[go: up one dir, main page]

JPS61259445A - Rotary anode x-ray tube - Google Patents

Rotary anode x-ray tube

Info

Publication number
JPS61259445A
JPS61259445A JP60099613A JP9961385A JPS61259445A JP S61259445 A JPS61259445 A JP S61259445A JP 60099613 A JP60099613 A JP 60099613A JP 9961385 A JP9961385 A JP 9961385A JP S61259445 A JPS61259445 A JP S61259445A
Authority
JP
Japan
Prior art keywords
heat
anode
pipe
group
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60099613A
Other languages
Japanese (ja)
Inventor
Setsuo Yamamoto
節雄 山本
Toshitaka Kuroki
黒木 敏高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60099613A priority Critical patent/JPS61259445A/en
Publication of JPS61259445A publication Critical patent/JPS61259445A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/107Cooling of the bearing assemblies

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Abstract

PURPOSE:To prevent a rotary-anode X-ray tube from being broken by heat and enable continuous operation of the device by installing a double-annular heat pipe between an insulating ceramic and a magnetic substance in order to cool the magnetic substance located outside the pipe and block the heat transmitted from inside the pipe by means of a working liquid contained in the pipe. CONSTITUTION:The heat of a rotary anode 2 is carried to the end of a rotary shaft by a monotubular rotary heat pipe 10A and is then transmitted to cooling oil in a cooling oil path 16 by means of a radiation fin group 14. At this point, a working liquid evaporizes on the inner surface of the pipe 10A located in the center of the heated anode 2 to produce a vapor which is condensed at the end of the fin group 14, and the liquid produced by condensation is returned to the evaporation part by centrifugal force and the capillary force of a wick 17 to cool the anode 2. As a magnetic substance 12 is heated although the anode 2 is cooled, a double-annular rotary heat pipe 11 is installed between an insulating ceramic 7 and the magnetic substance 12. The working liquid of the double-annular pipe 11 is located only on the inner surface of its outer case to effectively cool only the magnetic substance 12 located outside the pipe 11, thereby acting as a layer for blocking the heat transmitted from inside.

Description

【発明の詳細な説明】 〔発明の技術分野〕 °本発明は、回転陽極X線管において、X線管使用時に
陽極に発生する熱を、軸受a!l構あるいは駆動機構へ
熱を伝えることなく外部へ伝達し1回転陽極および軸の
過熱によるX線管の破損を防止し、かつX線管の連続運
転を可能とする技術に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] °The present invention provides a rotating anode X-ray tube in which heat generated in the anode during use of the X-ray tube is absorbed by a bearing a! The present invention relates to a technology that transmits heat to the outside without transmitting heat to the structure or drive mechanism, prevents damage to the X-ray tube due to overheating of the anode and shaft in one rotation, and enables continuous operation of the X-ray tube.

〔発明の技術的背景〕[Technical background of the invention]

第4図を参照して従来の構造を説明する。 The conventional structure will be explained with reference to FIG.

第4図は、磁気軸受で回転軸をささえる機構を持った回
転陽極X線管の概念図である。図中15はX線管構成部
品を支え、かつ内部を真空に保つ真空容器である。真空
容器15内には、傘状の回転陽極2が2つの磁気軸受機
構3によって支えられている。通常は、この回転陽極2
は高電圧が印加(+75KV)されるため、磁気軸受部
で放磁を起さぬよう絶縁用セラミック軸7が上記回転陽
極2に接続されている。上記回転陽極2との間で放電さ
せ、X線を発生させるため(二1回転陽極2と相対して
陽極lが設置されている。磁気軸受3で上記真空容器1
5の中に保持された上記回転陽極2および絶縁用セラミ
ック軸7に、回転駆動力を与えるために、駆動モータス
テータ4および駆動モータコイル5が、軸周に配置され
る。前記絶縁用セラミック軸7の外周(二は、磁気軸受
3の保持力を発生させるために磁性体12が巻かれてい
る。すだ。
FIG. 4 is a conceptual diagram of a rotating anode X-ray tube having a mechanism for supporting a rotating shaft with a magnetic bearing. In the figure, reference numeral 15 denotes a vacuum container that supports the X-ray tube components and keeps the interior vacuumed. Inside the vacuum vessel 15, an umbrella-shaped rotating anode 2 is supported by two magnetic bearing mechanisms 3. Usually, this rotating anode 2
Since a high voltage (+75 KV) is applied to the insulating ceramic shaft 7, the insulating ceramic shaft 7 is connected to the rotating anode 2 so as not to cause demagnetization in the magnetic bearing section. In order to generate X-rays by discharging between the rotating anode 2 and the rotating anode 2, an anode 1 is installed opposite the rotating anode 2.
A drive motor stator 4 and a drive motor coil 5 are arranged around the shaft in order to provide rotational driving force to the rotating anode 2 and the insulating ceramic shaft 7 held in the rotary anode 5 . A magnetic material 12 is wound around the outer periphery of the insulating ceramic shaft 7 in order to generate a holding force for the magnetic bearing 3.

