JPS6126205A - Manufacture of rare earth magnet - Google Patents
Manufacture of rare earth magnetInfo
- Publication number
- JPS6126205A JPS6126205A JP14664484A JP14664484A JPS6126205A JP S6126205 A JPS6126205 A JP S6126205A JP 14664484 A JP14664484 A JP 14664484A JP 14664484 A JP14664484 A JP 14664484A JP S6126205 A JPS6126205 A JP S6126205A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- feeder
- magnetic field
- rare earth
- pressing direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】 〔技術分野〕 この発明は、希土類磁石の製法に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for manufacturing rare earth magnets.
(背景技術〕
希土類磁石、特に希土類コバルト磁石は、高b1飽和磁
化、高保磁力を有する高性能磁石であることが知られて
おり、最近、小型化、軽量化の著しいスピーカやモータ
に、積極的に採用されるようになった。(Background technology) Rare earth magnets, especially rare earth cobalt magnets, are known to be high-performance magnets with high b1 saturation magnetization and high coercive force. began to be adopted.
希土類磁石の一般的な製法は次のとおりである。サマリ
ウム、セリウムなどの希土類元素を含有する合金(多く
は、コバルトを含み、他に性質改善のために添加される
元素や不純物も含まれる。The general manufacturing method for rare earth magnets is as follows. Alloys containing rare earth elements such as samarium and cerium (mostly cobalt, as well as other elements and impurities added to improve properties).
)を粉砕し微粉化する。この゛粉末を磁場中で加圧成形
することによって、粉末(磁粉)を磁化容易軸方向に配
向させ、成形体に磁気的な異方性をもたせる。つぎに、
この成形体を1)60℃〜1220℃で焼結し、急冷し
たのち、800℃前後で5〜10時間時効処理を行い徐
冷する。このようにして、高性能の希土類磁石が得られ
る。) is crushed and pulverized. By press-molding this powder in a magnetic field, the powder (magnetic powder) is oriented in the axis of easy magnetization, and the compact is given magnetic anisotropy. next,
This molded body is 1) sintered at 60° C. to 1220° C., rapidly cooled, and then aged at around 800° C. for 5 to 10 hours and slowly cooled. In this way, a high performance rare earth magnet can be obtained.
ところで、異方性磁石の飽和磁化は、磁区の配向度、す
なわち、粉末の配合度の影響が非常に大きい。粉末の配
向度を向上させるためには、磁場をかけた時、できるだ
け粉末が流動しやすい状態にあることが好ましい。加圧
方向に平行な磁場中で成形をする場合、最初、金型充填
部に上記粉末を充填し、ついで、上パンチ(上ポンチと
もいう)を粉末のすぐ上まで降ろして、磁場をかけなが
ら成形するので、粉末が配向しにくくなる。特に、薄板
状の物を成形するときは、充填された粉末と上パンチと
の間に、空間をあけずに磁場をかけるので、粉末が配向
しにくくなる。By the way, the saturation magnetization of an anisotropic magnet is greatly influenced by the degree of orientation of the magnetic domains, that is, the degree of blending of the powder. In order to improve the degree of orientation of the powder, it is preferable that the powder be in a state where it can flow as easily as possible when a magnetic field is applied. When molding is performed in a magnetic field parallel to the pressing direction, first fill the mold filling section with the above powder, then lower the upper punch (also referred to as upper punch) to just above the powder, and press the powder while applying the magnetic field. Since it is molded, it becomes difficult for the powder to become oriented. In particular, when molding a thin plate-like object, a magnetic field is applied between the filled powder and the upper punch without leaving any space, making it difficult for the powder to become oriented.
また、粉末を充填した時、粉末の間には、多くの空隙が
生じている。このため成形体の密度が場所によって不均
一になり、磁気特性もバラツキを生じ、また、薄板状の
物を成形する時には、割れが生じやすい。Furthermore, when the powder is filled, many voids are created between the powders. As a result, the density of the molded product becomes non-uniform depending on the location, the magnetic properties also vary, and cracks are likely to occur when molding a thin plate-like product.
この発明は、成形体の密度の不均一や磁気特性のバラツ
キなど上記の欠点をなくした希土類磁石の製法を提供す
ることを目的とする。An object of the present invention is to provide a method for manufacturing rare earth magnets that eliminates the above-mentioned drawbacks such as non-uniform density of compacts and variations in magnetic properties.
