JPS61260644A - Bonding device - Google Patents
Bonding deviceInfo
- Publication number
- JPS61260644A JPS61260644A JP60101454A JP10145485A JPS61260644A JP S61260644 A JPS61260644 A JP S61260644A JP 60101454 A JP60101454 A JP 60101454A JP 10145485 A JP10145485 A JP 10145485A JP S61260644 A JPS61260644 A JP S61260644A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- voltage
- circuit
- current
- spark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
- H01L24/78—Apparatus for connecting with wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/78268—Discharge electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/783—Means for applying energy, e.g. heating means by means of pressure
- H01L2224/78301—Capillary
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85009—Pre-treatment of the connector or the bonding area
- H01L2224/8503—Reshaping, e.g. forming the ball or the wedge of the wire connector
- H01L2224/85035—Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
- H01L2224/85045—Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19043—Component type being a resistor
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、スパーク放電を用いたワイヤg7デイング
装置に関し、特にスパーク放電状態を検出する回路を有
したボンディング装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wire g7 bonding device using spark discharge, and more particularly to a bonding device having a circuit for detecting a spark discharge state.
(従来の技術)
半導体集積回路(IC)部品の製造においてICチップ
のボンディングノヤッド部とリードフレームのビン端子
間を金属リード線、例えば金線で結線するワイヤデンデ
ィング工程の高速化はIC部品の大量生産の為、きわめ
て重要である。(Prior Art) In the manufacture of semiconductor integrated circuit (IC) parts, the wire ending process for connecting the bonding node part of the IC chip and the pin terminal of the lead frame with a metal lead wire, for example, a gold wire, is speeded up. This is extremely important for mass production of parts.
この為、近年自動ワイヤデンディング装置がIC製造ラ
インに大量に採用されている。このワイヤデンディング
工程において、金線とボンディング・ぐラド部との熱圧
着面積を大きクシ、かつ、・ぐラド部への機械的な衝撃
を緩和して・871部にクラックが発生しないようにす
る為には、金?−ルの形成が不可欠である。この金ゴー
ルの形成方法としては、金線とスパーク電極間の電気的
なスパーク放電によるものが現在、広〈実施されている
。For this reason, automatic wire ending devices have been widely adopted in IC manufacturing lines in recent years. In this wire-dending process, the thermocompression bonding area between the gold wire and the bonding/grading area is large, and the mechanical impact on the bonding/grading area is reduced to prevent cracks from occurring at the 871 part. Money to do it? - Formation of a system is essential. As a method for forming this gold goal, a method using electrical spark discharge between a gold wire and a spark electrode is currently widely practiced.
このような自動ワイヤボンディング装置のボンディング
サイクルは、次の3つの主要工程から成る。The bonding cycle of such automatic wire bonding equipment consists of the following three main steps.
(1) キャピラリを下降させ、パッド部と金ボール
を熱圧着する。(熱圧着工程)
(2) キャピラリを上昇させ、キャピラリ先端から
金線を所定の長さだけ送り出す。(金線送出工程)
(3) スパーク電極を金線の先端に配置し、スパー
ク放電により所定の金ポールを形成する。(金ボール形
成工程)
ここで従来の自動ワイヤボンディング装置では、金ボー
ル形成の有無を、放電電流の有無によって検出していた
。すなわち、金線送出工程において金線の送出量が適正
であれば金ポール形成工程においてスパーク放電が行な
われ、この放′16電流により” o ”レベルの信号
が検出されるが、金線の送出量が少ない場合、スパーク
電1ボと金線先端との間隙が大きくなりスパーク放電が
発生せず、放電電流が流れないため、” L ”レベル
の信号が検出される。そこで、” 11 ”レベルの信
(じが検t14されればボッディングサイクルを続行し
、1、″レベルが検出されれば・ビンディングサイクル
を停止していた。(1) Lower the capillary and thermocompress the pad and gold ball. (Thermocompression bonding process) (2) Raise the capillary and send out a predetermined length of gold wire from the tip of the capillary. (Gold wire delivery process) (3) A spark electrode is placed at the tip of the gold wire, and a predetermined gold pole is formed by spark discharge. (Gold Ball Formation Step) In the conventional automatic wire bonding apparatus, the presence or absence of gold ball formation was detected by the presence or absence of a discharge current. That is, if the amount of gold wire delivered is appropriate in the gold wire delivery process, spark discharge will occur in the gold pole forming process, and a signal at the "o" level will be detected by this emitted current. When the amount is small, the gap between the spark electrode 1 and the tip of the gold wire becomes large, and spark discharge does not occur, and no discharge current flows, so that an "L" level signal is detected. Therefore, if the "11" level was detected (t14), the binding cycle was continued, and if the "1" level was detected, the binding cycle was stopped.
