorber, and the steam evaporated under vacuum in the regenerator is cooled by seawater from the evaporator. , and a condenser for condensation.
第1図は本発明の原理図であって、蒸発器10には海水
が管路12かう供給され、海水面によって気相部14と
液相部16が区画される。吸収器20には海水の塩濃度
より高濃度に調合された塩溶液22が収容され、塩溶液
の液面によって、気相部24と液相部26が区画される
。気相部24と前記蒸発器10の気相部14とは連通管
18によって連通ずる。再生器30には前記吸収器20
からの塩溶液が管路28によって供給され、器内が真空
に維持されるとともに、塩溶液は管路32によって吸収
器20に戻される。凝縮器40は連通管34によって再
生器30と連通ずるとともに前記蒸発器10からの海水
が管路42によって導入され冷却コイル44を構成する
。また凝縮器40は淡水の排出管路46を備える。FIG. 1 is a diagram showing the principle of the present invention. Seawater is supplied to the evaporator 10 through a pipe 12, and a gas phase portion 14 and a liquid phase portion 16 are divided by the seawater level. The absorber 20 contains a salt solution 22 prepared to have a salt concentration higher than that of seawater, and a gas phase portion 24 and a liquid phase portion 26 are divided by the liquid level of the salt solution. The gas phase section 24 and the gas phase section 14 of the evaporator 10 communicate with each other through a communication pipe 18. The regenerator 30 includes the absorber 20
The salt solution from the absorber 20 is supplied by line 28 to maintain a vacuum inside the vessel, and the salt solution is returned to the absorber 20 by line 32. The condenser 40 communicates with the regenerator 30 through a communication pipe 34, and seawater from the evaporator 10 is introduced through a pipe 42 to form a cooling coil 44. The condenser 40 also includes a fresh water discharge line 46 .
管路12から蒸発器10に供給された海水は。 Seawater is supplied to the evaporator 10 from the pipe 12.
吸収器20に収容した高濃度塩溶液22との蒸気圧差に
基づき、海水中の水分の一部が蒸発し、濃縮するととも
に蒸発潜熱を奪われて冷却される。Based on the vapor pressure difference with the highly concentrated salt solution 22 accommodated in the absorber 20, a portion of the water in the seawater evaporates, condenses it, and is cooled by taking away the latent heat of vaporization.
蒸発器10で蒸発した水蒸気は連通管18を経て。The water vapor evaporated in the evaporator 10 passes through a communication pipe 18.
吸収器20内に流入し、塩溶液22に吸収される。It flows into the absorber 20 and is absorbed by the salt solution 22.
このため、塩溶液は希釈されるとともに、凝縮潜熱によ
って、温度が上昇する。管路28から再生器30に供給
された塩溶液は真空下で、液中の水分の一部が蒸発する
とともに、蒸発潜熱を奪われて冷却される。このため、
再生器30から吸収器20に戻る塩溶液は、一定の塩濃
度と温度を維持する。再生器30で蒸発した水蒸気は連
通管34を経て、凝縮器40に流入し、前記蒸発器10
で冷却された海水の冷却コイル44によって冷却され、
凝縮し、淡水が得られる。Therefore, the salt solution is diluted and its temperature increases due to latent heat of condensation. The salt solution supplied from the pipe line 28 to the regenerator 30 is cooled under vacuum, with some of the water in the solution evaporating and the latent heat of vaporization being removed. For this reason,
The salt solution returning from the regenerator 30 to the absorber 20 maintains a constant salt concentration and temperature. The water vapor evaporated in the regenerator 30 flows into the condenser 40 through the communication pipe 34, and then flows into the condenser 40.
is cooled by a cooling coil 44 of seawater cooled by
Condenses and produces fresh water.