回転軸の回転中心からの変位を検知し、磁気軸受3を制
御するための信号を得るために、非接触変位計6が設置
されている。回転軸の片方(−は、上記絶縁用セラミッ
ク軸7の中心を貫通して電流導入軸18が設置されてお
り、前記回転陽極2に、軸端部の電気接点8を介して外
部から電流を導入する。また回転軸の他方(:も′電気
接点8が設置され、回転軸の磁性体12などの電位を接
地している。前記磁気軸受3.駆動用モータステータ4
.駆動用モータコイル5および非接触変位1ti6が過
熱されるのを防ぐため:;冷冷却油絡路16設けられて
いる。
A non-contact displacement meter 6 is installed to detect the displacement of the rotating shaft from the center of rotation and obtain a signal for controlling the magnetic bearing 3. One of the rotating shafts (- indicates that a current introducing shaft 18 is installed passing through the center of the insulating ceramic shaft 7, and a current is applied to the rotating anode 2 from the outside through the electrical contact 8 at the end of the shaft. In addition, an electric contact 8 is installed on the other side of the rotating shaft to ground the electric potential of the magnetic material 12, etc. of the rotating shaft.
.. In order to prevent the drive motor coil 5 and the non-contact displacement 1ti6 from being overheated, a cooling oil circuit 16 is provided.

〔背景技術の問題点〕[Problems with background technology]

小屋のX線管は、出力も小さく、また陽極も固定陽極で
あるので放電(X線発生);:よって受ける熱を冷却す
ることは比較的容易であるが、本件の場合のような回転
陽極型のX線管の場合は、出力も大きくまた回転部分も
存在するので冷却は容易でない。さらに、X線管は真空
管の一種で内部は高真空に保たれており1回転部分の一
部を外部に引き出すこともシールの問題で困難である。
Since the X-ray tube in the shed has a small output and the anode is a fixed anode, it is relatively easy to cool down the heat received by discharge (X-ray generation). In the case of a type X-ray tube, cooling is not easy because the output is large and there are rotating parts. Furthermore, an X-ray tube is a type of vacuum tube, and its interior is kept at a high vacuum, so it is difficult to extract a portion of the tube that makes one revolution to the outside due to sealing problems.

そこで、一般に回転陽極2と真空容器15との間で放射
伝熱によって熱放散を行うか、回転陽極(ターゲット部
分)の熱容量を大きくしておき、間欠的な運転を行うな
どして、回転陽極の熱負過による破損を防いでいる。し
かしながら、X線管の出力の増大と医療機関等のX線管
利用者から出されている連続使用の条件等からさらに積
極的1;回転陽極を冷却する必要が生じている。特に磁
気軸受を利用して回転陽極を支持する場合、回転軸廻り
に設置する磁性材料の許容上限温度が比較的低いためシ
ュセラミックス材などC;よる断熱だけでは不十分な場
合が多い。
Therefore, in general, heat is dissipated by radiation heat transfer between the rotating anode 2 and the vacuum vessel 15, or the heat capacity of the rotating anode (target part) is increased and intermittent operation is performed. This prevents damage due to heat load. However, due to the increase in the output of X-ray tubes and the requirements for continuous use from users of X-ray tubes in medical institutions, etc., there is a need to further actively cool the rotating anode. In particular, when a rotating anode is supported using a magnetic bearing, the upper limit of allowable temperature of the magnetic material installed around the rotating shaft is relatively low, so insulation using ceramic materials or the like is often insufficient.

