[go: up one dir, main page]

JPS61269673A - Frequency control method of ringing choke converter - Google Patents

Frequency control method of ringing choke converter

Info

Publication number
JPS61269673A
JPS61269673A JP10908985A JP10908985A JPS61269673A JP S61269673 A JPS61269673 A JP S61269673A JP 10908985 A JP10908985 A JP 10908985A JP 10908985 A JP10908985 A JP 10908985A JP S61269673 A JPS61269673 A JP S61269673A
Authority
JP
Japan
Prior art keywords
frequency
rcc
control signal
circuit
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10908985A
Other languages
Japanese (ja)
Inventor
Seiichi Yasuzawa
安沢 精一
Shigeru Kitazawa
北沢 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nagano Nihon Musen KK
Original Assignee
Japan Radio Co Ltd
Nagano Nihon Musen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nagano Nihon Musen KK filed Critical Japan Radio Co Ltd
Priority to JP10908985A priority Critical patent/JPS61269673A/en
Publication of JPS61269673A publication Critical patent/JPS61269673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子機器の電源装置等に用いるリンギングチョ
ークコンバータの周波数制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a frequency control method for a ringing choke converter used in a power supply device of an electronic device or the like.

(従来の技術) 電子機器の電源装置等には定電圧で安定した直流電源を
要求されるが、一般には回路が簡単で、しかも安価に構
成できる自励発振方式のリンギングチョークコンバータ
(以下、RCCと略記する)が広く用いられている。
(Prior art) Power supplies for electronic devices require a constant voltage and stable DC power supply, but in general, a self-oscillation type ringing choke converter (hereinafter referred to as RCC), which has a simple circuit and can be constructed at low cost, is used. ) is widely used.

このRCCは、第1図に示すように、入力側に一次コイ
ルN1と制御コイルNcを備え、他方出力側に−又は二
辺上の二次コイルN2を備えるトランスTと、この−次
コイルN1及び制御コイルNcに接続したバイアス回路
2と、当該−次コイルN1の一端にコレクタを、また制
御コイルNcの一端にエミッタを夫々接続するとともに
、ヘースを上記回路2に接続した主スイッチングトラン
ジスタ3とを備えて構成する。そして、−次コイルN1
の他端と、前記エミッタを接続した制御コイルNcの一
端に直流入力を印加すれば、出力側には負荷の大きさ等
に対応して変化する周波数を有するパルス波出力を得る
とともに、この出力を整流平滑回路4を通すことにより
安定し、且つ変圧した直流電圧を得る。なお、このよう
な機能をもつ好適なRCCは例えば実開昭55−162
385号公報記載の従来回路等で公知である。
As shown in FIG. 1, this RCC includes a transformer T equipped with a primary coil N1 and a control coil Nc on the input side, and a secondary coil N2 on one or two sides on the other output side, and this secondary coil N1. and a bias circuit 2 connected to the control coil Nc, a main switching transistor 3 having a collector connected to one end of the secondary coil N1, an emitter connected to one end of the control coil Nc, and a heath connected to the circuit 2. and configure it. And -th coil N1
If a DC input is applied to one end of the control coil Nc connected to the other end and the emitter, a pulse wave output with a frequency that changes depending on the size of the load etc. is obtained on the output side, and this output By passing the voltage through the rectifying and smoothing circuit 4, a stabilized and transformed DC voltage is obtained. Incidentally, a suitable RCC having such a function is, for example, disclosed in Utility Model Application Publication No. 55-162.
The conventional circuit described in Japanese Patent No. 385 is well known.

(発明が解決しようとする問題点) しかし、上述した従来のRCCは自励発振方式のためパ
ルス波出力の周波数、つまり自動発振周波数は入力電圧
変動或いは負荷変動によって例えば数十KHz〜百数十
KHzの間で変化する。したがって、この種RCCでは
当該周波数を有するスイッチング雑音が発生(パルスの
立上り、立下り時に発生)し、現在各国のノイズ規格(
例えばFCC規格、VDE規格等)に対応して上記発振
周波数の雑音を除去するノイズフィルタを電源ラインに
挿入して雑音レベル低減対策を図っている。
(Problems to be Solved by the Invention) However, since the above-mentioned conventional RCC uses a self-oscillation method, the frequency of the pulse wave output, that is, the automatic oscillation frequency, varies from tens of KHz to hundreds of kilohertz depending on input voltage fluctuations or load fluctuations. Varies between KHz. Therefore, in this type of RCC, switching noise having the relevant frequency occurs (occurs at the rise and fall of the pulse), and currently the noise standards of each country (
For example, in compliance with the FCC standard, VDE standard, etc., a noise filter that removes noise at the above-mentioned oscillation frequency is inserted into the power supply line to reduce the noise level.

