JPS61265885A - Semiconductor laser and drive thereof - Google Patents
Semiconductor laser and drive thereofInfo
- Publication number
- JPS61265885A JPS61265885A JP60108508A JP10850885A JPS61265885A JP S61265885 A JPS61265885 A JP S61265885A JP 60108508 A JP60108508 A JP 60108508A JP 10850885 A JP10850885 A JP 10850885A JP S61265885 A JPS61265885 A JP S61265885A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- junction
- semiconductor laser
- current
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/126—Circuits, methods or arrangements for laser control or stabilisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0261—Non-optical elements, e.g. laser driver components, heaters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/0607—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
- H01S5/0612—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/06808—Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dot-Matrix Printers And Others (AREA)
- Laser Beam Printer (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Optical Head (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、半導体レーザ及び半導体レーザの駆動方法
に関し、特にレーザビームプリンタ、レーザファクシミ
リ、光ディスク等の光情報機器の光源に用いるのに適し
た半導体レーザ及びその駆動方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a semiconductor laser and a method of driving the semiconductor laser, and is particularly suitable for use as a light source for optical information equipment such as a laser beam printer, a laser facsimile, and an optical disk. The present invention relates to a semiconductor laser and its driving method.
(従来の技術)
従来の屈折型、反射型の光学素子に対して、回折型の光
学素子は複製が容易で安価に量産できることから産業上
利用きれ始めている。例えば、スーパーマーケットのバ
ーコード読取装置やレーザビームプリンタに用いられて
いるホログラフィックレーザスキャナをあげることがで
きる。レーザビームプリンタのレーザスキャナに用いた
一例として、岩岡秀人、塩沢隆広著の電子通信学会発行
の電子通信学会技術研究会報告第84巻第193号(1
984年11月19日発行)の25〜32頁記載の論文
「直線・無収差ホログラム・スキャナ」(論文番号0Q
E84−86)がある。回折型の光学素子を用いると、
光源であるレーザの波長が変化すると、光学素子の出力
光の方向が変わってしまう。上にあげたレーザビームプ
リンタのレーザスキャナの例では、走査線の位置変動を
生じる。半導体レーザの発振波長は、活性層の屈折率の
温度変化、及び活性層のバンドギャップの温度変化によ
って生じる。前者は0.5〜0.8人/にのゆるやかな
変化であるが、後者は2〜5人/にと大きく、又、縦モ
ードの3〜8人のとびを生じる。そこで、上にあげた論
文では、半導体レーザのバイアス電流と、パルスのデユ
ーティ比を制御して、発光時か非発光時かにかかわらず
消費電力を一定にすることにより、半導体レーザの温度
を安定化し、発振波長を安定化する方法が述べられてい
る。又、他の従来方法としては、半導体レーザをベルチ
ェ素子上に搭載して温度制御する方法もある。(Prior Art) Compared to conventional refractive and reflective optical elements, diffractive optical elements are starting to be used industrially because they are easier to replicate and can be mass-produced at low cost. Examples include holographic laser scanners used in supermarket barcode readers and laser beam printers. As an example of a laser scanner used in a laser beam printer, Hideto Iwaoka and Takahiro Shiozawa, IEICE Technical Study Group Report Vol. 84, No. 193 (1), published by IEICE,
Published on November 19, 1984), pages 25-32 of the paper ``Linear, aberration-free hologram scanner'' (paper number 0Q)
E84-86). Using a diffractive optical element,
When the wavelength of the laser that is the light source changes, the direction of the output light from the optical element changes. In the example of a laser scanner in a laser beam printer given above, variations in the position of the scan line occur. The oscillation wavelength of a semiconductor laser is caused by a temperature change in the refractive index of the active layer and a temperature change in the band gap of the active layer. The former is a gradual change of 0.5 to 0.8 people/person, but the latter is large, 2 to 5 people/person, and also causes a jump of 3 to 8 people/person in the vertical mode. Therefore, in the above-mentioned paper, the temperature of the semiconductor laser is stabilized by controlling the bias current of the semiconductor laser and the duty ratio of the pulse to keep the power consumption constant regardless of whether it is emitting light or not. A method for stabilizing the oscillation wavelength is described. Another conventional method is to mount a semiconductor laser on a Vertier element and control the temperature.
