[go: up one dir, main page]

JPS61270653A - Ion selective field effect transistor electrode - Google Patents

Ion selective field effect transistor electrode

Info

Publication number
JPS61270653A
JPS61270653A JP60111875A JP11187585A JPS61270653A JP S61270653 A JPS61270653 A JP S61270653A JP 60111875 A JP60111875 A JP 60111875A JP 11187585 A JP11187585 A JP 11187585A JP S61270653 A JPS61270653 A JP S61270653A
Authority
JP
Japan
Prior art keywords
hydrogen ion
effect transistor
isfet
field effect
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60111875A
Other languages
Japanese (ja)
Inventor
Noboru Koyama
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60111875A priority Critical patent/JPS61270653A/en
Publication of JPS61270653A publication Critical patent/JPS61270653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make possible stable measurement of pH at a high speed by using an ion selective field effect transistor (ISFET) formed by depositing a hydrogen ion sensitive film consisting of an org. high-polymer film contg. a hydrogen ion carrier material consisting of the compd. expressed by the specific formula on the gate insulating film of a MOSFET. CONSTITUTION:The org. high-polymer film contg. the hydrogen ion carrier material consisting of the compd. expressed by the formula is used as the hydrogen ion sensitive film of the ISFET. There is, for example, a polyvinyl chloride resin as the org. high-polymer compd. and the resin from which a plasticizer is hardly elutable is preferred. The hydrogen ion sensitive film is preferably incorporated therein with an electrolyte salt, for which, for example, a hexafluorophosphate salt is used. The ISFET is a kind of a chemical semiconductor device and since the MOSFET and the ion selective electrodes are combined and integrated, the miniaturization is made possible and the ISFET has the excellent characteristics such as high input impedance and low noise intrinsic to the MOSFET. The stable measurement of pH at the high speed is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオン選択性霜界幼果トランジスター(υ下、
l5FETという)電極、す1に詳細には、水累イオン
感応膜としてニュートラルキャリヤー膜を用いたISF
”ET電極に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ion-selective frost field juvenile transistor (υ lower,
In detail, ISF using a neutral carrier film as a water accumulated ion sensitive film.
``Regarding ET electrodes.

〔従来の技術〕[Conventional technology]

最近、化学センサーと半導体デバイスを集積化した化学
的半導体デ、2イスが種々開発されている。
Recently, various chemical semiconductor devices that integrate chemical sensors and semiconductor devices have been developed.

而して、l5FETは斯かる化学的半導体デバイスの一
種であって、MO81[界効果トランジスター(MOS
FET )とイオン選択性電極ヲ組み合せて集積化した
ものであり、従来のイオンセンサーとは全く異なる新し
いタイゾのセンサーである。このl5FETは、極めて
小型化することができること、並びにMO8FET本来
の高入力インピーダンス、低ノイズ等の優れた特性分有
すること、更に応答時間が短かいこと等、潰れたセンザ
ー特性を有するため注目されている。
Therefore, 15FET is a type of such chemical semiconductor device, and is MO81 [field effect transistor (MOS)].
It is a new Taizo sensor that is completely different from conventional ion sensors. This 15FET has attracted attention because it can be extremely miniaturized, has excellent characteristics such as high input impedance and low noise inherent to MO8FET, and has excellent sensor characteristics such as short response time. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然しなから、このよりなl5FETにおいて、pH測定
用のものとE7ては、 備かに水素イオン感応膜として
5iOs、81sN4% Alzos、T1110M 
 ’に:用いたものが知られているに過ぎない。しかも
、水素イオン感応膜としてShamを使用した吃のは、
一般に動作が不安定で実用性に乏しいものであり、 良
好なpH応答を示し、かつアルカリ金楓イオン等の他イ
オンの妨害が少ない等、 p11測定用のl5FETの
水素イオン感応膜として好適なものは、AIIzOsや
’p a20S  の如き化学的に安定な化合物の膜に
限られていた。
However, in this standard 15FET, the one for pH measurement and the E7 are made of 5iOs, 81sN4% Alzos, T1110M as a hydrogen ion sensitive membrane.
'to: Only what is used is known. Moreover, the stuttering using Sham as a hydrogen ion sensitive membrane,
In general, the operation is unstable and impractical, but it is suitable as a hydrogen ion sensitive membrane for l5FET for p11 measurement because it shows good pH response and has little interference from other ions such as alkali gold maple ions. has been limited to films of chemically stable compounds such as AIIzOs and 'p a20S.