〔発明の目的〕[Purpose of the invention]

本発明は、前記問題点を考慮してなされたものであり、
積極的冷却法を導入すること(:よって。
The present invention has been made in consideration of the above problems, and
Introducing active cooling (: therefore.

熱負荷による破損の防止と連続使用を可能書ニジた回転
陽極X線管を得ることを目的とする。
The object of the present invention is to obtain a rotating anode X-ray tube that can be used continuously and is prevented from being damaged by heat load.

〔発明の概要〕[Summary of the invention]

本発明による回転陽極X線管は、X線発生時に高温に加
熱される回転陽極の熟を軸端に伝熱するために、回転陽
極の中央部分から軸端に向って回転軸の中心(:設けら
れた1本あるいは複数の単管減回転ヒートバイブと、こ
のヒートパイプの陽極の反対側(軸端側)に股けられ、
X線管真空容器に植えられたフィン群との間で、放射伝
熱によって非接触で熱を放出するためのフィン群と1回
転軸外周にあって軸受付近および駆動装置付近から軸端
に向って設けられた。回転軸ζ=ある上記単管屋回転ヒ
ートパイプと同心になっている1本あるいは複数の2重
円環型回転ヒートパイプと、このヒートパイプの陽極の
反対側(軸端側)に設けられ、真空容器に植えられたフ
ィン群との間で放射伝熱によって非接触で熱を放出する
ためのフィン群と、上記単管灘回転ヒートパイプと2重
円環型回転ヒートパイプの間にはさまれた熱的あるいは
電気的絶縁物を具備することを特徴とする回転陽極型X
線管である。
The rotating anode X-ray tube according to the present invention has a rotating anode that is heated to a high temperature when X-rays are generated, and in order to transfer heat to the shaft end, the rotary anode is moved from the center of the rotating anode toward the shaft end (: One or more single-tube rotation reducing heat vibrators provided, and a heat pipe connected to the opposite side (shaft end side) of the anode of the heat pipe,
A group of fins placed in the X-ray tube vacuum container is used to release heat without contact through radiation heat transfer, and a group of fins located on the outer periphery of the one-rotation shaft from near the bearing and near the drive device toward the end of the shaft. was established. Rotation axis ζ = one or more double annular rotary heat pipes that are concentric with the above-mentioned monotubular rotary heat pipe, and provided on the opposite side (shaft end side) of the anode of this heat pipe, A group of fins planted in a vacuum container is used to release heat without contact through radiation heat transfer between the group of fins, and a group of fins is sandwiched between the single-tube rotary heat pipe and the double-ring type rotary heat pipe. Rotating anode type X characterized by being equipped with a thermal or electrical insulator
It is a wire tube.

〔発明の実施例〕[Embodiments of the invention]

第1図1一本発明の実施例を示す。また第2図。 FIG. 1 shows an embodiment of the present invention. Also, Figure 2.

第3図に本発明の実施例の詳細な構成を示す。第1図中
の15は、X線管の構成部品を支え、かつ内部を真空に
保つ真空容器である。真空容器15内(二は、傘状の回
転陽極2が2つの磁気軸受機構3によって支えられてい
る。通常は、この回転陽極2は高電圧が印加(+75K
V)されるため、磁気軸受部で放゛4を起さぬよう絶縁
用セラーミック軸7が上記回転陽極2に接続されている
。上記回転陽極2との間で放電させ、X線を発生させる
ために。
FIG. 3 shows a detailed configuration of an embodiment of the present invention. Reference numeral 15 in FIG. 1 is a vacuum container that supports the components of the X-ray tube and keeps the interior vacuumed. Inside the vacuum container 15 (2), an umbrella-shaped rotating anode 2 is supported by two magnetic bearing mechanisms 3.Normally, a high voltage (+75K) is applied to this rotating anode 2.
V), an insulating ceramic shaft 7 is connected to the rotating anode 2 to prevent radiation 4 from occurring at the magnetic bearing portion. In order to cause discharge between the rotating anode 2 and generate X-rays.

回転陽極2と相対して陽極1が設置されている。An anode 1 is installed opposite a rotating anode 2.