(発明が解決しようとする問題点)
上述の従来の技術には、次のような問題点がある。上に
あげた論文に開示されている定電力駆動では、半導体レ
ーザの周囲温度の変化に対しては対応できず、結局、半
導体レーザをベルチェ素子で温度制御することが必要と
なる。ベルチェ素子の熱容量は半導体レーザよりもはる
かに大きいため、熱的時定数が大きく、温度制御の時定
数も大きく、応答が遅い、又、ベルチェ素子を制御する
ために熱電対等の温度検出素子を用いるが、その熱容量
も大きく、又、取付は位置によって、熱伝導による時間
遅れを生じる問題がある。さらに、最大の問題点は、ベ
ルチェ素子に搭載することで、半導体レーザ光源の本来
の小形軽量性が失なわれ、半導体レーザが体積的に非常
に大きくなってしまうことである。(Problems to be Solved by the Invention) The above-mentioned conventional techniques have the following problems. The constant power drive disclosed in the above-mentioned papers cannot cope with changes in the ambient temperature of the semiconductor laser, and as a result, it becomes necessary to control the temperature of the semiconductor laser using a Vertier element. The heat capacity of the Vertier element is much larger than that of a semiconductor laser, so the thermal time constant is large, the time constant for temperature control is also large, and the response is slow. Also, a temperature detection element such as a thermocouple is used to control the Vertier element. However, its heat capacity is large, and there is a problem that depending on the mounting position, a time delay may occur due to heat conduction. Furthermore, the biggest problem is that when mounted on a Bertier element, the original compactness and lightness of the semiconductor laser light source is lost, and the semiconductor laser becomes extremely large in volume.
そこで、本発明の目的は、このような従来技術の問題点
を解決し、発振波長を安定化でき、しかも光源を小形に
できる半導体レーザ及びその駆動方法の提供にある。SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a semiconductor laser and a method for driving the same, which can solve the problems of the prior art, stabilize the oscillation wavelength, and downsize the light source.
(問題点を解決するための手段)
前述の問題点を解決するために本願の第1の発明が提供
する半導体レーザは、発光部へ駆動電流を供給する第1
の電極とは独立にその発光部に隣接して、p−n接合部
を発熱させる電流を供給する第2の電極と、前記p−n
接合部の接合電圧を取り出す第3の電極とが設けてある
ことを特徴とする。(Means for Solving the Problems) In order to solve the above-mentioned problems, the semiconductor laser provided by the first invention of the present application has a first semiconductor laser that supplies a driving current to a light emitting part.
a second electrode adjacent to the light emitting portion independently of the electrode of the p-n junction and supplying a current that causes the p-n junction to generate heat;
It is characterized in that it is provided with a third electrode for taking out the junction voltage of the junction part.
また、前述の問題点を解決するために本願の第2の発明
が提供する半導体レーザの駆動方法は、第1の電極から
発光部へ直流的な第1の電流を供給し、前記第1の電極
とは独立に前記発光部に隣接して設けた第2の電極から
p−n接合を発熱させる直流的な第2の電流を供給し、
前記第1及び第2の電極とは独立に前記発光部に隣接し
て設けた第3の電極を介して前記p−n接合部の接合t
FE、を取り出し、前記接合電圧に基づき前記第2の電
流を制御してその接合電圧を一定にすることを特徴とす
る。In addition, in order to solve the above-mentioned problems, the second invention of the present application provides a method for driving a semiconductor laser, in which a first DC current is supplied from a first electrode to a light emitting part, supplying a second direct current that causes the pn junction to generate heat from a second electrode provided adjacent to the light emitting part independently of the electrode;
The p-n junction is connected via a third electrode provided adjacent to the light emitting section independently of the first and second electrodes.
FE is taken out, and the second current is controlled based on the junction voltage to make the junction voltage constant.