ところが、発振周波数の変化が小さい場合は問題はない
が、周波数が大きく変化し、ノイズフィルタのカットオ
フ周波数を外れるとノイズフィルタが機能しなくなり、
雑音を除去できなくなる問題を生ずる。
However, if the change in the oscillation frequency is small, there is no problem, but if the frequency changes significantly and falls outside the cutoff frequency of the noise filter, the noise filter will no longer function.
A problem arises in that noise cannot be removed.

また、CRTディスプレイ装置等に内蔵する電源装置に
用いるRCCでは発振周波数の変動によって、他の回路
に用いる信号の周波数と干渉し、画面に揺れを生じたり
、画面にしま模様が表れる等、画質を大きく劣化させて
しまう弊害を招く。
In addition, in RCCs used in power supplies built into CRT display devices, etc., fluctuations in oscillation frequency interfere with the frequency of signals used in other circuits, causing screen shake, striped patterns, and other problems that affect image quality. This can lead to harmful effects that can cause significant deterioration.

そこで、本発明はこれらの問題を一掃したRCCの周波
数制御方法を提供せんとするものである。
Therefore, the present invention aims to provide an RCC frequency control method that eliminates these problems.

(問題点を解決するための手段) 本発明は特に電源装置等に用いるRCCの周波数制御方
法に係り、その特徴とするところは第1図に示すように
RCC1の主スイッチング素子3に、外部に備えた、例
えば基準発振器5から所定の周波数を有するパルス制御
信号spを印加し、当該素子3のスイッチング状態を制
御することにより前記RCC1の発振周波数を上記パル
ス制御信号Spの周波数に同期させるようにした点にあ
る。
(Means for Solving the Problems) The present invention relates to a frequency control method for an RCC used particularly in a power supply device, etc., and its characteristics include, as shown in FIG. The oscillation frequency of the RCC 1 is synchronized with the frequency of the pulse control signal Sp by applying a pulse control signal SP having a predetermined frequency from the reference oscillator 5, for example, and controlling the switching state of the element 3. That's the point.

(作用) 次に、本発明の作用について説明する。(effect) Next, the operation of the present invention will be explained.

パルス制御信号Spを印加しない場合において、例えば
トランジスタである主スイ・ノチング素子3のコレクタ
ーエミッタ間電圧は第3図(a)のようなパルス波So
となる。このパルス波Soは主スイッチング素子3のオ
ン又はオフ状態に対応しており、したがって、素子3の
ベースに、この素子3をオンさせ得るパルスS1を有す
るパルス制御信号sp  (同図(b))を印加すると
、当該パルスS1の印加時点で素子3は強制的にオンせ
しめられる。この結果、RCC1の機能によってパルス
S1の印加時点で出力が零レベルとなるパルス波出力S
2  (同図(e))を得る。つまり、RCClの出力
にはパルス制御信号Spに同期したパルス波出力S2を
得る。
When the pulse control signal Sp is not applied, the collector-emitter voltage of the main switch-noting element 3, which is a transistor, for example, is a pulse wave So as shown in FIG. 3(a).
becomes. This pulse wave So corresponds to the on or off state of the main switching element 3, and therefore, the pulse control signal sp having a pulse S1 at the base of the element 3 that can turn on this element 3 ((b) in the same figure) When the pulse S1 is applied, the element 3 is forcibly turned on at the time when the pulse S1 is applied. As a result, due to the function of RCC1, the pulse wave output S becomes zero level when the pulse S1 is applied.
2 ((e) in the same figure) is obtained. That is, the pulse wave output S2 synchronized with the pulse control signal Sp is obtained as the output of RCCl.

(実施例) 以下には、本発明に係る好適な実施例を図面に基づき説
明する。
(Embodiments) Below, preferred embodiments of the present invention will be described based on the drawings.