この発明は、上記の目的を達成するため、希土類元素を
含む磁石材料粉末を加圧方向と平行な方向に磁場をかけ
ながら加圧成形する工程を含む希土類磁石の製法におい
て、前記粉末を金型に充填する際にも、加圧方向と平行
な方向に磁場をかけることを特徴とする希土類磁石の製
法をその要旨としている。以下に、この発明の製法をそ
の一実施例をあられす図面に基づいて詳しく述べる。In order to achieve the above object, the present invention provides a method for manufacturing a rare earth magnet that includes a step of press-molding magnet material powder containing rare earth elements while applying a magnetic field in a direction parallel to the pressing direction. The gist of the method is to apply a magnetic field in a direction parallel to the pressurizing direction when filling the magnet. Hereinafter, one embodiment of the manufacturing method of the present invention will be described in detail with reference to the accompanying drawings.
この発明に用いる磁石材料は、希土類元素を含有する合
金(多くは、コバルトも含み、他に性質改善のために添
加される元素羊不純物も含まれる。)の粉末(通常は微
粉化したものである。)を用いる。成形には、加圧方向
と磁場方向とが平行になるような磁場発生手段付きのプ
レス装置を用いる。粉末の充填には、パンチ(ポンチと
もいう)と同じ断面形状を持つフィーダを用いる。The magnet material used in this invention is a powder (usually pulverized) of an alloy containing rare earth elements (often also containing cobalt, and also contains elemental impurities added to improve properties). ) is used. For molding, a press device with a magnetic field generating means is used so that the direction of pressure and the direction of the magnetic field are parallel. A feeder having the same cross-sectional shape as a punch (also called punch) is used to fill the powder.
第1図(a)に示すように、フィーダ1に上記磁石材料
の粉末を入れ密閉する。なお、フィーダ1の下面には、
第1図(ト))に示すように、メツシュ状フィルタ4が
設けられている。また、フィーダ1に対しては、矢印A
のようにフィーダ1内に空気を送り込み、圧力をかけら
れるようになっている。As shown in FIG. 1(a), the powder of the magnetic material described above is placed in a feeder 1 and the feeder 1 is sealed. In addition, on the bottom surface of feeder 1,
As shown in FIG. 1(G), a mesh filter 4 is provided. Also, for feeder 1, arrow A
Air is fed into the feeder 1 and pressure can be applied as shown in the figure.
ついで、第2図に示すように、上パンチ(図示せず)で
押すのと同様にフィーダ1を金型外わく2内に押し込ん
でいき、下バンチ3直上で静止させて、加圧方向と平行
な方向に磁場をかける。フィーダ内に空気を注入して圧
力を高め、上記粉末をメツシュ状フィルタ4の穴から噴
出させる。徐々にフィーダ1を上昇させて、規定の厚み
まで粉末を充填する。このとき、粉末は、空中を飛散し
て下パンチにくっつくまでの間に、上記磁場により配向
されるので、□非常に配向されやすい。また、全面にわ
たってほぼ均一に粉末が噴出されるので、密度分布が非
常に小さい。粉末の充填が終わったら、フィーダ1をは
ずし、上パンチを降ろして加圧成形(圧縮成形)する。Next, as shown in Fig. 2, the feeder 1 is pushed into the mold outer frame 2 in the same way as pushing with an upper punch (not shown), and is stopped directly above the lower bunch 3, so that the feeder 1 is pressed in the pressing direction. Apply a magnetic field in parallel directions. Air is injected into the feeder to increase the pressure, and the powder is ejected from the holes in the mesh filter 4. The feeder 1 is gradually raised to fill the powder to a specified thickness. At this time, the powder is oriented by the magnetic field before it is scattered in the air and attached to the lower punch, so it is very likely to be oriented. Furthermore, since the powder is ejected almost uniformly over the entire surface, the density distribution is extremely small. After filling the powder, the feeder 1 is removed, the upper punch is lowered, and pressure molding (compression molding) is performed.
この際にも、磁場をかけることがあるのが普通であるが
、必ずしもそうでなくてもよい。このようにして得られ
た成形体は、通常の製法に従って焼結すればよい。At this time, it is common to apply a magnetic field, but this does not necessarily have to be the case. The molded body thus obtained may be sintered according to a conventional manufacturing method.
次に、実施例と比較例を示す。Next, examples and comparative examples will be shown.