さらに、前述の問題点を解決するために本願の第3の発
明が提供する半導体レー・ザの駆動方法は、第1の電極
から発光部へ第1のパルス電流を供給し、前記第1の電
極とは独立に前記発光部に隣接して設けた第2の電極か
らp−n接合を発熱させる電流を供給し、この発熱電流
は前記第2のパルス電流に直流のバイアス電流を重畳し
てなり、前記第1及び第2のパルス電流の電力波形は互
いに逆位相であり、前記接合電圧に基づいて前記バイア
ス電流を制御してその接合電圧を一定にすることを特徴
とする。Furthermore, in order to solve the above-mentioned problems, a method for driving a semiconductor laser provided by the third invention of the present application supplies a first pulse current from a first electrode to a light emitting part, and A current that causes the p-n junction to generate heat is supplied from a second electrode provided adjacent to the light emitting section independently of the electrode, and this heating current is generated by superimposing a direct current bias current on the second pulse current. The power waveforms of the first and second pulse currents are in opposite phases to each other, and the bias current is controlled based on the junction voltage to keep the junction voltage constant.
(作用)
本発明の作用・原理は次の通りである。本発明では、ま
ず体積的に大型のベルチェ素子に代えて、半導体レーザ
のp−n接合部の発熱を利用する。このため、発光部に
隣接して、発光部とは独立にp−n接合部に電流を流せ
る電極を設け、この部分をヒータとして用いる。又、熱
電対に代わる温度検出素子として、p−n接合の接合電
圧の温度変化を利用する。このため、発光部に隣接して
、接合電圧を独立に検出するための電極を設け、この部
分を温度センサとして用いる。そして、上記温度センサ
出力で上記ヒータの発熱を制御し、半導体レーザの温度
を一定にし、発振波長を安定化するのが本発明の基本作
用である。半導体レーザの発振波長が駆動電力による発
熱で変化することはよく知られた現象である。そのデー
タの一例が古瀬孝雄著の応用物理学会光学懇話会発行の
1光学」誌第13巻第2号(1984年4月発行)の1
18〜124頁掲載の論文1半導体レーザの電気的使用
法」に解説されている。1戸以下の駆動パルスでも波長
変動を生じることが知られている。このことは、半導体
レーザのp−n接合部に発光部とは独立の電極を設けて
電流を注入すれば、発光部の温度を変化きせうる高速応
答のヒータ機能を持たせられることを意味している。又
、AlGaAs系の半導体レーザを発振スレショールド
以下の低電流で駆動している時の端子電圧の温度変化は
、約−1mV/”C程度である。そこで半導体レーザの
p−n接合部に発光部とは独立の電極を設けて低電流を
流しておけば、コンパクトで高速応答の温度センサ機能
を持たせられる。又、半導体レーザの発光部と、電気的
に独立の発熱部を相補的な電力波形のパルスで駆動すれ
ば、半導体レーザチップは定消費電力となり、温度の一
定化を行ないやすい。(Operation) The operation and principle of the present invention are as follows. In the present invention, first, instead of using a volumetrically large Vertier element, heat generated at the pn junction of a semiconductor laser is utilized. For this reason, an electrode is provided adjacent to the light emitting part to allow current to flow through the pn junction independently of the light emitting part, and this part is used as a heater. Further, as a temperature detection element in place of a thermocouple, temperature changes in the junction voltage of a pn junction are utilized. Therefore, an electrode for independently detecting the junction voltage is provided adjacent to the light emitting part, and this part is used as a temperature sensor. The basic function of the present invention is to control the heat generation of the heater using the output of the temperature sensor, to keep the temperature of the semiconductor laser constant, and to stabilize the oscillation wavelength. It is a well-known phenomenon that the oscillation wavelength of a semiconductor laser changes due to heat generated by driving power. An example of such data is 1 of 1 Optics, Vol. 13, No. 2 (published April 1984), published by the Society of Applied Physics Optics Conference, written by Takao Furuse.
This is explained in the article 1 "Electrical Use of Semiconductor Lasers" published on pages 18 to 124. It is known that wavelength fluctuations occur even with a drive pulse of one unit or less. This means that by providing an electrode independent of the light emitting part at the p-n junction of a semiconductor laser and injecting current, it is possible to provide a fast-response heater function that can change the temperature of the light emitting part. ing. Furthermore, when an AlGaAs semiconductor laser is driven with a low current below the oscillation threshold, the temperature change in the terminal voltage is about -1 mV/''C. By providing an electrode independent of the light emitting part and passing a low current through it, a compact and high-speed response temperature sensor function can be provided.In addition, the light emitting part of the semiconductor laser and the electrically independent heat generating part can be complementary to each other. If the semiconductor laser chip is driven by a pulse with a power waveform, the power consumption will be constant, and the temperature will be easily kept constant.