〔問題点を解決するための手段〕[Means for solving problems]

斯かる夾状において、本発明者はpH測定用のTSFE
Tの水素イオン感応膜として好適な化合物を絞量探索1
〜た結果、水素イオン感応膜と【7て水素イオンキャリ
ヤー物質を含有する有機高分子膜を使用すれば、優れ次
センサー特性を有するl5FET電極が得られることを
見出し、本発明を完成した。
In such a situation, the present inventor has developed a TSFE for pH measurement.
Narrowing down the search for suitable compounds as hydrogen ion sensitive membranes for T
As a result, the present inventors have discovered that by using a hydrogen ion sensitive membrane and an organic polymer membrane containing a hydrogen ion carrier substance, a 15 FET electrode with excellent sensor properties can be obtained, and the present invention has been completed.

すなわち本発明は、MOS FETゲート絶縁膜上に水
素イオンキャリヤー物質全含有する有機高分子膜よりな
る水素イオン感応膜を被着したイオン選択性電界効果ト
ランジスター電極(i7提供するものである。
That is, the present invention provides an ion-selective field effect transistor electrode (i7) in which a hydrogen ion sensitive film made of an organic polymer film containing a hydrogen ion carrier substance is deposited on a MOS FET gate insulating film.

本発明において使用きれるMOSFETとしては、公知
のl5FETに使用されるものであればいずれを4使用
することができ〔松尾、江刺[電気化学と工業物理化学
J50.64(1982)]、例えばp型ウェハー上に
作られた5i−sio、ゲート絶縁膜構造のものが挙け
られる。水素イオン感応膜は、ゲート絶縁膜に面接被着
することもできるが、チャンネル金測定用溶液の浸入か
ら保護するために例えばSiO!ゲート絶縁膜をSi、
N4 膜で榎ってから被着するのが好ましい。
As the MOSFET that can be used in the present invention, any MOSFET that can be used in the known 15FET can be used [Matsuo, Esashi [Electrochemistry and Industrial Physical Chemistry J50.64 (1982)], for example, p-type Examples include 5i-sio, which is made on a wafer, and a gate insulating film structure. The hydrogen ion sensitive membrane can be surface deposited on the gate insulating membrane, but to protect the channel from infiltration of the gold measurement solution, for example SiO! The gate insulating film is Si,
It is preferable to cover it with an N4 film before depositing it.

水素イオン感応膜としては、水素イオンキャリヤー奮含
有する有機高分子膜が使用される。水素イオンキャリヤ
ー物質としては、例えばアミン類のものが好適に使用さ
れ、例えば次式 (式中、R1、R1およびR1は同一もしくは異なって
アルキル基を示し、そのうち少ηくとも2つは炭素数8
〜18のアルキル基好せしくは炭素数10〜16のアル
キル基を示す)、または式 (式中、 R4は炭素数8〜18のアルキル基、好まし
くは炭素数10〜16のアルキル基)で表わされるもの
が挙げられる。
As the hydrogen ion sensitive membrane, an organic polymer membrane containing hydrogen ion carriers is used. As the hydrogen ion carrier substance, for example, amines are suitably used. 8
~18 alkyl group, preferably an alkyl group having 10 to 16 carbon atoms), or (wherein R4 is an alkyl group having 8 to 18 carbon atoms, preferably an alkyl group having 10 to 16 carbon atoms) Examples include things that are expressed.

有機高分子化合物としては、例えば塩化ビニル樹脂、破
りウレタン樹脂、シリコーン樹脂、感光樹脂(フォトレ
ゾスト)尋が挙けられ、口■塑剤が溶出しにくいものが
好適である。
Examples of organic polymer compounds include vinyl chloride resins, broken urethane resins, silicone resins, and photoresist resins, and those from which plasticizers do not easily elute are preferred.

好捷しい可塑剤としCは、例えばセ、Sシン酸ゾオクチ
ルエステル、アゾピン酸ゾオクチル、リン酸エステル等
が挙けられる。更に、該水素イオン感応膜には電解質塩
を含有せしめるのが好ましく、例えばカリウムテトラキ
ス(1)−クロロフェニル)ボレート、テトラアルキル
アンモニウムのテトラフロロボレート塩やヘキサフロロ
ホスフェート塩等が使゛用される。
Preferred plasticizers C include, for example, zooctyl se, s-sinate, zooctyl azopic acid, and phosphoric acid esters. Furthermore, it is preferable that the hydrogen ion sensitive membrane contains an electrolyte salt, such as potassium tetrakis(1)-chlorophenyl)borate, tetrafluoroborate salt of tetraalkylammonium, hexafluorophosphate salt, and the like.