磁気軸受3で上記真空容器15の中に保持された上記回
転陽極2および絶縁用セラミック軸7に、回転駆動力を
与えるために、駆動モータステータ4分よび駆動モータ
コ1゛ル5が、軸周(:配置される。
In order to apply rotational driving force to the rotating anode 2 and the insulating ceramic shaft 7, which are held in the vacuum vessel 15 by the magnetic bearing 3, a drive motor stator 4 and a drive motor coil 5 are connected to the shaft periphery. (: placed.

nす記絶縁用セラミック軸7の外周には、磁気軸受3の
保持力を発生させるために磁性4412が巻かれている
。また、回転軸の回転中心からの変位を検知し、磁気軸
受3を制御するための信号を得るために、非接触変位計
6が設置されている 回転陽極2の中央付近から、軸の
両端に向って軸の中心に単管型回転ヒートパイプ10人
、10Bがそれぞれ1本ずつfft 2本設けられてい
る。この回転ヒートパイプ10人は、回転陽極2の金属
部分から絶縁用セラミック(ブツシュ)7の中を貫通し
て軸端ま、で設けられ、軸端の電気接点8を介して外部
電源(9示せず)(:接続されている。前記電気接点8
は、絶縁セラミック9に保持されている。また前記回転
ヒートパイプIOBは、前記回転ヒートパイプ10人の
ある側と反対側C二ある絶縁用セラミック軸7内(二股
けられ、端部は前記回転ヒートパイプ10Aと同様に磁
気接点8が設けられている。上記回転ヒートパイプlQ
A、LOBの′4気接点8に接続している側の端部付近
には、単管壓回転ヒートパイプ放熱用フィン群14が固
定され、真空容器側に植え込まれたフィン群と相対して
いる。前記絶縁用セラミック軸(ブツシュ)7の外側で
前記磁性体12の内側にあたる部分1:は、2重円環型
回転ヒートパイプ11が両軸(二1本ずつ計2本設けら
れている。この2重置3j1m回転ヒートパイプ11の
端部付近(2ケ所);二は、前記単管型回転ヒートパイ
プ10人、10Bと同様の2重円環屋−転ヒートパイプ
用冷却フィン群13が固定され、真空容器15に植え込
まれたフィン群と相対している。前記磁気軸受3゜駆動
モータステータ4.駆動モータコイル5.非接触変位t
′i6を囲うように冷却油通路16が設けられている。
A magnetic material 4412 is wound around the outer periphery of the insulating ceramic shaft 7 in order to generate a holding force for the magnetic bearing 3. In addition, in order to detect the displacement of the rotating shaft from the center of rotation and obtain a signal for controlling the magnetic bearing 3, a non-contact displacement meter 6 is installed from near the center of the rotating anode 2 to both ends of the shaft. On the other hand, two single-tube rotary heat pipes (10 and 10B), one each, are installed at the center of the shaft. These 10 rotating heat pipes are installed from the metal part of the rotating anode 2 through the insulating ceramic bushing 7 to the shaft end, and are connected to an external power source (9 shown) via the electrical contact 8 at the shaft end. ) (: Connected. The electrical contact 8
is held by an insulating ceramic 9. Further, the rotating heat pipe IOB is arranged within an insulating ceramic shaft 7 (bifurcated into two, with a magnetic contact 8 provided at the end similar to the rotating heat pipe 10A) on the side where the 10 rotating heat pipes are located and on the opposite side C. The above rotating heat pipe lQ
A. Near the end of the LOB connected to the 4-air contact point 8, a single-tube rotating heat pipe heat dissipation fin group 14 is fixed, facing the fin group implanted in the vacuum vessel side. ing. A portion 1 which is outside the insulating ceramic shaft (bush) 7 and inside the magnetic body 12 is provided with double annular rotary heat pipes 11 on both shafts (two in total, one each). Near the ends of the double-layered 3j 1m rotary heat pipe 11 (in two places); second, the cooling fin group 13 for the double-circle rotary heat pipe similar to 10 single-tube type rotary heat pipes and 10B is fixed; and faces the fin group implanted in the vacuum vessel 15.The magnetic bearing 3° drive motor stator 4. Drive motor coil 5. Non-contact displacement t
A cooling oil passage 16 is provided so as to surround 'i6.