(実施例) 以下本発明の実施例について図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図は本願の第1の発明の一実施例を示す断面図であ
る0発熱部電極10と検出部電極11を除くと、通常の
半導体レーザと同じ基本構造である。 GaAlAs可
視半導体レーザは、基本的には第1図に示すようにn−
GaAs基板2上にクラッド層3、活性層4、クラッド
層5、キャップ層6、絶縁層7、発光部電極8、基板電
極1で構成されている。発光部9については、発振横モ
ードを安定化するための種々の形の利得導波路構造、光
導波路構造がとられている。第1図には屈折率導波路構
造を持つものを例として示している。本実施例は、この
ような基本構造の半導体レーザの同一チップ上に、発光
部9に隣接して全熱部電極10と検出部電極11とを付
加した構造を特徴としている。全熱部電極10及び検出
部電極11は、発光部9と熱的に結合されている。全熱
部電極10に通電すると、電極下のp−n接合(クラッ
ド層5と活性層4で構成きれる)で発熱し、発光部9に
対するヒータとして作用する。一方、検出部電極11に
は数mA程度の低電流を流しておくことで、電極下のp
−n接合の温度変化を端子電圧の変化としてとらえる温
度センサとして作用する。通常の半導体レーザのチップ
幅(第1図に示す断面図の幅)は100〜3037aで
あるから、発光部9に対して全熱部電極10及び検出部
電極11は、50〜100−に隣接して製作でき、熱的
結合もよく、熱的時定数も小きくできる。第1図実施例
を用いれば光源にペルチェ素子は不要であり、光源が小
形軽量化できる。第1図の実施例では全熱部電極10、
検出部電極11ともに絶RM17による電流狭窄構造を
用いた例を示したが、キヤ・ノブ層6へのべた付電極で
も本願の第1の発明は実現できる。FIG. 1 is a sectional view showing an embodiment of the first invention of the present application.Other than the heat generating part electrode 10 and the detecting part electrode 11, the basic structure is the same as that of a normal semiconductor laser. A GaAlAs visible semiconductor laser is basically an n-
It consists of a cladding layer 3, an active layer 4, a cladding layer 5, a cap layer 6, an insulating layer 7, a light emitting part electrode 8, and a substrate electrode 1 on a GaAs substrate 2. The light emitting section 9 has various types of gain waveguide structures and optical waveguide structures for stabilizing the oscillation transverse mode. FIG. 1 shows an example having a refractive index waveguide structure. This embodiment is characterized by a structure in which a total heat section electrode 10 and a detection section electrode 11 are added adjacent to the light emitting section 9 on the same chip of a semiconductor laser having such a basic structure. The total heat part electrode 10 and the detection part electrode 11 are thermally coupled to the light emitting part 9. When electricity is applied to the entire heating section electrode 10, heat is generated at the pn junction (composed of the cladding layer 5 and the active layer 4) under the electrode, which acts as a heater for the light emitting section 9. On the other hand, by flowing a low current of about several mA through the detection part electrode 11, it is possible to
- It acts as a temperature sensor that detects the temperature change of the n junction as a change in terminal voltage. Since the chip width of a typical semiconductor laser (width in the cross-sectional view shown in FIG. 1) is 100 to 3037 mm, the total heat section electrode 10 and the detection section electrode 11 are adjacent to the light emitting section 9 by 50 to 100 mm. It can be fabricated by using the same method, has good thermal coupling, and can have a small thermal time constant. If the embodiment shown in FIG. 1 is used, a Peltier element is not required in the light source, and the light source can be made smaller and lighter. In the embodiment shown in FIG. 1, the entire hot section electrode 10,
Although an example has been shown in which both the detection part electrode 11 and the current confinement structure are formed by the absolute RM 17, the first invention of the present application can also be realized by using a sticky electrode on the cannob layer 6.