このような水素感応膜をゲート絶縁膜上に被着するには
、水素イオン感応膜組成物を適当な溶剤、例えばテトラ
ヒドロフラン、シクロヘキサノン、トルエン、ジメチル
ホルムアミド等に溶解したものにA40SFETを浸漬
後乾燥する方法、あるいは該溶液をゲート絶縁膜上に塗
布後乾燥する方法等を用いることができる。松看する水
素イオン感応膜の膜厚は、1μ尻〜10allとするの
が好ましい。1 μだより小さい場合には、l5FET
のpH応答が不安定になり、また10uより大きい場合
にはpH応答を示さなくなり好ましくない。
To deposit such a hydrogen-sensitive film on the gate insulating film, the A40SFET is immersed in a hydrogen ion-sensitive film composition dissolved in a suitable solvent such as tetrahydrofuran, cyclohexanone, toluene, dimethylformamide, etc., and then dried. method, or a method in which the solution is applied onto the gate insulating film and then dried. The thickness of the hydrogen ion sensitive membrane is preferably about 1 μm to 10 μm. If it is smaller than 1μ, then l5FET
The pH response becomes unstable, and if it is larger than 10 u, no pH response is shown, which is not preferable.

紙上の如くして得られる本発明のI S FETにより
、測定用溶液のpf(を測定するには、第3図に示すよ
うに、檜21中に測定用浴液29金入れ、この溶液に本
発明のl5FETの水素イオン感応膜22および参照i
!極26としての銀−塩化銀電極、カロメルill他尋
を浸漬する。そして参照11極26に対するI 5FE
Tのソースホロワ回路23の出力電圧V outを電位
差tiで測定する。このとき測定用溶液29全攪拌機2
8で攪拌するとよい。そして、予め作成しておいたVo
utとpHの相関図から測定用溶液のpHを読み取る。
To measure the pf of a measuring solution using the I S FET of the present invention obtained as shown in the paper, as shown in FIG. Hydrogen ion sensitive membrane 22 of l5FET of the present invention and reference i
! A silver-silver chloride electrode as a pole 26, a calomel plate, etc. are immersed. and I 5FE for reference 11 pole 26
The output voltage V out of the source follower circuit 23 of T is measured by the potential difference ti. At this time, measurement solution 29 total stirrer 2
It is recommended to stir at 8. Then, the Vo created in advance
Read the pH of the measurement solution from the correlation diagram between ut and pH.

〔発明の効果〕〔Effect of the invention〕

本発明のl5FKT電極は、紙上の如く、水素イオン感
応膜としてニュートラルキャリヤー物質を含有する有機
高分子膜を使用したものであって、*txos%Ta1
O@の如き化学的に安定な膜を使用した従来品と同等の
センサー特性を有し、高速かつ安定なpH測定を可能に
するものである。
As described in the paper, the 15FKT electrode of the present invention uses an organic polymer membrane containing a neutral carrier substance as a hydrogen ion-sensitive membrane, and has *txos%Ta1
It has the same sensor characteristics as conventional products using chemically stable membranes such as O@, and enables high-speed and stable pH measurement.

〔実施例〕〔Example〕

次に実施例を挙けて本発明を説明する。 Next, the present invention will be explained with reference to Examples.

実施例1 次の方法によりMOSFETのゲート絶縁膜上に7に素
イオン感応膜を被着し、l5FET!極を作製した。そ
の模式図を第1図に示す。
Example 1 An elementary ion sensitive film was deposited on the gate insulating film of a MOSFET by the following method, and an 15FET! A pole was made. A schematic diagram thereof is shown in FIG.

(1)MOSFET 水素イオン感応膜全被着するためのMOSFETとして
は、針状構造で、p形つェハー上に作られた83−8i
llゲート絶縁膜構造を有するものを使用した。
(1) MOSFET The MOSFET for fully depositing the hydrogen ion sensitive film has a needle-like structure and is made on a p-type wafer.
ll gate insulating film structure was used.