第2図は、第1図における回転陽極の中央から軸端付近
までの部分を拡大したものである。第3図は、第2図の
B−B断面を示す。単管型回転ヒートパイプ10人の内
面および、2重円環凰回転ヒートパイプの外管の内面に
はクイック17が固定されている。
FIG. 2 is an enlarged view of the portion from the center of the rotating anode to the vicinity of the shaft end in FIG. 1. FIG. 3 shows a BB cross section in FIG. 2. Quicks 17 are fixed to the inner surfaces of the 10 single-tube rotary heat pipes and to the inner surfaces of the outer tube of the double-circle rotary heat pipe.

第2図を用いて本発明の作用および効果を説明する。X
線の発生によって1回転陽極2は加熱されるが、そのt
tでは熱放射:;よって放熱する以外に冷却する手法が
ないが1本発明では回転陽極2の熱は、回転軸の中心(
:ある単管型回転ヒートパイプIOA +=よって軸端
まで運ばれ、放熱フィン群14によって冷却油進路16
内の冷却油に伝えられる(矢印りで示す)。このとき、
加熱された回転陽極2の中央部分にある回転ヒートパイ
プ10人内面(蒸発部と呼ぶ)で蒸発した作動液は、軸
端のフィン胛部で凝縮するが、この凝縮液は、遠心力お
よびクイック17の毛管力ζ二よって蒸発部に返される
。このクイック17は、蒸発部の内面を一様にぬらす役
目ももつ。上記のように、軸内に単管型回転ヒートパイ
プIOAを通すこと(:よって回転陽極2の冷却はでき
るが、逆に磁性体12が加熱される。このため(:、2
重円環型回転ヒートパイプ11が、絶縁用セラミック7
(ブツシュ)と磁性体12の間に設けられている。熱の
伝わり方は上記単管減回転ヒートパイプIOAと全く同
様であり、その流れを矢印Eで示す。231P−jff
1回転ヒートバイブ11の作動液は、遠心力およびクイ
ックにより2重円環の外側容器の内面にのみ存在するの
で、外側(二ある磁性体の冷却のみに有効に働き、内部
(軸心側)からの熱に対してはこの2重円環内のと一ド
パイブ蒸気空間が断熟層の役割をはたす。本実施例での
両回転ヒートパイプ(IOA 、 IOB )の冷却部
は、ヒートパイプ側のフィン群と真空容器側フィン群と
の間で熱放射によって冷却されるので、真空容器15中
に磁気軸受3で非接触状態で支持されている回転陽極2
の回転には何んら影響を及ぼさない。
The operation and effect of the present invention will be explained using FIG. 2. X
The anode 2 is heated for one revolution due to the generation of the line, but the t
At t, heat radiation:;Therefore, there is no other cooling method other than heat radiation.In the present invention, the heat of the rotating anode 2 is transferred to the center of the rotation axis (
: A certain single-tube rotating heat pipe IOA
It is transmitted to the cooling oil inside (indicated by the arrow). At this time,
The working fluid evaporated on the inner surface of the rotating heat pipe 10 (called the evaporation section) in the center of the heated rotating anode 2 condenses on the fin section at the end of the shaft, but this condensed liquid is It is returned to the evaporation section by the capillary force ζ2 of 17. This quick 17 also serves to uniformly wet the inner surface of the evaporation section. As mentioned above, passing the single-tube rotating heat pipe IOA inside the shaft (:Thus, the rotating anode 2 can be cooled, but on the contrary, the magnetic body 12 is heated.
The heavy annular rotating heat pipe 11 is connected to the insulating ceramic 7
(button) and the magnetic body 12. The way heat is transmitted is exactly the same as that of the single tube reduced rotation heat pipe IOA, and the flow is shown by arrow E. 231P-jff
The working fluid of the one-turn heat vibrator 11 exists only on the inner surface of the double-ringed outer container due to centrifugal force and quick movement, so it works effectively only for cooling the magnetic material on the outside (two sides), and only on the inside (axis side). The double-pipe steam space within this double ring serves as a thermal insulation layer for the heat from the heat pipe. Since the rotating anode 2 is cooled by thermal radiation between the fin group and the fin group on the vacuum vessel side, the rotating anode 2 is supported in the vacuum vessel 15 in a non-contact manner by a magnetic bearing 3.
It has no effect on the rotation of.