第2図は、直流電流で駆動きれている第1図実施例の半
導体レーザを本願の第2の発明により駆動するのに用い
る駆動回路の一例を示すプロ・ンク図である。符号12
で示す部分が第1図実施例の半導体レーザチップで、発
光部13、発熱部14、検出部15の3個のダイオード
が1つのチップ上に構成きれている。端子16は発光部
ダイオード13の駆動端子で、比較的遅い時間変化しか
しない、はぼ直流的な電流で駆動されている。FIG. 2 is a diagram showing an example of a drive circuit used to drive the semiconductor laser of the embodiment of FIG. 1, which can be driven with direct current, according to the second invention of the present application. code 12
The part shown by is the semiconductor laser chip of the embodiment in FIG. 1, in which three diodes, a light emitting section 13, a heat generating section 14, and a detecting section 15 are arranged on one chip. The terminal 16 is a drive terminal for the light emitting diode 13, and is driven by a nearly direct current that changes only relatively slowly.
検出部15には常に数mA程度の低電流を流しておき、
検出部端子電圧を基準電圧と比較し、端子電圧が基準電
圧よりも高い場合(検出部の温度が基準温度よりも低い
場合に相当する)は、検出部端子電圧が基準電圧になる
ように発熱部制御回路17を介して発熱部14への通電
電流を増加させる。逆に端子電圧が基準電圧よ吟も低い
場合は、検出部端子電圧が基準電圧になるように発熱部
制御回路17を介して、発熱部14への通電電流を減少
させる。本駆動方法により、発光部の温度が一定化きれ
、発振波長が安定化される。従って、第2図で説明した
本願の第2の発明の実施例を用いれば、ベルチェ素子等
は不要であるから、光源が小形軽量化できる。A low current of about several mA is always passed through the detection unit 15,
The detection unit terminal voltage is compared with the reference voltage, and if the terminal voltage is higher than the reference voltage (corresponding to the case where the detection unit temperature is lower than the reference temperature), heat is generated so that the detection unit terminal voltage becomes the reference voltage. The current flowing to the heat generating section 14 is increased via the section control circuit 17. Conversely, if the terminal voltage is much lower than the reference voltage, the current flowing to the heat generating part 14 is reduced via the heat generating part control circuit 17 so that the detecting part terminal voltage becomes the reference voltage. With this driving method, the temperature of the light emitting section can be kept constant and the oscillation wavelength can be stabilized. Therefore, if the embodiment of the second invention of the present application explained in FIG. 2 is used, a Vertier element or the like is not required, so that the light source can be made smaller and lighter.
第3図は、パルス電流で、駆動されている第1図実施例
の半導体レーザを本願の第3の発明により駆動するのに
用いる駆動回路の一例を示すブロック図である。符号1
2で囲まれた部分が第1図実施例の半導体レーザチップ
で、発光部13、発熱部14、検出部15の3個のダイ
オードが1つのチップ上に構成されている。端子16は
、発光部ダイオード13の駆動端子で、パルス電流で駆
動されている。反転回路19は、発光部グイオード13
に対する駆動回路であるとともに、発熱部制御回路17
に、発光部ダイオード13の駆動パルスの反転パルスを
供給する回路である。発熱部制御回路17は、供給され
た反転パルスで、発熱部ダイオード14を駆動する。発
熱部ダイオード14のパルス駆動電力は、発光部ダイオ
ード13のパルス駆動電力と相補的になるように設定さ
れており、常に発熱部ダイオード14と発光部ダイオー
ド13のパルス駆動電力の和が一定になる。この結果、
半導体レーザチップ12内は定消費電力となり、発光部
13の温度が一定化される。しかしながら、周囲温度の
変化等によって定消費電力では、チップ温度が変化する
から本駆動方法では、検出部15を用いたフィードバッ
クをかけている。検出部15には常に数mA程度の低電
流を流しておき、検出部端子を基準電圧と比較し、端子
電圧が基準電圧よりも高い場合(検出部の温度が基準温
度よりも低い場合に相当する)は、検出部端子電圧が基
準電圧になるように、発熱部制御回路17を介して発熱
部14の駆動パルスに重畳するバイアス電流を増加させ
る。逆に端子電圧が基準電圧よりも低い場合は、検出部
端子電圧が基準電圧になるように発熱部制御回路17を
介して、発熱部14への駆動パルスに重畳するバイアス
電流を減少させる。本駆動方法により、発光部の温度が
一定化され、発振波長が安定化される。従って、第3図
を参照して説明した本願の第3の発明の実施例を用いれ
ば、光源にベルチェ素子は不要であり、光源が小形軽量
化できる。FIG. 3 is a block diagram showing an example of a drive circuit used to drive the semiconductor laser of the embodiment of FIG. 1, which is driven by a pulse current, according to the third invention of the present application. code 1
The part surrounded by 2 is the semiconductor laser chip of the embodiment in FIG. 1, in which three diodes, a light emitting part 13, a heat generating part 14, and a detecting part 15, are arranged on one chip. The terminal 16 is a drive terminal for the light emitting diode 13 and is driven by a pulse current. The inverting circuit 19 includes a light emitting section guiode 13
as well as a drive circuit for the heat generating part control circuit 17.