(発明が解決しようとする問題点)
しかしながら、金線送出工程において、金、腺の送出量
が多すぎて、スパーク電極と短絡した場合、スパーク放
tが行なわれないにもかかわらず/7電電流が流れてし
1う。すなわち、金d−〜ルが形成されていないのに”
II ”レベルの信号が検出されるのである。(Problem to be Solved by the Invention) However, in the gold wire delivery process, if the amount of gold and glands sent out is too large and short-circuits with the spark electrode, even though spark discharge is not performed, /7 A current flows. In other words, even though gold d-~le has not been formed.”
II'' level signal is detected.
このような状態において、ボンディング装置は” 11
”レベルの信号が検出されているだめゾンデインクサ
イクルを続行するので、ボンディング装置のキャピラリ
の先端が直接・やラド部を「空うちJしてし1い、・セ
ット8部にクラ、りを生じさせながらボンディングする
。すなわち、ボンディング不良のTOを製造してしまう
という欠点があった。In this state, the bonding device
If the level signal is not detected, the sensor ink cycle will continue, so the tip of the capillary of the bonding device will not directly touch the Rad section. In other words, there is a drawback that a TO with poor bonding is produced.
(問題点を解決するだめの手段)
そこでこの発明のボンディング装置では放電電流を検出
する回路の他に、放電電圧の分圧抵抗電圧を検出する回
路および、放電電流の検出信号と放電電圧の検出信号と
を比較して放電検出信号を出力する回路とを設けた。(Means for Solving the Problem) Therefore, in addition to the circuit for detecting the discharge current, the bonding apparatus of the present invention includes a circuit for detecting the partial resistance voltage of the discharge voltage, and a circuit for detecting the discharge current detection signal and the discharge voltage. A circuit that compares the discharge detection signal with the discharge detection signal and outputs a discharge detection signal is provided.
(作用)
正常なスパーク放電が行なわれた場合、放電電流を検出
する回路および放電電圧の分圧抵抗電圧を検出する回路
は共に検出する。(Operation) When a normal spark discharge occurs, both the circuit for detecting the discharge current and the circuit for detecting the partial resistance voltage of the discharge voltage detect it.
スパーク放電が行なわれなかった場合、放電電流を検出
する回路は電流を検出しないが、放電電圧の分圧抵抗電
圧を検出する回路は、全電圧が分圧抵抗にかかるため電
圧を検出する。If spark discharge does not occur, the circuit that detects the discharge current does not detect current, but the circuit that detects the divided resistor voltage of the discharge voltage detects the voltage because the entire voltage is applied to the divided resistor.
金線がスパーク電極と短絡した場合、放電電流を検出す
る回路は電流を検出するが、放電電圧の分圧抵抗を検出
する回路は短絡による電圧降下のため分圧抵抗に電圧が
ほとんどかからず電圧を検出しない。If the gold wire is short-circuited with the spark electrode, the circuit that detects the discharge current will detect the current, but the circuit that detects the voltage-dividing resistor of the discharge voltage will detect that almost no voltage is applied to the voltage-dividing resistor due to the voltage drop due to the short circuit. No voltage detected.
ここで、枚重電流を検出する回路と放電電圧を検出する
回路との出力を比較して正しい放電状態を検出する。Here, the correct discharge state is detected by comparing the outputs of the circuit for detecting the sheet weight current and the circuit for detecting the discharge voltage.