〔発明の効果〕〔Effect of the invention〕

本発明;;よる回転陽極型X線管冷却機構によれば、積
極的冷却(二より、高出力回転陽極型X線管において、
熱負荷(二よる破損の防止と連続使用を可能にすること
ができる。
According to the rotating anode type X-ray tube cooling mechanism according to the present invention, active cooling (Secondly, in a high output rotating anode type X-ray tube,
It can prevent damage due to heat load (secondary damage) and enable continuous use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例の断面図、第2図は第1
図に示す構成のうち、本発明にかかわる主要部の断面図
、第3図は第2図のB−B矢視の回転ヒートパイプ冷却
機構の断面図、第4図は従来の回転陽極型X線管の断面
図である。 1・・・賄極     2・・・回転陽極(ロータ)3
・・・磁気軸受   4・・・駆動モータステータ5・
・・駆動モータコイル 6・・・非接触変位計7・・・
絶縁用セラミック軸(ブツシュ)8・・・電気接点  
 9・・・絶縁セラミック10人・・・単管型回転ヒー
トパイプ(11,流導人心極兼用)10B・・・単管型
回転ヒートパイプ 11・・・2重円環型回転ヒートパイプ12・・・磁性
体 13・・・2重円環型u転ヒートパイプ放熱フィン群1
4・・・単管型回転ヒートパイプ放熱フィン群15・・
・真空容器   16・・・冷却油通路17・・・ヒー
トパイプクイック D・・・ロータからの熱の流れ E・・・磁性体からの熱の流れ 代理人 弁理士 則 近 憲 佑 (ほか1名)第3図
FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG.
Among the configurations shown in the figures, FIG. 3 is a sectional view of the main parts related to the present invention, FIG. 3 is a sectional view of the rotating heat pipe cooling mechanism taken along the line B-B in FIG. It is a sectional view of a wire tube. 1...Grid electrode 2...Rotating anode (rotor) 3
...Magnetic bearing 4...Drive motor stator 5.
...Drive motor coil 6...Non-contact displacement meter 7...
Insulating ceramic shaft (button) 8...electrical contact
9...Insulating ceramic 10 people...Single tube type rotating heat pipe (11, also used as flow guide and core pole) 10B...Single tube type rotating heat pipe 11...Double ring type rotating heat pipe 12. ...Magnetic material 13...Double annular U-turn heat pipe radiation fin group 1
4...Single tube type rotating heat pipe radiation fin group 15...
・Vacuum container 16...Cooling oil passage 17...Heat pipe quick D...Heat flow from the rotor E...Heat flow from the magnetic material Agent Patent attorney Noriyuki Chika (and 1 other person) )Figure 3

Claims (1)

【特許請求の範囲】[Claims] 回転陽極型x線管において、x線発生時に高温に加熱さ
れる回転陽極の熱を軸端に伝熱するために、回転陽極の
中央部分から軸端に向って回転軸の中心に設けられた1
本あるいは複数の単管型回転ヒートパイプと、このヒー
トパイプの陽極の反対側(軸端側)に設けられ、x線管
真空容器に植えられたフィン群との間で、放射伝熱によ
って非接触で熱を放出するためのフィン群と、回転軸外
周にあって軸受付近および駆動装置付近から軸端に向っ
て設けられた。回転軸にある上記単管型回転ヒートパイ
プと同心になっている1本あるいは複数の2重円環型回
転ヒートパイプと、このヒートパイプの陽極の反対側(
軸端側)に設けられ、真空容器に植えられたフィン群と
の間で放射伝熱によって非接触で熱を放出するためのフ
ィン群と、上記単管型回転ヒートパイプと2重円環型回
転ヒートパイプの間にはさまれた熱的あるいは電気的絶
縁物を具備することを特徴とする回転陽極型x線管。
In a rotating anode type 1
Non-radiative heat transfer occurs between one or more single-tube rotating heat pipes and a group of fins installed on the opposite side (shaft end side) of the anode of this heat pipe and planted in the x-ray tube vacuum chamber. A group of fins for discharging heat through contact are provided on the outer periphery of the rotating shaft from near the bearing and near the drive device toward the end of the shaft. One or more double annular rotary heat pipes concentric with the single-tube rotary heat pipe on the rotation axis, and the opposite side of the anode of this heat pipe (
A group of fins installed on the shaft end side) and dissipating heat without contact by radiant heat transfer between the group of fins planted in the vacuum container, and a group of fins installed on the shaft end side and a group of fins installed in the vacuum container, and a group of fins installed on the shaft end side and a group of fins installed in the vacuum container to release heat without contact through radiant heat transfer, and a group of fins installed on the fin group planted in the vacuum container. 1. A rotating anode x-ray tube comprising a thermal or electrical insulator sandwiched between rotating heat pipes.
JP60099613A 1985-05-13 1985-05-13 Rotary anode x-ray tube Pending JPS61259445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60099613A JPS61259445A (en) 1985-05-13 1985-05-13 Rotary anode x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60099613A JPS61259445A (en) 1985-05-13 1985-05-13 Rotary anode x-ray tube