先ず、第2図を参照して本発明方法を適用できる具体的
回路について説明する。同図はCRTディスプレイ装置
における電源装置の一部を例示する。
First, a specific circuit to which the method of the present invention can be applied will be explained with reference to FIG. The figure illustrates part of a power supply device in a CRT display device.

図中10はRCCである。このRCC10は入力側に一
次コイルNIOを、また出力側に二次コイルN20を巻
回したトランスTを備える。−次コイルNIOと制御コ
イルNcoの一端は直流入力とし、−次コイルNIOの
他端は主スイッチングトランジスタ(NPN形)Qoの
コレクタに接続するとともに、制御コイルNcoの他端
側は所定の回路素子を介して上記トランジスタQOのベ
ースに接続する。また、当該トランジスタQoのエミッ
タは制御コイルNc。
10 in the figure is RCC. This RCC 10 includes a transformer T having a primary coil NIO wound on the input side and a secondary coil N20 wound on the output side. One end of the -secondary coil NIO and control coil Nco is a DC input, the other end of the -secondary coil NIO is connected to the collector of the main switching transistor (NPN type) Qo, and the other end of the control coil Nco is connected to a predetermined circuit element. It is connected to the base of the transistor QO through. Further, the emitter of the transistor Qo is the control coil Nc.

の上記直流入力端に接続する。なお、トランスTOの入
力側に形成される回路において、R1、R2、R3、R
4は抵抗、C1、C2はコンデンサ、Dl、D2、D3
はダイオード、D4はツェナダイードであり図示の如く
結線する。また、トランスT。
Connect to the DC input terminal above. Note that in the circuit formed on the input side of the transformer TO, R1, R2, R3, R
4 is a resistor, C1 and C2 are capacitors, Dl, D2, D3
is a diode, and D4 is a Zener diode, which are connected as shown. Also, Trance T.

の巻線方向も図示のようになる。The winding direction is also as shown in the figure.

一方、トランスToの二次側はダイオードD5とコンデ
ンサC3からなる整流平滑回路12を介して負荷側へ接
続する。
On the other hand, the secondary side of the transformer To is connected to the load side via a rectifying and smoothing circuit 12 consisting of a diode D5 and a capacitor C3.

他方、主スイッチングトランジスタQoのベース及びエ
ミッタには抵抗R5及びダイオードD6の直列回路を介
して結合トランスT1の二次側を接続する。また、当該
トランスTlの一次側には増幅回路13を介して水平同
期信号VDが付与されている。なお、増幅回路13にお
いて、Ql、C2はNPN形トランジスタ、C3はPN
P形トランジスタ、R6、R7、R8は抵抗、C4はコ
ンデンサ、D7はダイオードであり図示の如く結線する
On the other hand, the secondary side of the coupling transformer T1 is connected to the base and emitter of the main switching transistor Qo via a series circuit of a resistor R5 and a diode D6. Further, a horizontal synchronizing signal VD is applied to the primary side of the transformer Tl via an amplifier circuit 13. In addition, in the amplifier circuit 13, Ql and C2 are NPN transistors, and C3 is a PN transistor.
P-type transistors, R6, R7, and R8 are resistors, C4 is a capacitor, and D7 is a diode, which are connected as shown in the figure.

次に、かかる構成をもつRCCIOの周波数制御方法に
ついて第2図及び第3図を参照して回路動作とともに説
明する。なお、第3図は第2図中容部におけるタイミン
グチャート図である。
Next, a frequency control method of the RCCIO having such a configuration will be explained together with circuit operation with reference to FIGS. 2 and 3. Incidentally, FIG. 3 is a timing chart diagram in the content section of FIG. 2.

先ず、RCCIOの動作原理について述べる。First, the operating principle of RCCIO will be described.

主スイッチングトランジスタQOがオンのときは抵抗R
1及び制御コイルNcoによってベースにバイアス電流
が流れるとともに、このオン(導通)の期間においては
一次コイルNIOにエネルギが蓄積される。一方、トラ
ンジスタQOのコレクタ電流が成る大きさに達するとト
ランジスタQoはオフ(非導通)となり、−次コイルN
IOの蓄積エネルギは出力側である二次コイルN20に
供給される。
When the main switching transistor QO is on, the resistor R
1 and the control coil Nco, a bias current flows through the base, and energy is stored in the primary coil NIO during this on (conduction) period. On the other hand, when the collector current of the transistor QO reaches a certain level, the transistor Qo becomes off (non-conducting) and the
The stored energy of IO is supplied to the secondary coil N20 which is the output side.