(実施例)
第1図は本発明の一実施例を示す図であり、直流高電圧
発生回路1と放電電流検出回路2と放電電圧の分圧抵抗
電圧検出回路3と放電信号発生回路4とから回路部が構
成される。ス・e−り放電部5は直流高電圧発生回路1
で発生した高電圧により、実際にスパーク放電を行なう
回路である。スパーク放電回路5はスパーク電極6、ワ
イヤクラン・ぐ7、金線8から構成される。金線8は、
金線スプール9から鉛直方向に送り出され、ワイヤクラ
ンパ7の間隙を通ってキャピラリ10の針穴へ案内され
る。キャピラリ10はボンディングアーム11と一体と
なって上下方向に駆動される。捷たワイヤクランパ′P
7は時間的に金線8をフランジし、スパーク電極6は水
平方向に角度θ(ここでは約60°)だけ回転して、キ
ャピラリ10の真下に配置される。このとき、キャピラ
リ10の先端とスパーク電極6の距離t1及び金線8先
端とスパーク電極6の距離t2は設定値(この例ではt
、=1〜2縮、 t2=0.3〜0.5順)に決められ
る。(Embodiment) FIG. 1 is a diagram showing an embodiment of the present invention, which includes a DC high voltage generation circuit 1, a discharge current detection circuit 2, a discharge voltage division resistance voltage detection circuit 3, and a discharge signal generation circuit 4. The circuit section is constructed from the following. The direct current high voltage generation circuit 1
This is a circuit that actually performs spark discharge using the high voltage generated in the circuit. The spark discharge circuit 5 is composed of a spark electrode 6, a wire clamp 7, and a gold wire 8. Gold wire 8 is
The wire is sent out vertically from the gold wire spool 9 and guided through the gap between the wire clampers 7 and into the needle hole of the capillary 10. The capillary 10 is driven in the vertical direction together with the bonding arm 11. Cut wire clamper'P
7 temporally flanges the gold wire 8, and the spark electrode 6 is rotated horizontally by an angle θ (about 60° here) and placed directly below the capillary 10. At this time, the distance t1 between the tip of the capillary 10 and the spark electrode 6 and the distance t2 between the tip of the gold wire 8 and the spark electrode 6 are set values (in this example, t
, = 1 to 2 reduction, t2 = 0.3 to 0.5 order).
直流高電圧発生回路1は高周波高圧電源12、スイッf
−13、ダイオード14、ダイオード15、コンデンサ
16、コンデンサ17、スハーク放電回路5で放電が起
こった場合の保護抵抗18、スパーク放電回路5て放電
が起こらなかった場合の保護tI(抗19から構成され
る。The DC high voltage generation circuit 1 includes a high frequency high voltage power supply 12 and a switch f.
-13, diode 14, diode 15, capacitor 16, capacitor 17, protection resistor 18 in case discharge occurs in spark discharge circuit 5, protection tI (resistor 19) in case discharge does not occur in spark discharge circuit 5. Ru.
放電電流検出回路2では、放電電流により抵抗20に降
下する電圧でトランジスタ21をスイッチング動作させ
、増幅した波形をインバータ22で波形整形して、放電
電流信号を得ている。In the discharge current detection circuit 2, a transistor 21 is operated to switch using a voltage that drops across a resistor 20 due to the discharge current, and the amplified waveform is shaped by an inverter 22 to obtain a discharge current signal.
放電電圧の分圧抵抗電圧検出回路3では、スパーク電極
6と金線8の間に並列に配置された十分大きな(ここで
は30 MQ )分圧抵抗23と分圧抵抗24(ここで
は150にΩ)により、分圧抵抗24にかかる電圧を入
力インピーダンスの大きなC−MOSレベルコンバータ
25により波形整形して放電電圧信号を得ている。In the discharge voltage dividing resistor voltage detection circuit 3, there is a sufficiently large (here 30 MQ) dividing resistor 23 and a dividing resistor 24 (here 150 Ω) arranged in parallel between the spark electrode 6 and the gold wire 8. ), the voltage applied to the voltage dividing resistor 24 is waveform-shaped by the C-MOS level converter 25 having a large input impedance to obtain a discharge voltage signal.