(実施例1)
加圧方向に垂直な断面が、外径35φ、内径22φのリ
ング状になるフィーダを用い、その下6部先端には10
0メツシユ相当の穴(0,147mm)を設けである。(Example 1) A feeder whose cross section perpendicular to the pressurizing direction has a ring shape with an outer diameter of 35φ and an inner diameter of 22φ is used, and the tips of the lower six parts have a diameter of 10 mm.
A hole (0,147mm) equivalent to 0 mesh is provided.
このフィーダに、平均粒径5μmの5rn2 (Co
、Cu、Fe、Zr)17 の合金粉末を入れ密閉する
。第3図に示すように、このフィーダ1の先端を、金型
外わく2.下パンチ3゜およびコアロッド5からなる金
型充填部に約0.5鶴はめ込んで静止させる。ついで、
加圧方向と平行な方向に約10’kOeの磁場をかけな
がら、フィーダに空気を注入し、フィーダ内を約1.5
気圧に保つ。そうすると前記粉末がフィーダ先端の穴4
′より噴出されて、金型充填部に充填される。1分間噴
出させて充填を終え、フィーダをはずし、上パンチを降
ろして、加圧方向と平行な方向に約20kOeの磁場を
かけながら加圧成形する。成形体の寸法は、外形35φ
、内径22φ、厚み2fiのリング状であった。この成
形体を1200℃。In this feeder, 5rn2 (Co
, Cu, Fe, Zr) 17 alloy powder is put in and sealed. As shown in FIG. 3, the tip of the feeder 1 is connected to the mold outer frame 2. It is fitted into the mold filling part consisting of the lower punch 3° and the core rod 5 by about 0.5 mm and left stationary. Then,
Air is injected into the feeder while applying a magnetic field of about 10'kOe in a direction parallel to the pressurizing direction, and the inside of the feeder is heated by about 1.5 kOe.
Maintain atmospheric pressure. Then, the powder is transferred to the hole 4 at the tip of the feeder.
' and fills the mold filling part. Filling is completed by ejecting for 1 minute, the feeder is removed, the upper punch is lowered, and pressure molding is performed while applying a magnetic field of about 20 kOe in a direction parallel to the pressing direction. The dimensions of the molded body are external diameter 35φ
It was ring-shaped with an inner diameter of 22φ and a thickness of 2fi. This molded body was heated to 1200°C.
1時間焼結して希土類磁石を得た。A rare earth magnet was obtained by sintering for 1 hour.
(比較例1)
実施例1と同じ磁石材料を用い、同じ金型充填部に、第
4図に示すようなフィードシューを用いて磁場をかけず
に粉体を落としこみ、実施例1と同様に成形して焼結し
た。(Comparative Example 1) Using the same magnetic material as in Example 1, powder was dropped into the same mold filling part using a feed shoe as shown in Fig. 4 without applying a magnetic field. It was molded and sintered.
比較例1の製法は、従来どおりのやり方で粉末を充填し
ており、上記のような薄板リング状のも。In the manufacturing method of Comparative Example 1, the powder was filled in the conventional manner, and a thin plate ring shape as described above was obtained.
のを成形すると、はとんど割れが生じており歩留まりが
悪いのに対して、この発明の製法である実施例1では、
はぼ100%の歩留まりで成形できた。実施例1および
比較例1で得られた希土類磁石をX線回折にかけて、磁
化容易軸方向のピーク強度と困難軸方向のピーク強度の
相対比より配向度を求めたところ、実施例1では95%
、比較例1では80%という結果が出た。すなわち、粉
末充填時に加圧方向と平行な方向に磁場をかけると、粉
末の配向度は格段に改善される。In contrast, in Example 1, which is the manufacturing method of this invention, in contrast, when molding a
The molding was completed with a yield of almost 100%. The rare earth magnets obtained in Example 1 and Comparative Example 1 were subjected to X-ray diffraction, and the degree of orientation was determined from the relative ratio of the peak intensity in the easy axis direction and the peak intensity in the hard axis direction. In Example 1, it was 95%.
In Comparative Example 1, the result was 80%. That is, if a magnetic field is applied in a direction parallel to the pressing direction during powder filling, the degree of orientation of the powder is significantly improved.
この発明の製法は、金型充填部に粉末を充填する際に、
加圧方向と平行な方向に磁場をかけるようにしている。In the manufacturing method of this invention, when filling powder into the mold filling part,
A magnetic field is applied in a direction parallel to the direction of pressurization.