そして、蓄積エネルギが放出し終わると再び抵抗R1お
よび制御コイルNeoの作用によってトランジスタQo
はオンとなり、−次コイルへのエネルギ蓄積が行われる
。つまり、トランジスタQoのオン、オフが繰り返され
、出力側の二次コイルN20に所定周波数のパルス波出
力を得る自動発振を行う。この場合、トランジスタQo
のコレクターエミッタ間電圧は第3図(a)のようにな
るとともに、−次コイルNIOに流れる電流は同図(c
)の点線波形S3のようになる(なお、かかるRCCI
Oの具体的な構成・動作については実開昭55−162
385号公報記載の従来回路を参照されたい)。
When the stored energy has been released, the transistor Qo is again controlled by the action of the resistor R1 and the control coil Neo.
is turned on, and energy is stored in the -order coil. That is, the transistor Qo is repeatedly turned on and off, and automatic oscillation is performed to obtain a pulse wave output of a predetermined frequency at the output side secondary coil N20. In this case, transistor Qo
The collector-emitter voltage of is as shown in Figure 3(a), and the current flowing through the negative coil NIO is as shown in Figure 3(c).
) as shown in the dotted line waveform S3 (in addition, such RCCI
Regarding the specific configuration and operation of O, see Utility Model Application Publication No. 55-162.
(Please refer to the conventional circuit described in Publication No. 385).

ところで、このようなRCC10において、主スイッチ
ングトランジスタQoには本発明に従ってパルス制御信
号Spを印加する。この制御信号Spは第3図(b)の
ような信号で、具体的にはCRTディスプレイ装置に用
いる水平同期信号HDを増幅回路13を通して得る。な
お、上記RCC10の設計においてその周波数の変動範
囲が当該制御信号Spの周波数よりも低くなるようにそ
の自励発振周波数を設定しておく。これについては後に
詳述する。さて、今、RCC10の主スイッチングトラ
ンジスタQoがオフ状態にあると想定する。この状態に
おいて制御信号SpのパルスS1がトランジスタQoの
ベースに印加されると、トランジスタQoはドライブさ
れ強制的にオンせしめられる。他方−次コイルNIOに
は第3図(c)に実線で示すような波形の電流S4が流
れる、この場合、蓄積エネルギの蓄積状態に対応してト
ランジスタQoはオフし、他方制御信号Spの次のパル
スS1の到来によって再びトランジスタQoはオンせし
められる。この結果、二次コイルN20に流れる電流S
5の波形は第3図(d)のようになり、二次コイルN2
0の端子電圧は同図(e)のようになる。
Incidentally, in such an RCC 10, a pulse control signal Sp is applied to the main switching transistor Qo according to the present invention. This control signal Sp is a signal as shown in FIG. 3(b), and specifically, a horizontal synchronizing signal HD used in a CRT display device is obtained through the amplifier circuit 13. In the design of the RCC 10, the self-oscillation frequency is set so that the frequency variation range is lower than the frequency of the control signal Sp. This will be explained in detail later. Now, assume that the main switching transistor Qo of the RCC 10 is in the off state. In this state, when the pulse S1 of the control signal Sp is applied to the base of the transistor Qo, the transistor Qo is driven and forcibly turned on. On the other hand, a current S4 having a waveform as shown by the solid line in FIG. 3(c) flows through the secondary coil NIO. In this case, the transistor Qo is turned off corresponding to the storage state of the stored energy, and the next control signal Sp is turned off. The transistor Qo is turned on again by the arrival of the pulse S1. As a result, the current S flowing through the secondary coil N20
The waveform of No. 5 is as shown in Fig. 3(d), and the secondary coil N2
The terminal voltage of 0 is as shown in the same figure (e).

つまり、RCC1の発振周波数はパルス制御信号Spの
周波数に同期せしめられる。
That is, the oscillation frequency of RCC1 is synchronized with the frequency of the pulse control signal Sp.