This is a circuit that supplies an inverted pulse of the driving pulse for the light emitting diode 13. The heat generating section control circuit 17 drives the heat generating section diode 14 using the supplied inversion pulse. The pulse drive power of the heat generating diode 14 is set to be complementary to the pulse drive power of the light emitting diode 13, and the sum of the pulse drive power of the heat generating diode 14 and the light emitting diode 13 is always constant. . As a result,
The inside of the semiconductor laser chip 12 has constant power consumption, and the temperature of the light emitting section 13 is kept constant. However, with constant power consumption, the chip temperature changes due to changes in ambient temperature, etc., so in this driving method, feedback is applied using the detection section 15. A low current of about several mA is always passed through the detection section 15, and the terminal of the detection section is compared with a reference voltage.If the terminal voltage is higher than the reference voltage (corresponding to the case where the temperature of the detection section is lower than the reference temperature) ) increases the bias current superimposed on the drive pulse of the heat generating unit 14 via the heat generating unit control circuit 17 so that the detection unit terminal voltage becomes the reference voltage. Conversely, when the terminal voltage is lower than the reference voltage, the bias current superimposed on the drive pulse to the heat generating part 14 is reduced via the heat generating part control circuit 17 so that the detecting part terminal voltage becomes the reference voltage. With this driving method, the temperature of the light emitting section is made constant and the oscillation wavelength is stabilized. Therefore, if the embodiment of the third invention of the present application described with reference to FIG. 3 is used, a Vertier element is not required in the light source, and the light source can be made smaller and lighter.
(発明の効果)
以上に説明したように、本願の発明によれば、発振波長
を安定化でき、しかも光源を小形にできる半導体レーザ
及びその駆動方法が提供できる。(Effects of the Invention) As described above, according to the invention of the present application, it is possible to provide a semiconductor laser whose oscillation wavelength can be stabilized and whose light source can be made compact, and a method for driving the semiconductor laser.
そこで、本発明の半導体レーザ及びその駆動方法を用い
ることにより、DC駆動、パルス駆動によらず、半導体
レーザのチップ内温度が一定化され、回折型光学素子の
光源に使用できる安定した発振波長のレーザ光が得られ
る。又、従来のベルチェ素子を用いた方法に比べ、装置
が著しく小形化きれ、消費電力も低減できた。Therefore, by using the semiconductor laser and its driving method of the present invention, the internal temperature of the semiconductor laser chip can be made constant regardless of DC drive or pulse drive, and a stable oscillation wavelength that can be used as a light source for a diffractive optical element can be achieved. Laser light is obtained. Furthermore, compared to the conventional method using a Vertier element, the device can be significantly downsized and power consumption can be reduced.
第1図は本願の第1の発明の一実施例を示す断面図、第
2図は直流電流で駆動されている第1図実施例を本願の
第2の発明により駆動するのに用いる駆動回路の一例を
示すブロック図・第3図はパルス電流で駆動されている
第1図実施例を本願の第3の発明により駆動するのに用
いる駆動回路の一例を示すブロック図である。 ・
1・・・基板電極、2・・・n−GaAs基板、3・・
・クラッド層、4・・・活性層、5・・・クラッド層、
6・・・キャップ層、7・・・絶縁層、8・・・発光部
電極、9・・・発光部、10・・・発熱部電極、11・
・・検出部電極、12・・・半導体レーザチップ、13
・・・発光部、14・・・発熱部、15・・・検出部、
16・・・駆動端子、17・・・発熱部制御回路、18
・・・電圧検出回路、19・・・反転回路。
代理人弁理士 本 庄 伸 介
第1図
第2図
第3図Figure 1 is a sectional view showing an embodiment of the first invention of the present application, and Figure 2 is a drive circuit used to drive the embodiment of Figure 1 driven by direct current according to the second invention of the present application. FIG. 3 is a block diagram showing an example of a drive circuit used to drive the embodiment of FIG. 1, which is driven by a pulse current, according to the third invention of the present application.・ 1... Substrate electrode, 2... n-GaAs substrate, 3...