このため、この製法によれば、粉末の流動状態の良いと
きに粉末が配向されるので、密度分布が少なく配向度の
良い成形体が得ら本、それを焼結すれば、より性能の良
い希土類磁石が得られる。Therefore, according to this manufacturing method, the powder is oriented when the powder is in a good fluidity state, so a compact with a small density distribution and a good degree of orientation can be obtained. A rare earth magnet is obtained.
第1図Ta)は、加圧方向に垂直な方向からみたフィー
ダの断面図、第1図(b)は、フィーダ下面に取付けら
れるメツシュ状フィルタ、第2図は、この発明の方法の
一実施例を示すものであって、加圧方向に垂直な方向か
ら見た断面図、第3図は、別の実施例を加圧方向に垂直
な方向から見た断面図、第4図は、比較例における加圧
方向に垂直な方向から見た断面図
1・・・フィーダ 2・・・金型外わく 3・・・下パ
ンチ4.4′・・・メツシュ状フィルタ 5・・・コア
ロッド
代理人 弁理士 松 本 武 彦 9用F
4り堅そ甫正書(0殉9
昭和59年 9月25日
昭和59年特許願第146644号
2、発明の名称
希土類磁石の製法
3、補正をする者
事件との関係 特許出願人
任 所 大阪府門真市大字門真1048番地
名 称(583)松下電工株式会社
代表者 イ懺暖鍛小林 有■
4、代理人
な し
6、補正の対象
明細書
7、補正の内容
(1) 明細書第4頁第14行に「空気」とあるを、
「窒素ガス」と訂正する。
(2)明細書第4頁第20行に「空気」とあるを、「窒
素ガス」と訂正する。
(3)明細書第5頁第9行ないし第1)行に「この際に
も、・・・なくてもよい。」とあるを、削除する。
(4) 明細書第6頁第5行に「空気」とあるを、「
窒素ガス」と訂正する。Fig. 1 Ta) is a sectional view of the feeder seen from a direction perpendicular to the pressurizing direction, Fig. 1(b) is a mesh filter attached to the bottom surface of the feeder, and Fig. 2 is an implementation of the method of the present invention. FIG. 3 is a sectional view of another embodiment as seen from a direction perpendicular to the pressing direction, and FIG. 4 is a comparison view. Cross-sectional view seen from the direction perpendicular to the pressurizing direction in the example 1...Feeder 2...Mold outer frame 3...Lower punch 4.4'...Mesh-like filter 5...Core rod agent Patent Attorney Takehiko Matsumoto 9F
4 Rikensoho Seisho (0 Marty 9 September 25, 1988 Patent Application No. 146644 2, Name of Invention Method for Manufacturing Rare Earth Magnets 3, Relationship with the Amendment Person Case Patent Applicant Location 1048 Oaza Kadoma, Kadoma City, Osaka Prefecture Name (583) Matsushita Electric Works Co., Ltd. Representative I Taikan Kobayashi 4. No agent 6. Specification subject to amendment 7. Contents of amendment (1) Specification No. On page 4, line 14, it says “air”.
Correct it to "nitrogen gas." (2) On page 4, line 20 of the specification, the word "air" is corrected to "nitrogen gas." (3) Delete the statement ``In this case as well, it is not necessary.'' from line 9 to line 1 of page 5 of the specification. (4) The word “air” on page 6, line 5 of the specification has been replaced with “
"Nitrogen gas," he corrected.