(i)  水素イオン感応膜の被着 MO8FETのStO!ゲート絶f#、膜上にトリーn
−ドデシルアミンを含有する下記組成のニュートラルキ
ャリヤー膜を被着した。なお、) IJ −n−ドデシ
ルアミン(東京化成製)は、5111)(f  減圧下
でオイルパスにより220〜230℃に保ち2回蒸留し
たものを使用した。
(i) StO of MO8FET with hydrogen ion sensitive membrane deposited! gate off f#, tree n on the membrane
A neutral carrier film containing dodecylamine and having the following composition was deposited. The IJ-n-dodecylamine (manufactured by Tokyo Kasei) was distilled twice under reduced pressure at 220 to 230° C. using an oil path.

ジオクチルセバケート(東京化成!り及びカリウムテト
ラキス−p−クロロフェニルlレート(K−TCPB、
和光紬薬jM)は、市販品をそのまま使用し7た。破り
ビニルクロライド(PVC)は平均重合分子数1100
のものをテトラヒドロフラン(T HF )に溶解させ
、メタノール中に滴下し、再沈澱させたものを乾燥して
から使用した。
Dioctyl sebacate (Tokyo Kasei!) and potassium tetrakis-p-chlorophenyl late (K-TCPB,
Wako Tsumugi jM) was used as a commercially available product. Broken vinyl chloride (PVC) has an average number of polymer molecules of 1100.
The solution was dissolved in tetrahydrofuran (THF), dropped into methanol, reprecipitated, and dried before use.

下記組成のニュートラルキャリヤー膜は、この組成物の
T HF浴液をS f O!ゲート絶縁膜にのせた後、
風乾によって溶媒を蒸発させることにより形成させた。
A neutral carrier film having the following composition can be prepared by using a THF bath solution of this composition as S f O! After placing it on the gate insulating film,
It was formed by evaporating the solvent by air drying.

斯くして水素イオン感応膜の厚さが0.251131.
0.45u、 1.0鶴のl5FETを作製した。なお
、膜厚はノギスで針側[7た。
Thus, the thickness of the hydrogen ion sensitive membrane is 0.251131.
A 15FET of 0.45u and 1.0u was fabricated. The film thickness was measured on the needle side [7] using a vernier caliper.

ニュートラルキャリヤー膜組成ニ トリーn−ドデシルアミン  2.3重量優ゾオクチル
セバケ〜) (可塑剤)  64.8に−TCPB  
         O,5?リビニルクロライド(PV
C)  32.4実施例2 実施例1で得たl5FETのセンザー特性を第2図に示
すセルを構成して調べた。水素イオン感応膜の界面電位
の変化は、セルにより利得OdBのソースホロワ回路を
組み、ソース電圧(Vout )を測定することにより
行なっ次。voutはデシタルマルチメーターTR68
41(タケダ埋研製)により測定した。
Neutral carrier film composition: Nitri-n-dodecylamine (2.3% by weight) (Plasticizer) 64.8-TCPB
O, 5? ribinyl chloride (PV)
C) 32.4 Example 2 The sensor characteristics of the 15FET obtained in Example 1 were investigated by constructing a cell shown in FIG. 2. Changes in the interfacial potential of the hydrogen ion sensitive membrane were performed by constructing a source follower circuit with a gain of OdB using cells and measuring the source voltage (Vout). vout is a digital multimeter TR68
41 (manufactured by Takeda Uken).

なお、参照′#L極としては、塩化ナトリウム飽和カロ
メル電極(SSCE)を用いた。
Note that a sodium chloride saturated calomel electrode (SSCE) was used as the reference '#L electrode.

また、pH測定用溶液は、 デシタルpHミリゼルトメ
ーター(オリオン・リサーチ社製801型)、ガラス電
極及び5SCEを用いて1M塩化ナトリウム水浴液中に
水酸化ナトリウム若しくは塩酸溶液を滴下して任意のp
H値に詞製したものを使用した。測定は、28℃におい
て、測定用溶液をマグネチツクスターラーで攪拌しなが
ら空気飽和状態で光強度一定のもとで行なった。
In addition, the solution for pH measurement can be obtained by dropping sodium hydroxide or hydrochloric acid solution into a 1M sodium chloride water bath using a Digital pH Milliseltmeter (Model 801 manufactured by Orion Research), a glass electrode, and a 5SCE. p
The H value was used. The measurement was carried out at 28° C. while stirring the measurement solution with a magnetic stirrer, in an air-saturated state, and under constant light intensity.