- cladding layer, 4... active layer, 5... cladding layer,
6... Cap layer, 7... Insulating layer, 8... Light emitting part electrode, 9... Light emitting part, 10... Heat generating part electrode, 11.
...Detection part electrode, 12...Semiconductor laser chip, 13
... Light emitting part, 14... Heat generating part, 15... Detection part,
16... Drive terminal, 17... Heat generating part control circuit, 18
... Voltage detection circuit, 19... Inversion circuit. Representative Patent Attorney Shinsuke Honjo Figure 1 Figure 2 Figure 3
Claims (3)
にその発光部に隣接して、p−n接合部を発熱させる電
流を供給する第2の電極と、前記p−n接合部の接合電
圧を取り出す第3の電極とが設けてあることを特徴とす
る半導体レーザ。(1) A second electrode that supplies a current that causes the p-n junction to generate heat, which is adjacent to the light-emitting section independently of the first electrode that supplies a drive current to the light-emitting section; and a second electrode that supplies a current that causes the p-n junction to generate heat; 1. A semiconductor laser characterized in that a third electrode is provided for extracting a junction voltage of the semiconductor laser.
給し、前記第1の電極とは独立に前記発光部に隣接して
設けた第2の電極からp−n接合を発熱させる直流的な
第2の電流を供給し、前記第1及び第2の電極とは独立
に前記発光部に隣接して設けた第3の電極を介して前記
p−n接合部の接合電圧を取り出し、前記接合電圧に基
づき前記第2の電流を制御してその接合電圧を一定にす
ることを特徴とする半導体レーザの駆動方法。(2) A first direct current is supplied from a first electrode to a light emitting section, and a p-n junction is connected from a second electrode provided adjacent to the light emitting section independently of the first electrode. A second DC current that generates heat is supplied, and a junction voltage of the p-n junction is supplied through a third electrode provided adjacent to the light emitting section independently of the first and second electrodes. 1. A method of driving a semiconductor laser, comprising: extracting a semiconductor laser, and controlling the second current based on the junction voltage to keep the junction voltage constant.
し、前記第1の電極とは独立に前記発光部に隣接して設
けた第2の電極からp−n接合を発熱させる電流を供給
し、この発熱電流は前記第2のパルス電流に直流のバイ
アス電流を重畳してなり、前記第1及び第2のパルス電
流の電力波形は互いに逆位相であり、前記接合電圧に基
づいて前記バイアス電流を制御してその接合電圧を一定
にすることを特徴とする半導体レーザの駆動方法。(3) A first pulse current is supplied from the first electrode to the light emitting section, and the p-n junction generates heat from a second electrode provided adjacent to the light emitting section independently of the first electrode. The heating current is generated by superimposing a direct current bias current on the second pulse current, the power waveforms of the first and second pulse currents are in opposite phase to each other, and the heating current is generated based on the junction voltage. A method for driving a semiconductor laser, comprising controlling the bias current to make the junction voltage constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60108508A JPS61265885A (en) | 1985-05-20 | 1985-05-20 | Semiconductor laser and drive thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60108508A JPS61265885A (en) | 1985-05-20 | 1985-05-20 | Semiconductor laser and drive thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61265885A true JPS61265885A (en) | 1986-11-25 |
Family
ID=14486555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60108508A Pending JPS61265885A (en) | 1985-05-20 | 1985-05-20 | Semiconductor laser and drive thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61265885A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01225187A (en) * | 1988-03-04 | 1989-09-08 | Fujitsu Ltd | semiconductor light emitting device |
JPH02118927A (en) * | 1988-10-27 | 1990-05-07 | Canon Inc | Method and device for driving semiconductor laser |
JPH0460931A (en) * | 1990-06-26 | 1992-02-26 | Matsushita Electric Ind Co Ltd | Optical pickup |
WO1992007357A1 (en) * | 1990-10-17 | 1992-04-30 | Robert Bosch Gmbh | Circuit for scanning optical data substrates |