放電信号発生回路4は、否定入力AND論理回路26で
構成され、前記放電電流信号と前記放電電圧信号の論理
積により放電信号を出力する。The discharge signal generation circuit 4 is constituted by a negative input AND logic circuit 26, and outputs a discharge signal based on the logical product of the discharge current signal and the discharge voltage signal.
次に本発明の実施例による動作を第2図のタイミング図
を参照して説明する。第2図において(1)はスパーク
電極6と金線8間に良好な放電が得られた時、(II)
は、金#j18の送出量が少なくて、放電が起こらなか
った場合、(ト)は金線8の送出量が多すぎて、金線8
とスパーク電極6とが短絡した場合である。Next, the operation according to the embodiment of the present invention will be explained with reference to the timing diagram of FIG. In Fig. 2, (1) shows that when a good discharge is obtained between the spark electrode 6 and the gold wire 8, (II)
In (g), the amount of gold #j18 sent out was too small and no discharge occurred; in (g), the amount of gold wire 8 sent out was too large, and the gold wire 8
This is a case where the spark electrode 6 and the spark electrode 6 are short-circuited.
まず、ス・に−り電極6がキャピラリ10の真Fから角
度θ(ここでは約60°)だけ回転した後、ボンディン
グアーム11と一体になったキャピラリ10が下降して
ボンディング動作を行なう。この後、キャピラリ10が
上昇し、ス・e−り電WL6が再び角度θだけ回転して
、キャビラーリ10の真下に配置される。このとき、金
線8は金線スゾール9から規定の長さA3(13=t、
−t2=o、s〜1..7n+m)だけ送り出され、ワ
イヤクランノぐ7が金線8をクランプする。この為金線
8はワイヤクラン・ぐ7全通してアースラインに接続さ
れる。First, after the silver electrode 6 is rotated by an angle θ (approximately 60° in this case) from the true point F of the capillary 10, the capillary 10 integrated with the bonding arm 11 is lowered to perform a bonding operation. Thereafter, the capillary 10 rises, and the spindle current WL6 rotates again by the angle θ and is placed directly below the capillary 10. At this time, the gold wire 8 has a specified length A3 (13=t,
−t2=o, s~1. .. 7n+m), and the wire clamp 7 clamps the gold wire 8. For this reason, the gold wire 8 is connected to the ground line through the entire wire clamp 7.
次にタイミング信号発生回路27よりタイミング信号(
A)が出力されるとスイッチ13が’r+(この実冷1
]では5〜15ミリ秒)間、閉じ整流回路が形成されて
、スパーク電極6と金線8の間に直流高′成圧が印加さ
れる。Next, the timing signal generation circuit 27 generates a timing signal (
A) is output, the switch 13 switches 'r+(this actual cooling 1
], a closed rectifier circuit is formed for 5 to 15 milliseconds), and a DC high voltage is applied between the spark electrode 6 and the gold wire 8.
ここで、ス・)−り電極6と金線8との間隙t2が適正
であれば、スパーク放電が発生し、金線8の先端を熔融
して、金ポール8aを形成する。このような良好な放電
状態であれば、コンデンサ16の正極から流れ出した放
電電流は、保護抵抗18、スが−ク電極6、空中ギヤ、
ゾ、金線羽を通ってアースラインに流れ込み、さらに抵
抗20を通ってコンデンサー7の負極へ流入する。この
とき抵抗20では、放電電流による電圧降下の為” l
、″レベル(−2,5V )の波形が得られる(第2図
(Ii) −(+) )。この信号をトランジスタ21
のベースに加えてスイッチング動作させ、さらにインバ
ータ22で波形整形すると” L ”レベルの放電電流
信号が得られる(第2図(C) −(+) )。Here, if the gap t2 between the strip electrode 6 and the gold wire 8 is appropriate, spark discharge will occur, melting the tip of the gold wire 8, and forming the gold pole 8a. In such a good discharge state, the discharge current flowing out from the positive electrode of the capacitor 16 will flow through the protective resistor 18, the spark electrode 6, the aerial gear,
It flows into the ground line through the gold wire feather, and further flows into the negative electrode of the capacitor 7 through the resistor 20. At this time, at the resistor 20, due to the voltage drop due to the discharge current, "l
," level (-2.5V) is obtained (Fig. 2 (Ii) - (+)). This signal is transferred to the transistor 21.