本発明に係る装置の熱収支、物質収支を第2図にモデル
化して示す。第2図は装置からの放熱熱量、液体を送給
するための機械損失を無視したものであり、各機器を結
ぶ管路に引出し線を用いて示した上段が物量を、下段が
熱量を示す。熱量は常温を基準にして示した。第2図か
ら明らかなように、蒸発器10に供給した物量Mの海水
を最終的に物量mの淡水と、物量M −mの濃縮海水に
分離できる。この間、各機器で°はそれぞれ潜熱もしく
は顕熱として+Q、−Qの熱量のやりとりを行い、原理
的には外部からの温熱源、冷熱源を必要としない。なお
9図中、吸収器20と再生器30を往復するRは塩溶液
の循環量であり、設計的な条件によって定める。The heat balance and material balance of the device according to the present invention are modeled and shown in FIG. Figure 2 ignores the amount of heat dissipated from the equipment and the mechanical loss due to feeding the liquid, and the upper row shows the amount of material and the lower row shows the amount of heat using lead lines for the pipes connecting each device. . The amount of heat is shown based on room temperature. As is clear from FIG. 2, the quantity M of seawater supplied to the evaporator 10 can be finally separated into the quantity m of fresh water and the quantity M - m of concentrated seawater. During this time, each device exchanges heat amounts of +Q and -Q as latent heat or sensible heat, respectively, and in principle no external heat source or cold source is required. In Figure 9, R is the amount of salt solution circulated back and forth between the absorber 20 and the regenerator 30, which is determined based on design conditions.
第3図に本発明を実施するだめの装置系続図の例を示す
。図中、第1図と同一の符号を付した部分は第1図で説
明したと同様の意味を持つ構成要素を示す。蒸発器10
には海水が管路12から連続的に噴霧される。噴霧によ
って、海水の蒸発面積が増大するので、蒸発器10にお
ける蒸発が効率的に行われる。この蒸発器10で水分を
蒸発し。FIG. 3 shows an example of a system diagram for implementing the present invention. In the figure, parts given the same reference numerals as in FIG. 1 indicate constituent elements having the same meaning as explained in FIG. 1. Evaporator 10
Seawater is continuously sprayed from the pipe 12. Since the evaporation area of seawater increases by the spraying, evaporation in the evaporator 10 is performed efficiently. This evaporator 10 evaporates water.
濃縮された海水は、管路13から連続的に装置外へ排出
される。濃縮された海水の排出量は9例えば図示しない
液面計の信号に基づき、液相部16の水位が一定となる
ように制御する。蒸発器10で蒸発した蒸気は連通管1
8から吸収器20の気相部24へ流入し、高濃度塩溶液
22によって吸収される。高濃度塩溶液22としては9
例えば食塩濃度20%の食塩水を用いる。食塩水の替え
て吸収式冷凍装置で常用されている臭化リチウム溶液な
どを用いてもよい。蒸気を吸収して希釈された塩溶液は
、ポンプ27によって、管路28から再生器30に噴霧
される。水分の一部が蒸発して濃縮されたのち、ポンプ
31によって、管路32から吸収器20に再び噴霧され
る。このように塩溶液が各機器で噴霧化して供給される
ので、吸収速度および再生速度が大きくなり、装置の効
率化を図ることができる。吸収器20と再生器30を循
環する塩溶液の流量は、吸収しまたは蒸発する水分量に
比べて、十分に大きいので、往路および復路における塩
溶液の濃度および温度は大差ない。Concentrated seawater is continuously discharged from the apparatus through the pipe 13. The amount of concentrated seawater discharged is controlled based on, for example, a signal from a liquid level gauge (not shown) so that the water level in the liquid phase portion 16 is constant. The steam evaporated in the evaporator 10 is transferred to the communication pipe 1
8 into the gas phase section 24 of the absorber 20 and is absorbed by the highly concentrated salt solution 22. 9 as high concentration salt solution 22
For example, a saline solution with a salt concentration of 20% is used. Instead of saline, a lithium bromide solution, which is commonly used in absorption refrigeration equipment, may be used. The salt solution diluted by absorption of vapor is sprayed by pump 27 from line 28 to regenerator 30 . After some of the water is evaporated and concentrated, it is sprayed again into the absorber 20 from the line 32 by the pump 31. Since the salt solution is atomized and supplied to each device in this way, the absorption rate and regeneration rate are increased, and the efficiency of the device can be improved. Since the flow rate of the salt solution circulating through the absorber 20 and the regenerator 30 is sufficiently large compared to the amount of water absorbed or evaporated, the concentration and temperature of the salt solution on the outbound and return passes are not significantly different.
再生器30において、塩溶液が若干濃縮され、温度が僅
少低下する。吸収器20においては、逆に塩溶液が若干
希釈され、温度が僅少上昇する。このため、塩溶液は上
記の変化を繰り返しながら。In the regenerator 30, the salt solution is slightly concentrated and the temperature is slightly reduced. In the absorber 20, on the contrary, the salt solution is slightly diluted and the temperature rises slightly. For this reason, the salt solution repeats the above changes.