WO1992019014A1 (en) * | 1991-04-15 | 1992-10-29 | Honeywell Inc. | Semiconductor light source temperature control |
EP0560358A2 (en) * | 1992-03-11 | 1993-09-15 | Sumitomo Electric Industries, Limited | Semiconductor laser and process for fabricating the same |
WO2008039313A1 (en) * | 2006-09-26 | 2008-04-03 | Corning Incorporated | Thermal compensation in semiconductor lasers |
-
1985
- 1985-05-20 JP JP60108508A patent/JPS61265885A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01225187A (en) * | 1988-03-04 | 1989-09-08 | Fujitsu Ltd | semiconductor light emitting device |
JPH02118927A (en) * | 1988-10-27 | 1990-05-07 | Canon Inc | Method and device for driving semiconductor laser |
JPH0460931A (en) * | 1990-06-26 | 1992-02-26 | Matsushita Electric Ind Co Ltd | Optical pickup |
WO1992007357A1 (en) * | 1990-10-17 | 1992-04-30 | Robert Bosch Gmbh | Circuit for scanning optical data substrates |
WO1992019014A1 (en) * | 1991-04-15 | 1992-10-29 | Honeywell Inc. | Semiconductor light source temperature control |
EP0560358A2 (en) * | 1992-03-11 | 1993-09-15 | Sumitomo Electric Industries, Limited | Semiconductor laser and process for fabricating the same |
EP0560358A3 (en) * | 1992-03-11 | 1994-05-18 | Sumitomo Electric Industries | Semiconductor laser and process for fabricating the same |
US5663975A (en) * | 1992-03-11 | 1997-09-02 | Sumitomo Electric Industries, Ltd. | Multi-beam semiconductor laser with separated contacts characterized by semiconductor mixed crystal and active layer |
WO2008039313A1 (en) * | 2006-09-26 | 2008-04-03 | Corning Incorporated | Thermal compensation in semiconductor lasers |
US7480317B2 (en) | 2006-09-26 | 2009-01-20 | Corning Incorporated | Thermal compensation in semiconductor lasers |
JP2010505266A (en) * | 2006-09-26 | 2010-02-18 | コーニング インコーポレイテッド | Temperature compensation in semiconductor lasers. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7411992B2 (en) | Light wavelength converting apparatus, control method of the same, and image projecting apparatus using the same | |
JPS6254991A (en) | Semiconductor laser | |
JPS61265885A (en) | Semiconductor laser and drive thereof | |
WO2000065699A2 (en) | Semiconductor diode lasers with thermal sensor control of the active region temperature | |
JP3226073B2 (en) | Semiconductor laser capable of polarization modulation and its use | |
Yu | Theoretical analysis of polarization bistability in vertical cavity surface emitting semiconductor lasers | |
JP3251966B2 (en) | Operating method of semiconductor laser array | |
JP2018041771A (en) | Light-emitting device and light transmission device | |
Scott et al. | Modeling the current to light characteristics of index‐guided vertical‐cavity surface‐emitting lasers | |
US4888783A (en) | Semiconductor laser device | |
US6671297B2 (en) | Wavelength conversion device | |
JPS61265886A (en) | Semiconductor laser and drive thereof | |
JPS6237590B2 (en) | ||
JPH05152674A (en) | Surface light emitting semiconductor laser with outer modulator | |
JPH08330680A (en) | Variable coherent light source and its controlling method | |
JPH04229681A (en) | Semiconductor laser equipped with semiconductor laser for compensation use; its driving method | |
JP2725012B2 (en) | Semiconductor light emitting device | |
JP3293968B2 (en) | Semiconductor laser device | |
JP4431008B2 (en) | Semiconductor laser thermal resistance evaluation apparatus and thermal resistance evaluation method | |
US20020003769A1 (en) | Near-field optical head | |
JP3149944B2 (en) | Semiconductor laser and driving method thereof | |
Minakuchi et al. | High-power, 790 nm, eight-beam AlGaAs laser array with a monitoring photodiode | |
JPS6362388A (en) | Semiconductor laser device | |
JP2737185B2 (en) | Temperature control circuit | |
JPS625679A (en) | Composite semiconductor laser device |