第3図はニュートラルキャリヤー膜を被着する前のMO
SFET 、すなわち5IOsゲート絶縁膜が直接測定
用溶液に触れる状態で測定し7tVoutのpHに対す
るプロットである。第3図から明らかな如(、Vout
はpHに対し直線関係がなく、また動作も不安定でセン
サーとして使用しつるものではなかった。
Figure 3 shows the MO before applying the neutral carrier film.
This is a plot of 7tVout versus pH measured with the SFET, ie, 5IOs gate insulating film, directly in contact with the measurement solution. As is clear from Figure 3 (, Vout
There was no linear relationship with pH, and the operation was unstable, making it difficult to use as a sensor.

一方、第4図に示す如く、本発明のニュートラルキャリ
ヤー膜を被層(〜たISF’ET(膜厚0.45!II
)では、pHにXjするVoutのプロットの直線性は
極めて良好であり、しかも再埃性のよい↓rり答が得ら
れた。
On the other hand, as shown in FIG.
), the linearity of the plot of Vout vs.

舊た、この膜厚でのl5FETの1r、、答速度及びV
outの軒時安定性を調べた結果の一例を第5図にボす
。これはオープン状幅からIMNaCI −NaOH水
浴液(pH9,18)に移したときの応答である。この
図に水式れるように95%応答時間け041秒以下であ
り極めて短く、また経時変化もほとんどみられなかつ友
(第6図)。
1r, response speed and V of 15FET with this film thickness
Figure 5 shows an example of the results of investigating the eave stability of out. This is the response when transferred from the open width to the IMNaCI-NaOH water bath solution (pH 9, 18). As shown in this figure, the 95% response time is extremely short, less than 0.41 seconds, and there is almost no change over time (Figure 6).

なお、ニュートラルキャリヤー膜の厚さが151uOも
のでは、VoutのpH依存性は全く見られなかった。
In addition, when the thickness of the neutral carrier film was 151 μO, no pH dependence of Vout was observed at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実り例1で作表されたISF”ET電極の概略
図、第2図は本発明1sFET14i、極によるpH測
定方法を示す概略図、第3図はニュートラルギヤリヤー
膜を被着しないMOS FE T電極を用いてpH測定
を行なったときのソース屯田のpHに対する10ツトヲ
・示す図面、第4図は、実施例1で作製妊れたl5IT
’屯(傘(膜J’Jt 0.45111 ) k用イテ
pH(t1g定を行ナッたときのソース′亀圧のpHに
対するゾロツト全示す図面、第5図及び第6図は同l5
FET亜極をオーシン状幅からpH9,18の溶液に浸
漬したときの電位応答ケ示す図面である。 以上 第3図 3    4     b    b     /  
  d     !    IIJH 第4図
Figure 1 is a schematic diagram of the ISF"ET electrode plotted in Example 1, Figure 2 is a schematic diagram of the 1sFET14i of the present invention, and a schematic diagram showing the pH measurement method using the electrode. Figure 3 is a diagram without a neutral gear film attached. Figure 4 shows the 10 points of the pH of the source when measuring the pH using a MOS FET T electrode.
'Tun (Umbrella (Membrane J'Jt 0.45111) Figure 5 and Figure 6 are the same 15
FIG. 2 is a drawing showing the potential response when the FET sub-electrode is immersed in a solution with pH 9.18 from an ossin-like width. Above is Figure 3 4 b b /
d! IIJH Figure 4

Claims (1)

【特許請求の範囲】 1、MOS電界効果トランジスターのゲート絶縁膜上に
水素イオンキャリヤー物質を含有する有機高分子膜より
なる水素イオン感応膜を被着したことを特徴とするイオ
ン選択性電界効果トランジスター電極。 2、水素イオンキャリヤー物質が次式 ▲数式、化学式、表等があります▼ (式中、R^1、R^2およびR^3は同一もしくは異
なつてアルキル基を示し、そのうち少なくとも2つは炭
素数8〜18のアルキル基を示す)で表わされる化合物
である特許請求の範囲第1項記載のイオン選択性電界効
果トランジスター電極。 3、水素イオン感応膜が膜厚1μm〜10mmのもので
ある特許請求の範囲第1項または第2項記載のイオン選
択性電界効果トランジスター電極。
[Claims] 1. An ion-selective field effect transistor characterized in that a hydrogen ion sensitive film made of an organic polymer film containing a hydrogen ion carrier substance is deposited on a gate insulating film of a MOS field effect transistor. electrode. 2. The hydrogen ion carrier substance has the following formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R^1, R^2 and R^3 are the same or different and represent an alkyl group, at least two of which are carbon The ion-selective field-effect transistor electrode according to claim 1, which is a compound represented by the following formula (representing an alkyl group of numbers 8 to 18). 3. The ion-selective field effect transistor electrode according to claim 1 or 2, wherein the hydrogen ion-sensitive membrane has a thickness of 1 μm to 10 mm.
JP60111875A 1985-05-24 1985-05-24 Ion selective field effect transistor electrode Pending JPS61270653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111875A JPS61270653A (en) 1985-05-24 1985-05-24 Ion selective field effect transistor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111875A JPS61270653A (en) 1985-05-24 1985-05-24 Ion selective field effect transistor electrode