By performing switching operation in addition to the base of , and further waveform shaping by the inverter 22, a discharge current signal of "L" level is obtained (FIG. 2(C)-(+)).
1だ、分圧抵抗24には、放電電流による電圧降下を除
いた電圧のうち、分圧された電圧(5V)がかかる(第
2図の) −(1) )。この波形は電流が非常に小さ
い為入力インピーダンスの大きなC−MOSレベルコン
バータ25で波形整形すると信号が消えることなく ”
L ”レベルの放電電圧信号が得られる(第2図(E
) −(1) )。1, the divided voltage (5V) of the voltage excluding the voltage drop due to the discharge current is applied to the voltage dividing resistor 24 (-(1) in Fig. 2). This waveform has a very small current, so if you shape the waveform with the C-MOS level converter 25, which has a large input impedance, the signal will not disappear.
A discharge voltage signal of L” level is obtained (see Fig. 2 (E
) −(1) ).
前記放電電流信号と放電電圧信号を否定入力AND論理
回路26に入力するとパ11″ルベルの放電検出信号が
出力される(第2図(F) −(1) )。When the discharge current signal and the discharge voltage signal are input to the negative input AND logic circuit 26, a discharge detection signal of 11'' level is output (FIG. 2(F)-(1)).
次にス・に−ク電極6と金線8との間隙t3が大きくて
ス・Q−り放電が起こらなかった場合、コンデンサ16
の正極から流れ出した電流は保護抵抗19を通してコン
デンサ17の負極に流れ込む為、抵抗20での信号は変
化しない(第2図(H) −(II) )。Next, if the gap t3 between the screen electrode 6 and the gold wire 8 is large and no screen discharge occurs, the capacitor 16
Since the current flowing from the positive terminal of the capacitor 17 flows through the protective resistor 19 to the negative terminal of the capacitor 17, the signal at the resistor 20 does not change (Fig. 2 (H) to (II)).
すなわち放電電流信号は’ H”レベルのまま変化しな
い(第2図(0) −(II) )。一方、直流高電圧
発生回路1の高電圧は、電圧降下がないまま、分圧抵抗
23と分圧抵抗24にかかる為、分圧抵抗24の波形は
11v程度の” H”レベル信号となる(第2図の)
−([1) )。これをC−MOSレベルコン・ぐ−タ
25で波形整形すると“L′”レベルの放電電圧信号が
得られる(第2図(E) −(II) )。In other words, the discharge current signal remains at the 'H' level and does not change (Fig. 2 (0) - (II)).On the other hand, the high voltage of the DC high voltage generation circuit 1 is connected to the voltage dividing resistor 23 without any voltage drop. Since it is applied to the voltage dividing resistor 24, the waveform of the voltage dividing resistor 24 becomes a "H" level signal of about 11V (as shown in Figure 2).
-([1)). When this waveform is shaped by the C-MOS level converter 25, a discharge voltage signal of "L'" level is obtained (FIGS. 2(E)-(II)).
しかし、否定入力AND論理回路の出力は、放電電流信
号が’ II ”レベルの為” L ”レベルのまま変
化しない(第2図(F) −(II) )。However, since the discharge current signal is at the 'II' level, the output of the negative input AND logic circuit remains at the 'L' level and does not change (FIGS. 2(F)-(II)).