吸収器、再生器において常時、一定の状態に維持される
。再生器30は常温において、噴霧した塩溶液中の水分
が効率よく蒸発し得る程度の真空に維持される。再生器
30で蒸発した蒸気は凝縮器40に流入し、ここで冷却
され、凝縮し淡水となる。凝縮器40の冷却コイル44
に流通させる冷却流体としては、前記蒸発器10で、水
分の蒸発によって冷却した海水を用いる。凝縮器40に
おける熱交換を効率よく行うためには、流入する蒸気の
温度と、冷熱源である前記海水の温度との差が大きいほ
どよい。したがって、前記蒸発器10かもの海水を、ま
ず、ポンプ47によって、冷却塔48に送り、ここで、
再冷却した海水をポンプ49によって、管路42かも冷
却コイル44に送る。冷却コイル44で蒸気と間接的に
熱交換した海水は、管路50を経て、蒸発器10に戻す
。It is always maintained in a constant state in the absorber and regenerator. The regenerator 30 is maintained at room temperature under a vacuum such that water in the sprayed salt solution can efficiently evaporate. The steam evaporated in the regenerator 30 flows into the condenser 40, where it is cooled and condensed into fresh water. Cooling coil 44 of condenser 40
Seawater cooled by evaporation of moisture in the evaporator 10 is used as the cooling fluid. In order to efficiently exchange heat in the condenser 40, the larger the difference between the temperature of the inflowing steam and the temperature of the seawater, which is a source of cold heat, the better. Therefore, the seawater from the evaporator 10 is first sent to the cooling tower 48 by the pump 47, where it is
The recooled seawater is sent to the cooling coil 44 via the pipe 42 by the pump 49. The seawater that has indirectly exchanged heat with the steam in the cooling coil 44 is returned to the evaporator 10 via a pipe 50.
なお、凝縮器40には真空ポンプ51を付設する。この
真空ポンプ51は運転初期時に、再生器30および凝縮
器40内を所望の真空度にするためのものであり、装置
稼動後は弁52を閉止して停止する。装置稼動時におい
ては、再生器30で蒸発した蒸気が凝縮器40で順次凝
縮するので。Note that a vacuum pump 51 is attached to the condenser 40. This vacuum pump 51 is used to create a desired degree of vacuum in the regenerator 30 and condenser 40 at the beginning of operation, and after the device is started, the valve 52 is closed to stop the operation. When the device is in operation, the steam evaporated in the regenerator 30 is sequentially condensed in the condenser 40.
再生器30内の真空度を所望の値に維持できる。The degree of vacuum within the regenerator 30 can be maintained at a desired value.
海水中の溶存酸素等に起因して、再生器30内の真空度
が低下する場合があるので、この時は、真空ポンプ51
を間げつ的に稼動する。再生器30または凝縮器40に
真空計を配備し、この真空計の信号によって、真空ポン
プ51の稼動を自動制御するようにしてもよい。凝縮器
40で得た淡水は、管路46に続(水頭タンク53を経
て、管路54から外部へ取り出す。なお前記真空ポンプ
51の吸引配管を蒸発器10または吸収器20の気相部
に接続し、装置全体を真空系で運転するようにしてもよ
い。すな、わち、真空ポンプ51と吸収器20を管路5
5で接続し、弁56を必要に応じて開とすることによっ
て、蒸発器10と吸収器20の気相部を所望の真空度に
保つ。気相部を真空とすることによって、蒸発器10の
蒸発作用。The degree of vacuum inside the regenerator 30 may decrease due to dissolved oxygen in seawater, etc., so in this case, the vacuum pump 51
operate intermittently. A vacuum gauge may be provided in the regenerator 30 or the condenser 40, and the operation of the vacuum pump 51 may be automatically controlled based on a signal from the vacuum gauge. The fresh water obtained in the condenser 40 is taken out to the outside from a pipe 54 via a pipe 46 (via a water head tank 53). The entire apparatus may be operated in a vacuum system by connecting the vacuum pump 51 and the absorber 20 to the pipe 5.
5 and by opening the valve 56 as necessary, the gas phase portions of the evaporator 10 and absorber 20 are maintained at a desired degree of vacuum. The evaporation action of the evaporator 10 is achieved by creating a vacuum in the gas phase.
吸収器20における吸収作用が活発となり、装置の運転
効率が向上する。蒸発器、吸収器の系統と。The absorption action in the absorber 20 becomes active, and the operating efficiency of the device improves. Evaporator and absorber system.