Publications (1)

Publication Number Publication Date
JPS61259445A true JPS61259445A (en) 1986-11-17

Family

ID=14251942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60099613A Pending JPS61259445A (en) 1985-05-13 1985-05-13 Rotary anode x-ray tube

Country Status (1)

Country Link
JP (1) JPS61259445A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430151A (en) * 1987-07-24 1989-02-01 Meitec Corp Rotary groove type anode x-ray generator
WO2003079396A1 (en) * 2002-03-14 2003-09-25 Koninklijke Philips Electronics Nv Liquid metal heat pipe structure for x-ray target
CN102565095A (en) * 2011-07-06 2012-07-11 湖北盛达探伤机械有限公司 High-efficiency portable industrial X-ray defect detector
JP2013149346A (en) * 2012-01-17 2013-08-01 Hitachi Medical Corp X-ray tube device and x-ray ct device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430151A (en) * 1987-07-24 1989-02-01 Meitec Corp Rotary groove type anode x-ray generator
WO2003079396A1 (en) * 2002-03-14 2003-09-25 Koninklijke Philips Electronics Nv Liquid metal heat pipe structure for x-ray target
US6807348B2 (en) 2002-03-14 2004-10-19 Koninklijke Philips Electronics N.V. Liquid metal heat pipe structure for x-ray target
CN102565095A (en) * 2011-07-06 2012-07-11 湖北盛达探伤机械有限公司 High-efficiency portable industrial X-ray defect detector
JP2013149346A (en) * 2012-01-17 2013-08-01 Hitachi Medical Corp X-ray tube device and x-ray ct device

Similar Documents

Publication Publication Date Title
EP0186937B1 (en) Rotating anode x-ray tube
US4788705A (en) High-intensity X-ray source
US3694685A (en) System for conducting heat from an electrode rotating in a vacuum
WO2015185003A1 (en) Collimation modulatable x-ray generator
JPH07201489A (en) X-ray tube
EP1087419A2 (en) X-ray tube assemblies
JP2753566B2 (en) High intensity X-ray source using bellows
US6327340B1 (en) Cooled x-ray tube and method of operation
JPH0614455B2 (en) X-ray tube with fluid cooled thermal receptor
JPH11224627A (en) Straddle bearing assembly
EP0189297B1 (en) X-ray tube devices
JP4309290B2 (en) Liquid metal heat pipe structure for X-ray targets
JPS61259445A (en) Rotary anode x-ray tube
CN118016492B (en) CT bulb tube
JP2726252B2 (en) X-ray tube
JP5942247B2 (en) Rotating anode X-ray tube device
JPH0334183B2 (en)
JP2002352756A (en) Rotating anode x-ray tube device
JPS6182643A (en) Rotating anode type x-ray
JPS64779B2 (en)
JPS61224251A (en) Rotary anode x-ray tube
JPS61171043A (en) Rotating anode x-ray tube device
JPS6161356A (en) Rotation anode x-ray tube device
JP4847067B2 (en) X-ray tube device
JPS6182642A (en) Rotating anode type x-ray tube