次に金線8の送出量が多すぎて、スパーク電極6と短絡
してしまった場合、抵抗20を通る電流が大きくなる為
電圧降下により゛′L″レベル(−3V)信号が出力さ
れる(第2図(B) −([1) )。Next, if the amount of gold wire 8 sent out is too large and short-circuits with the spark electrode 6, the current passing through the resistor 20 will increase, resulting in a voltage drop and a ``L'' level (-3V) signal will be output. (Figure 2(B)-([1)).
この信号によりトランジスタ21をスイッチング動作さ
せさらにインバータ22で波形整形するとII l、
+ルベルの放電電流信号が得られる(第2図(C)−(
至))。When this signal causes the transistor 21 to perform a switching operation and the inverter 22 further shapes the waveform, II l,
A discharge current signal of +Level is obtained (Figure 2 (C) - (
To)).
一方、短絡電流による電圧降下の為分圧抵抗24にはほ
とんど電圧がかからない(第2図(9)−(ト))。す
なわち、放電電圧信号は“H”レベルの!、ま変化しな
い。On the other hand, due to the voltage drop due to the short circuit current, almost no voltage is applied to the voltage dividing resistor 24 ((9)-(g) in FIG. 2). In other words, the discharge voltage signal is at "H" level! , it doesn't change.
この為、否定入力AND論理回路の出力は“′L″レベ
ルのまま変化しない(第2図(F) −GID ’)。Therefore, the output of the negative input AND logic circuit remains at the "'L" level and does not change (FIG. 2(F)-GID').
以上、説明したように本発明による放電検出回路を使用
すれば、良好な放電が得られた時だけ” II ”レベ
ル信号を出力し、金ゴールができない場合には゛′L′
″レベル信号を出力することができる。As explained above, if the discharge detection circuit according to the present invention is used, the "II" level signal is output only when a good discharge is obtained, and the "L" level signal is output when a gold goal cannot be achieved.
″It is possible to output a level signal.
ここで否定入力AND論理回路に禁11−信号発生回路
28を接続すると、良好な放電の場合は、ボンディング
ダイクルを進め、放電状態が不良であればデンディング
サイクルを停止することができる。If the 11-signal generating circuit 28 is connected to the negative input AND logic circuit, the bonding cycle can be advanced if the discharge is good, and the bonding cycle can be stopped if the discharge condition is bad.
(発明の効果)
以上説明したように、本発明のボンディング装置によれ
ば、正常なスノR−り放電が行なわれている時のみデン
ディングサイクルを続行し、ス・ン一り放電が行なわれ
ない時や金線による短絡が起こった場合はボンディング
サイクルを停止することができるため、連続して不良I
Cが製造される原因となっているパ空うち″事故が完成
に防止でき全
る。(Effects of the Invention) As explained above, according to the bonding device of the present invention, the dending cycle is continued only when a normal snow discharge is being performed, and a single discharge is not performed. The bonding cycle can be stopped if the wire is not present or a short circuit occurs due to the gold wire.
It is possible to completely prevent the "empty air" accident that causes C to be manufactured.
第1図は本発明の一実施例を示す図、第2図は第1図の
各信号のタイミング図である。
1・・・直流電圧発生回路、2・・・放電電流検出回路
、3・・・放電電圧の分圧抵抗電圧検出回路、4・・・
放電信号発生回路、5・・・スパーク放電部、28・・
禁止信号発生回路。
特許出願人 沖電気工業株式会社
宮崎沖電気株式会社FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a timing diagram of each signal in FIG. 1. DESCRIPTION OF SYMBOLS 1... DC voltage generation circuit, 2... Discharge current detection circuit, 3... Discharge voltage division resistance voltage detection circuit, 4...
Discharge signal generation circuit, 5... Spark discharge section, 28...
Prohibition signal generation circuit. Patent applicant: Oki Electric Industry Co., Ltd. Miyazaki Oki Electric Co., Ltd.