Publications (1)

Publication Number Publication Date
JPS61270653A true JPS61270653A (en) 1986-11-29

Family

ID=14572344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111875A Pending JPS61270653A (en) 1985-05-24 1985-05-24 Ion selective field effect transistor electrode

Country Status (1)

Country Link
JP (1) JPS61270653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163531A (en) * 2011-02-09 2012-08-30 Yokogawa Electric Corp pH SENSOR AND pH MEASURING METHOD
US8809916B2 (en) 2011-02-09 2014-08-19 Yokogawa Electric Corporation pH sensor, pH measurement method, ion sensor, and ion concentration measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163531A (en) * 2011-02-09 2012-08-30 Yokogawa Electric Corp pH SENSOR AND pH MEASURING METHOD
US8809916B2 (en) 2011-02-09 2014-08-19 Yokogawa Electric Corporation pH sensor, pH measurement method, ion sensor, and ion concentration measurement method
US9267913B2 (en) 2011-02-09 2016-02-23 Yokogawa Electric Corporation PH sensor, pH measurement method, ion sensor, and ion concentration measurement method

Similar Documents

Publication Publication Date Title
EP0235470B1 (en) Ion-sensitive fet sensor
Sutter et al. A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit
US5804049A (en) Material for establishing solid state contact for ion selective electrodes
US8133750B2 (en) Method for forming extended gate field effect transistor (EGFET) based sensor and the sensor therefrom
Abramova et al. Solid contact ion sensor with conducting polymer layer copolymerized with the ion-selective membrane for determination of calcium in blood serum
Lim et al. Calix [2] furano [2] pyrrole and related compounds as the neutral carrier in silver ion-selective electrode
Song et al. All-solid-state carbonate-selective electrode based on a molecular tweezer-type neutral carrier with solvent-soluble conducting polymer solid contact
Zine et al. Potassium-ion selective solid contact microelectrode based on a novel 1, 3-(di-4-oxabutanol)-calix [4] arene-crown-5 neutral carrier
US5911862A (en) Material for establishing solid state contact for ion selective electrodes
Mourzina et al. K+-selective field-effect sensors as transducers for bioelectronic applications
US20050263410A1 (en) Ion-selective electrodes and method of fabricating sensing units thereof
Ma et al. A review of electrochemical electrodes and readout interface designs for biosensors
Saini et al. A novel potentiometric microsensor for real-time detection of Irgarol using the ion-pair complex [Irgarol-H]+[Co (C2B9H11) 2]−
US20070000778A1 (en) Multi-parameter sensor with readout circuit
KR20130057056A (en) Sensors for detecting ion concentration using cnt and methods manufacturing the same
JPS61270653A (en) Ion selective field effect transistor electrode
Cheng et al. Study on all-solid-state chloride sensor based on tin oxide/indium tin oxide glass
Li et al. Real-time and multiplexed detection of sodium and potassium ions using PEDOT: PSS OECT microarrays integrated with ion-selective membranes
Schwarz et al. All-solid-state screen-printed sensors for potentiometric calcium (II) determinations in environmental samples
Kolytcheva et al. Influence of the organic matrix on the properties of membrane coated ion sensor field-effect transistors
Mizutani et al. Development of amperometric ion sensor array for multi-ion detection
JPS61194343A (en) Ph sensor
Staes et al. Properties of a low band gap conducting polymer electrode used for amperometric detection in liquid chromatography
Norouzi et al. Determination of copper in black, red pepper and the waste water samples by a highly selective sensitive Cu (II) microelectrode based on a new hexadentates Schiff's base
Lee et al. All-solid-state sodium-selective electrodes based on room temperature vulcanizing-type silicone rubber matrix