[go: up one dir, main page]

JPS61258157A - Method for analizing concentration of ion - Google Patents

Method for analizing concentration of ion

Info

Publication number
JPS61258157A
JPS61258157A JP60099604A JP9960485A JPS61258157A JP S61258157 A JPS61258157 A JP S61258157A JP 60099604 A JP60099604 A JP 60099604A JP 9960485 A JP9960485 A JP 9960485A JP S61258157 A JPS61258157 A JP S61258157A
Authority
JP
Japan
Prior art keywords
ion
silver halide
solution
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60099604A
Other languages
Japanese (ja)
Inventor
Tetsuya Katayama
潟山 哲哉
Kenichi Sugano
菅野 憲一
Masao Koyama
小山 昌夫
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60099604A priority Critical patent/JPS61258157A/en
Publication of JPS61258157A publication Critical patent/JPS61258157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To stabilize the characteristic of an anion selective electrode having an ion sensitive part consisting of silver halide for a long period of time by incorporating preliminarily the silver halide into a soln. which contacts with an ion sensitive membrane at the satd. concn. or above at the temp. thereof. CONSTITUTION:The silver halide is preliminarily incorporated into a sample liquid 9 to be inspected and calibration liquids 5, 6 which contact with the ion sensitive film 1' in the stage of measuring, cleaning and calibrating as well as a diluting liquid 4 held at above the temp. possessed by the liquid 4 in common use as the cleaning liquid at the satd. concn. or above at the temp. thereof in a method for analysis in which the anion selective electrode 1 having the ion sensitive membrane 1' consisting of the silver halide is used. The satd. soln. of the silver halide is thus formed from the ambient temp. conditions when the calibrating liquid for correcting the output potential from the electrode and the cleaning liquid for cleaning the flow passage for the sample to be tested arrive at the ion sensitive part, by which the elusion of the silver halide from the ion sensitive part is prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はハロゲン化銀よシなるイオン感応膜を用いる陰
イオン選択性電極を備えるイオン濃度分析方法に関し、
この陰イオン選択性電極を長期的安定に用いることがで
きるイオン濃度分析方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an ion concentration analysis method comprising an anion-selective electrode using an ion-sensitive membrane made of silver halide.
The present invention relates to an ion concentration analysis method in which this anion-selective electrode can be used stably over a long period of time.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

イオン選択性電極は液中に存在するイオンを選択的に定
量する九めの分析具であって、これまで被検液の供給・
排出機構、電位測定機構等と組合わされて、イオン濃度
分析装置として構成されていた。仁のイオン選択性電極
の被検液中の特定イオンに対する検出端は、イオン感応
膜で構成されている。前記イオン感応膜は、電極を被検
液中に浸漬すると液中に存在する特定イオンに対しての
み選択的に作用゛する膜であフ、この膜を大きく分類す
ると、無機化合物を焼結・形成した固体膜型と、イオン
選択能を有する二一一トラルキャリア等の物質を例えば
、高分子物質中に分散して成る液体膜型とがあもられる
。このうち固体に型は。
The ion-selective electrode is the ninth type of analytical tool that selectively quantifies ions present in a liquid.
In combination with a discharge mechanism, a potential measurement mechanism, etc., it was configured as an ion concentration analyzer. The detection end of the ion-selective electrode for specific ions in the test liquid is composed of an ion-sensitive membrane. The ion-sensitive membrane is a membrane that selectively acts only on specific ions present in the liquid when the electrode is immersed in the liquid to be tested. The formed solid film type and the liquid film type formed by dispersing a substance such as a 211-toral carrier having ion selectivity in a polymeric substance are produced. Of these, the type is solid.

対象とする特定イオンがHであればNazO。If the target specific ion is H, NazO.

A4203,8102から成るガラス膜;F−であれば
LaF3の結晶;Ct−であればApzSとAtCt又
はhtctの混合物1等からなる。″!九液液体膜型。
A glass film consisting of A4203, 8102; F- is a crystal of LaF3; Ct- is a mixture 1 of ApzS and AtCt or htct. ″! Nine-liquid liquid film type.