Claims (1)
を行なうスパーク放電部と、 このスパーク放電部へ電圧を供給する電源部と、この電
源部から前記スパーク放電部へ供給した電流を検出する
放電電流検出回路と、 前記電源部から前記スパーク放電部へ供給した電圧の分
圧抵抗電圧を検出する放電電圧の分圧抵抗電圧検出回路
と、 この放電電圧の分圧抵抗電圧検出回路と前記放電電流検
出回路との出力を比較して放電信号を発生する放電信号
発生回路と、 この放電信号により前記スパーク放電部にボンディング
禁止信号を送出する禁止信号発生回路とからなるボンデ
ィング装置。[Claims] A spark discharge section that forms gold balls by spark discharge and performs bonding, a power supply section that supplies voltage to the spark discharge section, and a current supplied from the power supply section to the spark discharge section. a discharge current detection circuit for detecting a discharge current; a discharge voltage division resistance voltage detection circuit for detecting a voltage division resistance voltage of the voltage supplied from the power supply section to the spark discharge section; and a division resistance voltage detection circuit for the discharge voltage. A bonding device comprising: a discharge signal generation circuit that generates a discharge signal by comparing an output with the discharge current detection circuit; and an inhibition signal generation circuit that transmits a bonding inhibition signal to the spark discharge section based on the discharge signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60101454A JPS61260644A (en) | 1985-05-15 | 1985-05-15 | Bonding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60101454A JPS61260644A (en) | 1985-05-15 | 1985-05-15 | Bonding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61260644A true JPS61260644A (en) | 1986-11-18 |
Family
ID=14301138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60101454A Pending JPS61260644A (en) | 1985-05-15 | 1985-05-15 | Bonding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61260644A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02135746A (en) * | 1988-11-17 | 1990-05-24 | Marine Instr Co Ltd | Ball forming device and detecting method for wire disconnection |
JPH0383355A (en) * | 1989-08-28 | 1991-04-09 | Marine Instr Co Ltd | Wire disconnection detector for semiconductor wire bonder |
-
1985
- 1985-05-15 JP JP60101454A patent/JPS61260644A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02135746A (en) * | 1988-11-17 | 1990-05-24 | Marine Instr Co Ltd | Ball forming device and detecting method for wire disconnection |
JPH0383355A (en) * | 1989-08-28 | 1991-04-09 | Marine Instr Co Ltd | Wire disconnection detector for semiconductor wire bonder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6247629B1 (en) | Wire bond monitoring system for layered packages | |
CN103208436B (en) | The method of resetkey locking device from bonding fault | |
GB1536872A (en) | Electrical inter-connection method and apparatus | |
CN109844914A (en) | Routing method and throwing device | |
CN100365785C (en) | Wire bonding apparatus and method for clamping a lead | |
CN108173241A (en) | Protection circuit of IPM module | |
JPH07106365A (en) | Apparatus and method for monitoring wire tail length for wire bonder | |
JP2617351B2 (en) | Wire connection failure detection method | |
JPS61260644A (en) | Bonding device | |
US4687897A (en) | Flame-off limited circuit for wire bonding ball forming apparatus | |
CN100516826C (en) | Method for checking the quality of wedge joints | |
KR20000071716A (en) | Bonding failure inspection method and apparatus for bump bonding | |
CN207009435U (en) | Wafer sort structure | |
JP4316262B2 (en) | Test method for semiconductor devices | |
CN202246969U (en) | Blocked-material detecting device for lead frame | |
JPH0383355A (en) | Wire disconnection detector for semiconductor wire bonder | |
JPH07176560A (en) | Wire bonding equipment | |
JP3908640B2 (en) | Wire bonding method and apparatus | |
JPS63136640A (en) | Ball formation device for wire bonding | |
JP2534136B2 (en) | Ball forming method in wire bonder | |
JPH08264586A (en) | Judgement method of semiconductor device state and state judging device | |
JPS5917977B2 (en) | Ball forming method in wire bonder | |
JP4303668B2 (en) | Wire bonding apparatus and wire bonding method | |
JPH08236587A (en) | Defective bonding detecting method and device in wire bonding device | |
JPH0964116A (en) | Method and apparatus for detecting defective bonding in wire bonding device |