Claims (1)
な方向に磁場をかけながら加圧成形する工程を含む希土
類磁石の製法において、前記粉末を金型に充填する際に
も、加圧方向と平行な方向に磁場をかけることを特徴と
する希土類磁石の製法。(1) In the manufacturing method of rare earth magnets, which includes the step of press-molding magnet material powder containing rare earth elements while applying a magnetic field in a direction parallel to the pressing direction, pressure is also applied when filling the powder into a mold. A method for manufacturing rare earth magnets that is characterized by applying a magnetic field in a direction parallel to the direction of the magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14664484A JPS6126205A (en) | 1984-07-13 | 1984-07-13 | Manufacture of rare earth magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14664484A JPS6126205A (en) | 1984-07-13 | 1984-07-13 | Manufacture of rare earth magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6126205A true JPS6126205A (en) | 1986-02-05 |
Family
ID=15412387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14664484A Pending JPS6126205A (en) | 1984-07-13 | 1984-07-13 | Manufacture of rare earth magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6126205A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01114010A (en) * | 1987-10-28 | 1989-05-02 | Fuji Elelctrochem Co Ltd | Method of filling permanent magnet powder |
JPH01114008A (en) * | 1987-10-28 | 1989-05-02 | Fuji Elelctrochem Co Ltd | Bonded magnet manufacturing method |
JPH01114009A (en) * | 1987-10-28 | 1989-05-02 | Fuji Elelctrochem Co Ltd | Manufacturing method of bonded magnet |
JPH027506A (en) * | 1988-06-27 | 1990-01-11 | Fuji Elelctrochem Co Ltd | Method of filling space with permanent magnet powder |
JPH02273909A (en) * | 1989-04-15 | 1990-11-08 | Fuji Elelctrochem Co Ltd | Manufacture of bond magnet |
JP2006156425A (en) * | 2004-11-25 | 2006-06-15 | Tdk Corp | Method of manufacturing rare earth sintered magnet, intra-magnetic field molding apparatus, and metal die |
CN107088656A (en) * | 2016-02-18 | 2017-08-25 | 大同特殊钢株式会社 | Powder filling apparatus, sintered magnet manufacturing equipment and sintered magnet manufacture method |
-
1984
- 1984-07-13 JP JP14664484A patent/JPS6126205A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01114010A (en) * | 1987-10-28 | 1989-05-02 | Fuji Elelctrochem Co Ltd | Method of filling permanent magnet powder |
JPH01114008A (en) * | 1987-10-28 | 1989-05-02 | Fuji Elelctrochem Co Ltd | Bonded magnet manufacturing method |
JPH01114009A (en) * | 1987-10-28 | 1989-05-02 | Fuji Elelctrochem Co Ltd | Manufacturing method of bonded magnet |
JPH027506A (en) * | 1988-06-27 | 1990-01-11 | Fuji Elelctrochem Co Ltd | Method of filling space with permanent magnet powder |
JPH0477449B2 (en) * | 1988-06-27 | 1992-12-08 | Fuji Electrochemical Co Ltd | |
JPH02273909A (en) * | 1989-04-15 | 1990-11-08 | Fuji Elelctrochem Co Ltd | Manufacture of bond magnet |
JP2006156425A (en) * | 2004-11-25 | 2006-06-15 | Tdk Corp | Method of manufacturing rare earth sintered magnet, intra-magnetic field molding apparatus, and metal die |
CN107088656A (en) * | 2016-02-18 | 2017-08-25 | 大同特殊钢株式会社 | Powder filling apparatus, sintered magnet manufacturing equipment and sintered magnet manufacture method |
CN107088656B (en) * | 2016-02-18 | 2019-06-28 | 大同特殊钢株式会社 | Powder filling apparatus, sintered magnet manufacturing equipment and sintered magnet manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4438967B2 (en) | Manufacturing method of radial anisotropic magnet | |
US2652520A (en) | Composite sintered metal powder article | |
TW201142878A (en) | Powder for magnet | |
JP4816146B2 (en) | Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same | |
JPS6126205A (en) | Manufacture of rare earth magnet | |
US5762967A (en) | Rubber mold for producing powder compacts | |
WO2002060677A1 (en) | Powder molding method | |
JPH07161512A (en) | Production of radial anisotropic rare earth sintered magnet | |
JPH05195022A (en) | Production of sintered compact and magnet base | |
JPS6181607A (en) | Preparation of rare earth magnet | |
JP3057897B2 (en) | Manufacturing method of anisotropic rare earth magnet | |
JPH11195548A (en) | Production of nd-fe-b magnet | |
JP2000012359A (en) | Magnet and its manufacture | |
JP2952914B2 (en) | Manufacturing method of anisotropic bonded magnet | |
JP3651098B2 (en) | Manufacturing method of long radial anisotropic ring magnet | |
JP2000173810A (en) | Magnetic anisotropic bond magnet and its manufacture | |
KR100225497B1 (en) | METHOD FOR MANUFACTURING PERMANENT MAGNET BASED ON Re-TM-B ALLOY | |
JPH108102A (en) | Press compact method for magnetic alloy powder | |
JPH04112504A (en) | Manufacture of pare-earth magnet | |
JP2739329B2 (en) | Method for producing alloy powder for polymer composite type rare earth magnet | |
JPS61247009A (en) | Manufacture of permanent magnet material | |
JP2585443B2 (en) | Manufacturing method of resin-bonded permanent magnet molding | |
JPH0997730A (en) | Manufacture of sintered permanent magnet | |
JPS589804B2 (en) | Compression molding method in magnetic field | |
JP2005259977A (en) | Rare earth magnet manufacturing method |