対象とする特定イオンがNa+、K”、NH4”、C2
−であればポリ塩化ビニル中に各々クラウンエーテル、
パリノマイシン、ノナクチン、第4級アンモニウム塩等
を分散したものからなる。このようなイオン感応膜を有
するイオン選択性電極を被検液に浸漬すると、該被検液
中の特定イオンの活量と該イオン選択性電極が示す電位
との間にネルンストの関係(が成立し、系の測定電位か
ら目的とする特定イオンの活量(a度)を簡単に算出で
きる。
Target specific ions are Na+, K", NH4", C2
−, crown ether in polyvinyl chloride,
It consists of dispersed palinomycin, nonactin, quaternary ammonium salt, etc. When an ion-selective electrode having such an ion-sensitive membrane is immersed in a test solution, a Nernst relationship is established between the activity of a specific ion in the test solution and the potential exhibited by the ion-selective electrode. However, the activity (a degree) of the target specific ion can be easily calculated from the measured potential of the system.

従ってイオン選択性電極を用いれば、該電極の電位を測
定するだけで広い濃度範囲のイオンを定量する事が可能
であり、さらに電極部を小型化すれば被検液量が少なく
てすむという利点をも合わせてもっている。上記のよう
なイオン選択性電極の便利さから、最近では医療用とし
て用いられ、特に血液や尿等の体液中のNa+、に+、
Ct−などの定量に用いられている。そして目的とする
イオンの項目数と同じイオン選択性電極金70−セルに
設置し念イオン濃度分析装置も多く考案され、これらは
血液分析等を行なう医療関係でその用途が拡大しつつあ
る。更には目的とするイオンの多項目化と被検液の微量
化を目的とした基準電極をも組込み積層化して一体化し
た70−セル型の多項目イオン選択性電極も考案されて
いる。
Therefore, by using an ion-selective electrode, it is possible to quantify ions in a wide range of concentrations simply by measuring the potential of the electrode, and if the electrode part is made smaller, the amount of sample liquid can be reduced. It also has the following. Due to the convenience of ion-selective electrodes as described above, they have recently been used for medical purposes, especially for Na+, Na+, and Na+ in body fluids such as blood and urine.
It is used for quantifying Ct-, etc. Many ion concentration analyzers have been devised in which ion-selective electrodes are installed in the same number of ion-selective cells as the number of target ions, and their use in the medical field, such as blood analysis, is expanding. Furthermore, a 70-cell type multi-electrode ion-selective electrode has also been devised in which a reference electrode is also incorporated and laminated and integrated for the purpose of increasing the number of target ions and reducing the amount of sample liquid.

しかしながら、このようなイオン選択性電極は。However, such ion-selective electrodes.