よって、上記実施例ではRCCIOの自励発振周波数を
水平同期信号HD (周波数は15.75KHz)に同
期させることができる。このことはRCCの発振周波数
を負荷変動等に影響されない周波数に固定できるという
ことであり、この結果水平同期信号HDを実際に用いる
回路側、例えば水平偏向回路等における位相等を調整す
ることにより、CRT画面の揺れ、しま模様等を生じな
いようにすることができる。
Therefore, in the above embodiment, the self-oscillation frequency of the RCCIO can be synchronized with the horizontal synchronization signal HD (frequency is 15.75 KHz). This means that the oscillation frequency of the RCC can be fixed at a frequency that is not affected by load fluctuations, etc. As a result, by adjusting the phase etc. in the circuit that actually uses the horizontal synchronization signal HD, such as the horizontal deflection circuit, It is possible to prevent the CRT screen from shaking, striped patterns, etc.

次に、第4図を参照して、本発明方法を実施するための
周波数設定方法についてさらに具体的に説明する。同図
はRCCIOにおける出力電流(負荷電流)対動作周波
数特性図を示す。同図において、△Ioで示す範囲はR
CCIOの出力電流の変動範囲を示し、△Eで示す範囲
はRCCI Oの入力電圧の変動範囲を示す。ところで
、同図から明らかなようにRCCIOはその特性上出力
電流が大きくなると動作周波数は低くなり、他方入力電
圧が高くなると動作周波数は高くなる。したがって、R
CCloの動作周波数は斜線エリアS内を変動すること
になる。
Next, a frequency setting method for carrying out the method of the present invention will be explained in more detail with reference to FIG. The figure shows an output current (load current) vs. operating frequency characteristic diagram in RCCIO. In the same figure, the range indicated by △Io is R
It shows the variation range of the output current of the CCIO, and the range indicated by ΔE shows the variation range of the input voltage of the RCCIO. By the way, as is clear from the figure, due to the characteristics of the RCCIO, as the output current increases, the operating frequency decreases, and on the other hand, as the input voltage increases, the operating frequency increases. Therefore, R
The operating frequency of CClo varies within the shaded area S.

この結果、RCCIOの動作周波数が予め設定されてい
る場合には、その動作周波数の変動点の最大周波数f1
よりも若干高い周波数f2になるように、例えば外部発
振器(第1図)からのパルス制御信号Spの周波数を設
定すればよい。 他方、上記実施例のようにパルス制御
信号Spとして水平同期信号HDを利用する場合には周
波数f2が決定されているため、RCCIOの変動最大
周波数f1が当該周波数f2より若干小さくなるように
その動作周波数を設計すればよいことになる。つまりf
1≦f2の条件を満たす必要がある。なお、本発明方法
により同期したRCCIOの動作周波数特性はfsyc
で示す。
As a result, if the operating frequency of the RCCIO is set in advance, the maximum frequency f1 of the fluctuation point of the operating frequency
For example, the frequency of the pulse control signal Sp from an external oscillator (FIG. 1) may be set so that the frequency f2 is slightly higher than the frequency f2. On the other hand, when the horizontal synchronization signal HD is used as the pulse control signal Sp as in the above embodiment, the frequency f2 is determined, so the operation is performed so that the maximum fluctuation frequency f1 of RCCIO is slightly smaller than the frequency f2. All you have to do is design the frequency. In other words, f
It is necessary to satisfy the condition 1≦f2. Note that the operating frequency characteristics of the RCCIO synchronized by the method of the present invention are fsyc
Indicated by

また、RCCの発振周波数を一定に固定するということ
は電源ラインに挿入するノズルフィルタのカットオフ周
波数以内に常に固定できるということを意味し、このよ
うな雑音除去対策も有効に機能させることができる。
Furthermore, fixing the RCC oscillation frequency to a constant value means that it can always be fixed within the cutoff frequency of the nozzle filter inserted into the power supply line, and such noise removal measures can also function effectively. .

なお、RCCの発振周波数を強制的に固定しても出力側
(負荷側)へ供給されるエネルギはパルス幅の変化によ
って制御されるため出力電圧は安定化されるのでRCC
IOの本来の機能自体に影響を与えることはない。
Note that even if the oscillation frequency of the RCC is forcibly fixed, the energy supplied to the output side (load side) is controlled by changing the pulse width, so the output voltage is stabilized.
The original function of IO itself is not affected.