再生器、凝縮器の系統との間に、所定値以上の圧力差が
生じた場合に、自動的に検知し9両系統がほぼ同一の真
空度となるか、もしくは蒸発器、吸収器の系統がむしろ
真空度が高くなる程度に自動制御する機構を備えるとな
お好ましい。If a pressure difference of more than a predetermined value occurs between the regenerator and condenser systems, it is automatically detected and both systems have almost the same degree of vacuum, or the evaporator and absorber systems However, it is even more preferable to provide a mechanism for automatically controlling the degree of vacuum to a high degree.
前記実施例では、冷却コイル44の冷熱源として、冷却
塔48で再冷却した海水を用いたが、冷却塔は必須では
なく、省略してもよい。また、冷却塔に替えて、別の海
水の再冷却手段を設けてもよい。In the embodiment described above, seawater re-cooled in the cooling tower 48 was used as a cold source for the cooling coil 44, but the cooling tower is not essential and may be omitted. Further, instead of the cooling tower, another seawater recooling means may be provided.
また、第4図に示すように蒸発器10内の液相部に蒸気
コイル57を内設し、この蒸気コイル57に再生器30
で発生した蒸気を通し、凝縮させるようにしてもよい。Further, as shown in FIG. 4, a steam coil 57 is installed in the liquid phase part of the evaporator 10, and the regenerator
The steam generated may be passed through and condensed.
すなわち1本例の場合は。In other words, in the case of one example.
蒸気コイル57が凝縮器であり、蒸発器10と凝縮器が
一体化している。蒸発器10内の海水はポンプ58によ
って循環噴霧する。なお、蒸気コイル57の出口には、
必要に応じて、冷却器59を配備し、冷却水60と熱交
換することによって。The steam coil 57 is a condenser, and the evaporator 10 and the condenser are integrated. Seawater in the evaporator 10 is circulated and atomized by a pump 58. In addition, at the outlet of the steam coil 57,
By providing a cooler 59 and exchanging heat with cooling water 60 as necessary.
再生器30で発生した蒸気を完全に凝縮させる。The steam generated in the regenerator 30 is completely condensed.
以上、述べたように1本発明によれば装置を運転するエ
ネルギーは、海水や塩溶液を送給するポンプの動力と、
補助的な冷熱源および装置を真空に維持するため間けり
的に稼動する真空ポンプの動力だゆであり、少ないエネ
ルギーで海水から淡水を得ることができる。また、高温
や高圧下の運転がなく、海水は若干濃縮された状態で装
置外へ排出されるから、従来の海水の淡水化装置では頻
発した。スケールトラブルその他の運転操作上の問題点
も少ない。As described above, according to the present invention, the energy for operating the device is the power of the pump that supplies seawater or salt solution,
It is powered by a vacuum pump that operates intermittently to maintain an auxiliary cold source and equipment in a vacuum, making it possible to obtain fresh water from seawater with less energy. In addition, because there is no operation at high temperatures or high pressures, and the seawater is discharged from the equipment in a slightly concentrated state, this problem frequently occurs with conventional seawater desalination equipment. There are also fewer problems with scale and other operational problems.
第1図は本発明の原理を示す系統図、第2図は本発明の
物質収支、熱収支をモデル化して示す収支図、第3図は
本発明の実施例を示す装置系統図。
第4図は本発明の他の実施例を示す装置系統図である。
10・・・蒸発器 14・・・気相部16・・
・液相部 18・・・連通管20・・・吸収器
22・・・塩溶液24・・・気相部
26・・・液相部30・・・再生器 40・
・・凝縮器。
第1図
第3図FIG. 1 is a system diagram showing the principle of the present invention, FIG. 2 is a balance diagram showing a modeled material balance and heat balance of the invention, and FIG. 3 is a system diagram showing an embodiment of the invention. FIG. 4 is an apparatus system diagram showing another embodiment of the present invention. 10... Evaporator 14... Gas phase section 16...
・Liquid phase part 18...Communication pipe 20...Absorber 22...Salt solution 24...Gas phase part
26...Liquid phase section 30...Regenerator 40.