長期に亘る使用中にイオン感応膜の構成成分が被検液中
に溶出し念り、又は被検液中の防害成分を取シ込んだシ
して膜活性の劣化が進行し、目的とするイオンの濃度に
応じた電位を示さず定量不可能となる。これは例えば固
体膜型のイオン感応膜トシて、ハロゲン化銀よりなる層
を用いた陰イオン選択性電極の場合、イオン感応部であ
るノ・ロゲン化銀がしだいに溶出しノ・ロゲン化銀層の
一部が欠けるために、全くネルンスト応答を示さなくか
らである。とくに、被検液が血清、血液の場合には、ハ
ロゲン化銀層が欠けて露出した下地の銀表面に血清中の
タンパク質等の成分が吸着しイオン選択能が急激に低下
してその機能をはたさなくなる。その九めイオンだけで
なく他の多くの成分分析を同時に行なう生化学自動分析
装置に設置されたイオン選択性電極の場合、劣化したイ
オン選択性電極を交換する作業の煩雑さと共に、イオン
濃度分析だけでなく多くの項目をも分析する能力を有す
る生化学自動分析装置そのものの作it停止させなけれ
ばならないという不経済な欠点もあった。更には、多項
目測定ができる小型の多項目イオン選択性電極にあって
は、ハロゲン化銀から成る陰イオン選択性電極の劣化に
よって、正常な機能を有する他のイオン選択性電極及び
基準電極をも含めて新品と交換しなければならないとい
う不経済な面があシ、このような小型の多項目イオン選
択性電極による被検液の微量化と同時多項目測定が可能
という長所もいかされにくかった。
During long-term use, the constituent components of the ion-sensitive membrane may be eluted into the test solution, or the harmful substances in the test solution may be absorbed, resulting in progressive deterioration of membrane activity and failure to meet the intended purpose. It does not show a potential depending on the concentration of the ion, making it impossible to quantify. For example, in the case of an anion-selective electrode using a layer made of silver halide, such as a solid membrane type ion-sensitive membrane, the ion-sensitive part, the silver halide, gradually elutes. This is because part of the layer is missing, so it does not show any Nernst response. In particular, when the test liquid is serum or blood, the silver halide layer is chipped and components such as proteins in the serum are adsorbed to the exposed silver surface, rapidly reducing ion selectivity and impairing its function. It won't flap. In the case of ion-selective electrodes installed in automatic biochemical analyzers that simultaneously analyze not only the ninth ion but also many other components, it is difficult to replace deteriorated ion-selective electrodes, as well as analyze ion concentration. In addition, there was also the uneconomical drawback that the production of the biochemical automatic analyzer itself, which had the ability to analyze many items, had to be stopped. Furthermore, in the case of small multi-item ion-selective electrodes that can perform multi-item measurements, deterioration of the anion-selective electrode made of silver halide may cause damage to other ion-selective electrodes and reference electrodes that have normal functions. This has the disadvantage of having to be replaced with a new one, and it is difficult to take advantage of the advantages of such a compact multi-item ion-selective electrode, which allows for the miniaturization of sample liquid and the ability to simultaneously measure multiple items. Ta.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、イオン感応部が7・ロゲン化
銀から成る陰イオン選択性電極の特性を長期的安定に保
つ事のできるイオン濃度分析方法を提供する事を目的と
する。
In view of the above points, it is an object of the present invention to provide an ion concentration analysis method capable of keeping the characteristics of an anion-selective electrode whose ion-sensitive portion is made of 7-silver halide stable over a long period of time.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記目的を達成すべく鋭意研究を重ね苑
結果、イオン感応部である・・ロゲン化銀の損失は、接
触する溶液中に溶解する事が大きな一因である事に着目
し、かかるハロゲン化銀から成るイオン選択性電極を用
いる場合、そこに接触する被検試料液、較正液、洗浄液
等の溶液中に。
The inventors of the present invention have conducted extensive research to achieve the above objective, and as a result, they have discovered that the loss of silver halide, which is an ion-sensitive part, is largely due to its dissolution in the solution it comes in contact with. However, when using an ion-selective electrode made of such a silver halide, the ion-selective electrode is in contact with a test sample solution, a calibration solution, a cleaning solution, etc.

飽和溶解量のノ・ロゲン化銀が混入されていれば。If a saturated dissolved amount of silver halogenide is mixed in.