第2図の回路はいわばRCC側のアースと基準発mB(
II+のアースを結合トランスによってアースを別途独
立にしたが、このような結合トランスを用いずに、第1
図の如く直接基準発振器側とRCCを接続し共通アース
にしてもよい。
The circuit in Figure 2 is, so to speak, between the ground on the RCC side and the reference generator mB (
The ground of II+ was made separate and independent by a coupling transformer, but without using such a coupling transformer,
As shown in the figure, the reference oscillator side and the RCC may be directly connected to provide a common ground.

以上、実施例について説明したが、本発明はこのような
実施例に限定されるものではない。例えばRCCは例示
回路に限らず任意構成のRCCに適用することができる
。また、パルス制御信号は第2図のように、既存の回路
等において用いられている信号を直接又は整形して利用
してもよいし、また、主スイッチング素子としてトラン
ジスタを例示したがPET等の任意のスイッチング素子
を利用できる。その他、細部の構成、手法等において本
発明の精神を逸脱しない範囲で任意に変更実施すること
ができる。
Although the embodiments have been described above, the present invention is not limited to these embodiments. For example, the RCC can be applied not only to the illustrated circuit but also to any configuration of RCC. Furthermore, as shown in Fig. 2, the pulse control signal may be used directly or after being shaped into a signal used in an existing circuit, etc. Also, although a transistor is used as an example of the main switching element, PET, etc. Any switching element can be used. Other changes may be made in the detailed structure, method, etc., without departing from the spirit of the present invention.

(発明の効果) このように、本発明に係るRCCの周波数制御方法は、
RCCの主スイッチング素子に外部から所定の周波数を
有するパルス制御信号を印加し、当該素子のスイッチン
グ状態を制御することにより前記コンバータの発振周波
数を前記パルス制御信号の周波数に同期させるようにし
たため簡単な回路構成で低価格というRCC発振方式の
利点を損なうことなく、次の如き著効を得る。
(Effects of the Invention) As described above, the RCC frequency control method according to the present invention has the following effects:
The oscillation frequency of the converter is synchronized with the frequency of the pulse control signal by applying a pulse control signal having a predetermined frequency from the outside to the main switching element of the RCC and controlling the switching state of the element. The following significant effects can be obtained without sacrificing the advantages of the RCC oscillation system, which is a low-cost circuit configuration.

■RCCの発振周波数は入力電圧変動、負荷変動等に影
響されずに一定に固定されるため電源ラインに挿入する
ノイズフィルタの選定等、雑音低減対策が容易となる。
■Since the oscillation frequency of the RCC is fixed at a constant level without being affected by input voltage fluctuations, load fluctuations, etc., noise reduction measures such as selecting a noise filter to be inserted into the power supply line become easy.

しかも発振周波数の変動がないため雑音を常に確実に除
去することができる。
Moreover, since there is no fluctuation in the oscillation frequency, noise can always be reliably removed.

■また、発振周波数が一定に固定されているため、発生
する雑音によって妨害を受ける装置側の対策が容易とな
る。例えば、雑音周波数が変動するとCRTディスプレ
イ装置等に於いては画面に揺れやしま模様が生じて画質
を太き(損なうが、雑音周波数が固定されると当該雑音
周波数を最も回避できる回路設計が容易となる。
(2) Also, since the oscillation frequency is fixed, it is easy to take countermeasures against equipment that is disturbed by the generated noise. For example, when the noise frequency fluctuates, in CRT display devices, etc., screen shakes and striped patterns occur, degrading the image quality, but if the noise frequency is fixed, it is easy to design a circuit that can best avoid the noise frequency. becomes.

■さらにまた、本発明方法はきわめて容易に実施するこ
とができる。特に既存の回路における信号を利用すれば
その回路構成はひじように簡略化され、小型低コストに
実施できる。
(2) Furthermore, the method of the present invention can be carried out very easily. In particular, if signals in existing circuits are used, the circuit configuration can be dramatically simplified and can be implemented in a small size and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施できる回路ブロック図、第2
図は本発明方法を実施するCRTディスプレイ装置にお
ける電源装置の一部を示す具体的回路図、第3図は第2
図中容部における電流・電圧波形のタイミングチャート
図、第4図はRCCの出力電流対動作周波数特性図。 尚図面中、1,10・・・RCC。 3、Qo  ・・・主スイッチング素子、  5・・・
基準発振器、 Sp  ・・・パルス制御信号、HD・
・・水平同期信号。
FIG. 1 is a circuit block diagram that can implement the method of the present invention, and FIG.
The figure is a specific circuit diagram showing a part of the power supply device in a CRT display device that implements the method of the present invention.
The figure is a timing chart of current/voltage waveforms in the capacitor section, and FIG. 4 is a diagram of RCC output current versus operating frequency characteristics. In the drawing, 1, 10...RCC. 3, Qo...main switching element, 5...
Reference oscillator, Sp...Pulse control signal, HD.
...Horizontal synchronization signal.