··Condenser. Figure 1 Figure 3
Claims (2)
面によつて気相部と液相部に区画される蒸発器と、海水
の塩分濃度より高濃度に調合した塩溶液を収容し、塩溶
液の液面によつて区画された液相部と気相部のうち、気
相部が前記蒸発器の気相部と連通するようにされた吸収
器と、この吸収器の塩溶液を受け入れ、塩溶液中の水分
の一部を真空蒸発させるとともに、残りの塩溶液を前記
吸収器に戻すようにされた再生器と、この再生器で真空
蒸発させた蒸気を前記蒸発器からの海水によつて冷却し
、凝縮させる凝縮器とからなる海水の淡水化装置。(1) An evaporator equipped with a seawater inlet and a discharge port and divided into a gas phase and a liquid phase by the seawater level, and a salt solution containing a salt solution with a concentration higher than that of seawater. An absorber in which a gas phase part of a liquid phase part and a gas phase part divided by the liquid level of the solution communicates with the gas phase part of the evaporator, and a salt solution in this absorber is received. , a regenerator configured to vacuum evaporate part of the water in the salt solution and return the remaining salt solution to the absorber; A seawater desalination device consisting of a condenser that cools and condenses seawater.
器とを一体化したことを特徴とする特許請求の範囲第1
項に記載の海水の淡水化装置。(2) Claim 1, characterized in that the condenser is installed inside the evaporator, and the evaporator and condenser are integrated.
The seawater desalination equipment described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60111656A JPS61271081A (en) | 1985-05-25 | 1985-05-25 | Seawater desalination equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60111656A JPS61271081A (en) | 1985-05-25 | 1985-05-25 | Seawater desalination equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61271081A true JPS61271081A (en) | 1986-12-01 |
Family
ID=14566854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60111656A Pending JPS61271081A (en) | 1985-05-25 | 1985-05-25 | Seawater desalination equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61271081A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005068368A1 (en) * | 2004-01-15 | 2005-07-28 | Mori, Tadayasu | Desalination water conversion facility utilizing temperature difference and method of creating low-vacuum condition in the facility |
WO2010016173A1 (en) * | 2008-08-08 | 2010-02-11 | 株式会社日立製作所 | Desalination device and system for re-utilizing oil-contaminated water |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5730941A (en) * | 1980-08-01 | 1982-02-19 | Fuji Electric Co Ltd | Detector for oxygen concentration |
-
1985
- 1985-05-25 JP JP60111656A patent/JPS61271081A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5730941A (en) * | 1980-08-01 | 1982-02-19 | Fuji Electric Co Ltd | Detector for oxygen concentration |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005068368A1 (en) * | 2004-01-15 | 2005-07-28 | Mori, Tadayasu | Desalination water conversion facility utilizing temperature difference and method of creating low-vacuum condition in the facility |
WO2010016173A1 (en) * | 2008-08-08 | 2010-02-11 | 株式会社日立製作所 | Desalination device and system for re-utilizing oil-contaminated water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4209364A (en) | Process of water recovery and removal | |
AU618509B2 (en) | Absorption refrigeration method and apparatus | |
EP3553452B1 (en) | Hygroscopic cooling tower for waste water disposal | |
US3404536A (en) | In situ flash freezing and washing of concentrated solutions | |
US3385074A (en) | Freeze crystallization, washing and remelting on a common rotary surface | |
JPS61271081A (en) | Seawater desalination equipment | |
EP0162095B1 (en) | Method and equipment for utilization of the freezing heat of water as a source of heat of a heat pump | |
JPH04250880A (en) | Method for circulating cooling water | |
JPS5886357A (en) | Air-conditioning method utilizing solar heat and its device | |
JP2000325945A (en) | Device for desalting salt water | |
US4294076A (en) | Absorption refrigerating system | |
JP3712036B2 (en) | Salt water desalination equipment | |
CN105347413B (en) | A kind of board-like hydrophobic polymer economic benefits and social benefits MVR systems and Waste water concentrating method | |
KR20140079372A (en) | Absorption refrigeration machine | |
CN205381975U (en) | Board -like hydrophobic polymer economic benefits and social benefits MVR system | |
JPH02214586A (en) | Seawater desalting equipment | |
JP3715157B2 (en) | 2-stage double-effect absorption refrigerator | |
JPH02197774A (en) | Cooling device | |
US769110A (en) | Refrigerating apparatus. | |
SU1330419A1 (en) | Absorption solar refrigerating plant | |
JP2000325942A (en) | Device for desalting salt water | |
JPH0369592B2 (en) | ||
Cadwallader | Domestic desalination units | |
JPH0353681Y2 (en) | ||
RU1815479C (en) | System of water preparation and make-up of steam generator |