イオン選択性電極のイオン感応部であるハロゲン化銀の
損失が防止できる事を見い出し念。そしてそのハロゲン
化銀の供給量、即ち飽和溶解量は被溶液の温度と密接な
関係がある事から、予めノ10ゲン化銀を添加する希釈
液、較正液、洗浄液等の温度を前記イオン選択性電極の
イオン感応部に接する際の温度以上に保って溶解度を高
くしておくことによシ、イオン感応部に接する溶液がハ
ロゲン化銀の飽和濃度を有するのに必要な量以上のハロ
ゲン化銀を含有させるようにした。このように充分な量
のハロゲン化銀が含有された希釈液によシ、被測定液が
希釈されてなる被検試料液、電極からの出力電位の補正
をする較正液および被検試料の流通路を洗浄する洗浄液
がイオン感応部に達した際に、その周囲の温度条件から
ハロゲン化銀の飽和溶液となってイオン感応部からのノ
・ロゲン化銀の溶出を防ぐことができ、これよりイオン
選抗性電極の長寿命化がなされる。すなわち、本発のイ
オン濃度分析方法は、イオン感応膜がハロゲン化銀よ)
なる陰イオン選択性電極を用いるイオン濃度分析方法に
おいて、測定時、洗浄時および較正時に前記イオン感応
膜に接する被検試料液。
We discovered that the loss of silver halide, which is the ion-sensitive part of the ion-selective electrode, can be prevented. Since the supply amount of silver halide, that is, the saturated dissolution amount, is closely related to the temperature of the solution, the temperature of the diluting solution, calibration solution, cleaning solution, etc. to which silver halide is added is selected in advance. By keeping the temperature higher than the temperature at which it comes into contact with the ion-sensitive part of the electrode to increase its solubility, the amount of halogenated is greater than that required for the solution in contact with the ion-sensitive part to have a saturation concentration of silver halide. It was made to contain silver. Distribution of the diluent containing a sufficient amount of silver halide, the test sample solution obtained by diluting the test solution, the calibration solution for correcting the output potential from the electrodes, and the test sample. When the cleaning solution that cleans the ion-sensitive area reaches the ion-sensitive area, it becomes a saturated solution of silver halide due to the surrounding temperature conditions, which prevents the elution of silver halide from the ion-sensitive area. The life of the ion selective electrode is extended. In other words, in the proposed ion concentration analysis method, the ion-sensitive membrane is silver halide).
In the ion concentration analysis method using an anion-selective electrode, the test sample liquid comes into contact with the ion-sensitive membrane during measurement, cleaning, and calibration.

較正液及び洗浄液が有する温度以上に保持された希釈液
、較正液及び洗浄液の中に、あらかじめハロゲン化銀を
前記温度における飽和濃度以上に含有させることを特徴
としている。
It is characterized in that silver halide is previously contained in the diluent, calibration solution, and cleaning solution, which are maintained at a temperature higher than the temperature of the calibration solution and cleaning solution, at a concentration higher than the saturation concentration at the temperature.

本発明のイオン濃度分析方法による分析装置の構成例を
第1図に示す、この分析装置は、被検液中の目的イオン
を測定する為のイオン選択性電極(1)と比較電極(2
)とがセットされている70−セル(3);該フ、ロー
セルへ送られる被検試料液を調製しさらに洗浄液も兼ね
る希釈液(4)、較正液−1(5) 。
An example of the configuration of an analyzer according to the ion concentration analysis method of the present invention is shown in FIG. 1. This analyzer consists of an ion selective electrode (1) and a comparison electrode (2
) and a 70-cell (3); a diluent (4) which prepares a test sample solution to be sent to the flow cell and also serves as a cleaning solution; and a calibration solution-1 (5).

較正液−1(6) 、流路切換えパルプけ)、該希釈液
及び較正液をサンプルカップαυへ送るポンプ(8) 
、 希釈前の被検液(9)ヲ該サンプルカップへ送るポ
ンプαI、サンプルカップで調製され次被検試料液αη
を70−セルへ導くと共に70−セルからの排液も行な
うポンプ(1つ、廃液タンクaj;イオン選択性電極(
1)と比較電極(2)とフローセル(3)を同一温度に
保持する恒温ブロック(a)の温度以上の温度に希釈液
(4)、較正液(5) 、 (6) 、の温度に保持す
る恒温ブロック(b) ?制御する温度制御器α荀;イ
オ/選択性電極(1)と比較電極(2)の信号を増幅・
演算するアンプ(19とその表示器αe;を基本として
構成されている。
Calibration liquid-1 (6), flow path switching pulp pump), pump (8) that sends the diluted liquid and calibration liquid to the sample cup αυ
, a pump αI that sends the test liquid (9) before dilution to the sample cup, and a pump αη that sends the test sample liquid (9) before dilution to the sample cup, and the next test sample liquid αη prepared in the sample cup.
A pump that guides the liquid to the 70-cell and also drains the liquid from the 70-cell (one waste tank aj; ion selective electrode
1), the reference electrode (2), and the flow cell (3) are kept at the same temperature.The temperature of the diluent (4), calibration solution (5), and (6) is maintained at a temperature higher than that of the constant temperature block (a). Constant temperature block (b)? Temperature controller α to control; amplifies and amplifies the signals of the io/selective electrode (1) and the comparison electrode (2).
It is basically constructed of an amplifier (19) for calculation and its display αe.