Claims (1)

【特許請求の範囲】 1、リンギングチョークコンバータの主スイッチング素
子に外部から所定の周波数を有するパルス制御信号を印
加し、当該素子のスイッチング状態を制御することによ
り前記コンバータの発振周波数を前記パルス制御信号の
周波数に同期させることを特徴とするリンギングチョー
クコンバータの周波数制御方法。 2、パルス制御信号の周波数は発振周波数の変動範囲よ
りも高く設定したことを特徴とする特許請求の範囲第1
項記載のリンギングチョークコンバータの周波数制御方
法。
[Scope of Claims] 1. A pulse control signal having a predetermined frequency is externally applied to the main switching element of the ringing choke converter, and the oscillation frequency of the converter is controlled by the pulse control signal by controlling the switching state of the element. A method for controlling the frequency of a ringing choke converter, characterized in that the frequency is synchronized to the frequency of the ringing choke converter. 2. Claim 1, characterized in that the frequency of the pulse control signal is set higher than the fluctuation range of the oscillation frequency.
Frequency control method for ringing choke converter described in Section 2.
JP10908985A 1985-05-21 1985-05-21 Frequency control method of ringing choke converter Pending JPS61269673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10908985A JPS61269673A (en) 1985-05-21 1985-05-21 Frequency control method of ringing choke converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10908985A JPS61269673A (en) 1985-05-21 1985-05-21 Frequency control method of ringing choke converter

Publications (1)

Publication Number Publication Date
JPS61269673A true JPS61269673A (en) 1986-11-29

Family

ID=14501306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10908985A Pending JPS61269673A (en) 1985-05-21 1985-05-21 Frequency control method of ringing choke converter

Country Status (1)

Country Link
JP (1) JPS61269673A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152687U (en) * 1986-03-14 1987-09-28
JPH04233585A (en) * 1990-06-29 1992-08-21 Internatl Business Mach Corp <Ibm> Electric power subsystem and display system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831425A (en) * 1981-08-19 1983-02-24 Matsushita Electric Ind Co Ltd Power supply unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831425A (en) * 1981-08-19 1983-02-24 Matsushita Electric Ind Co Ltd Power supply unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152687U (en) * 1986-03-14 1987-09-28
JPH04233585A (en) * 1990-06-29 1992-08-21 Internatl Business Mach Corp <Ibm> Electric power subsystem and display system

Similar Documents

Publication Publication Date Title
US4866588A (en) Circuit for suppression of leading edge spike switched current
JP3175663B2 (en) Self-oscillation type switching power supply
EP0385546B1 (en) Switched-mode power supply circuit including a starting circuit
JPS60215222A (en) Dc power supply circuit
JPH0227870B2 (en)
US4926304A (en) Switched-mode power supply with low loss interrupted oscillation
JPH03118761A (en) Circuit apparatus for fixed frequency blocking oscillation type switching regulator
US6515874B2 (en) Clocked power supply
JP2704518B2 (en) Power circuit
JPH11122926A (en) Self-oscillating switching power supply
US4794508A (en) PWM control circuit for a non-symmetrical switching power supply
US4740879A (en) Blocking oscillator switched power supply with standby circuitry
CA2011229C (en) Switch-mode power supply with burst mode standby operation
CA2037944C (en) Switching converter
JPH0468862B2 (en)
JPS61269673A (en) Frequency control method of ringing choke converter
JPH0226464B2 (en)
US4621311A (en) High-speed switching regulator
US20030095420A1 (en) Resonant power supply circuit
US4581694A (en) Inverter using parallel connected series pre-regulator and a synchronized switch
EP0394024A1 (en) A deflection driver in a video apparatus
JP3258620B2 (en) Switching power supply
JPS58178422A (en) Power supply circuit
JP3379161B2 (en) High voltage power circuit
JPH01194867A (en) Resonance type switching power supply