イオン選択性電極[1)のイオン感応膜(1′)は、 
Ct−を被検物質としてペースとなるAPの上にAfC
tの層を形成したものを用いている。te、希釈液や較
正液等の溶液中に含有させるノ10ゲン化銀は。
The ion-sensitive membrane (1') of the ion-selective electrode [1] is
AfC is placed on top of AP as a pace using Ct- as a test substance.
A material with a layer of t is used. te, silver 10genide to be contained in solutions such as diluent and calibration solution.

イオン感応部に含まれるノ・ロゲン化銀と対応してht
ctが用いられる。そして溶液中に含有されるハロゲン
化銀の濃度は、陰イオン選択性電極のノ・ロゲン化銀よ
シなるイオン感応部に接する際の飽和濃度以上に保たれ
ている。これは、希釈液や較正液等を保温する恒温ブロ
ック(b)の温度が、温度制御器α4によシ、イオン選
択性電極を囲んだ恒温ブロック(a)の温度以上に保持
されることにより可能になる。これら恒温ブロックの各
々の設定温度は、希釈液、較正液等の溶液組成によジノ
・ロゲン化銀の飽和濃度及び温度と溶解度の関係が異な
るのであらかじめ溶液組成と温度と飽和濃度との関係を
把握しておけば容易に決定できる。例えば血清等の体液
を分析する時の希釈液として用いられるトリスホウ酸バ
ッファ溶液は生化学自動分析機器等の分析機器内にセッ
トされる時にしばしば用いられる保質温度である4℃付
近ではhtct’<約2 X 10” mo l/を溶
解するが、測定でしばしば用いられる温度である37℃
で4〜5 X 10−’ mot/lを溶解する。従っ
て希釈液としてのバッファ溶液の保管温度においては、
イオン感応部がhyctから成るCt−選択性電極を用
い九場合、十分な濃度のhtctが供給されない為にイ
オン感応部からhtctが溶出し短寿命となる事は明ら
かである。また他の希秒液としてイオン交換水等の純水
が挙げられる。この純水へのAtCLの飽和濃度は0℃
、20℃、40℃。
ht corresponding to the silver halogenide contained in the ion-sensitive part
ct is used. The concentration of silver halide contained in the solution is maintained above the saturation concentration when it comes into contact with the ion-sensitive portion of the anion-selective electrode, such as silver halide. This is because the temperature of the thermostatic block (b) that keeps the diluent, calibration solution, etc. warm is maintained above the temperature of the thermostatic block (a) surrounding the ion-selective electrode by the temperature controller α4. It becomes possible. The set temperature for each of these constant temperature blocks is determined in advance by determining the relationship between the solution composition, temperature, and saturation concentration, since the saturation concentration of dino-silver halogenide and the relationship between temperature and solubility differ depending on the solution composition of the dilution solution, calibration solution, etc. Once you understand this, you can easily make a decision. For example, a tris-borate buffer solution used as a diluent when analyzing body fluids such as serum has htct'< About 2
Dissolve 4-5 X 10-' mot/l. Therefore, at the storage temperature of the buffer solution as a diluent,
It is clear that when a Ct-selective electrode in which the ion-sensing section is made of hyct is used, HTCT is eluted from the ion-sensing section and the life of the electrode is shortened because a sufficient concentration of HTCT is not supplied. Further, other dilute liquids include pure water such as ion-exchanged water. The saturation concentration of AtCL in this pure water is 0°C
, 20℃, 40℃.

50℃では各々0.5X10  、LIXIo  、2
.5X10  、t3、7 X 10−’ mot/l
である事からも同様な事が生じる為、温度差によるAt
ct飽和濃度の差を把握し恒温ブロックの温度設定を行
なえばAPCtからなるCt−選択性電極の長寿命を容
易に行なえる。なお勢件勢会→吻→第1図に示す希釈液
(4)、較正液−I(5)、較正液−I(6)の全部に
htctを含有させしめるのではなく希釈液(4)のみ
に含有させ、較正液−!(s) *校正液−1(6)は
被検液(9)と同様に恒温ブロック(b)外から供給し
、希釈液(4)でサンプルカップ(11J内で希釈して
較正液を為す方法、又は恒温ブロック(b)内にセット
しながらもAfClは含有されず、サンプルカップ(L
l)内で希釈液(4)と混合調製して較正液を為す方法
等であっても本発明のイオン濃度分析方法は充分に利用
できる。
At 50℃, 0.5X10, LIXIo, 2
.. 5X10, t3, 7X10-' mot/l
The same thing occurs because of the fact that At
By grasping the difference in ct saturation concentration and setting the temperature of the constant temperature block, it is possible to easily extend the life of the Ct-selective electrode made of APCt. Note that instead of containing hct in all of the diluent (4), calibration solution-I (5), and calibration solution-I (6) shown in Figure 1, diluent solution (4) Contain only in the calibration solution -! (s) *Calibration solution-1 (6) is supplied from outside the constant temperature block (b) in the same way as the test solution (9), and diluted with diluent solution (4) in a sample cup (11J) to form a calibration solution. method, or a sample cup (L
The ion concentration analysis method of the present invention can be fully utilized even with methods such as preparing a calibration solution by mixing it with the diluent (4) in 1).

〔発明の実施例〕[Embodiments of the invention]

以下5本発明のイオン濃度分析方法を用いた第1図に示
すイオン濃度分析装置により、被検液として用い九血清
中の塩素イオン濃度の分析に関して詳述する。
Hereinafter, analysis of the chloride ion concentration in serum used as a test liquid using the ion concentration analyzer shown in FIG. 1 using the ion concentration analysis method of the present invention will be described in detail.

まず、血清(9)がポンプα1によって所定量の50μ
tだけサンプルカップ(1υへ送られる1次に、希釈液
(4)が流路切換パルプ(7)を介してポンプ(8)に
よシ所定量の450μtだけサンプルカップ(11)へ
送うれる。
First, serum (9) is pumped into a predetermined amount of 50μ by pump α1.
Next, the diluent (4) is sent to the sample cup (11) by a predetermined amount of 450 μt via the flow path switching pulp (7) by the pump (8). .

尚、この希釈液(4)はイオン交換水にAyCt2恒温
ブロック(b)の設定温度40℃での飽和濃度(2,5
XIO−5mol/l )含有せしめたものである。サ
ンプルカップ住υでは血清(9)と希釈液(4)とが攪
拌され、血清中の成分が%の濃度に希釈された被検試料
液αηが調製されポンプαりによってイオン感応膜(1
′)がhtctの層よシ成るCt−選択性電極αυのセ
ットされ念フローセル(3)へ送られる。その時のCt
−選択性電極(1)と比較電極(2)との電位差が増幅
演算するアンプ(lT9を介してCt−濃度として表示
器(Leに送られ、所定の塩素イオン濃度の測定が行な
われる。被検試料液は、測定終了後、廃液タンクαjへ
送られる。
In addition, this diluted solution (4) is added to ion-exchanged water at a saturation concentration (2,5
XIO-5 mol/l). In the sample cup, the serum (9) and the diluent (4) are stirred to prepare a test sample solution αη in which the components in the serum are diluted to a concentration of %.
') is set with a Ct-selective electrode αυ consisting of a layer of htct and sent to the flow cell (3). Ct at that time
- The potential difference between the selective electrode (1) and the comparison electrode (2) is sent to the display (Le) as a Ct-concentration via the amplifier (IT9) that performs amplification and calculation, and a predetermined chloride ion concentration is measured. After the measurement is completed, the test sample liquid is sent to the waste liquid tank αj.

尚、測定時のCt−選択性電極、比較電極およびフロー
セルの温度、即ちサンプルの温度となる恒温ブロック(
a)の設定温度はブロック(b)よシ10℃低い30℃
(AfC1飽和濃度1.7刈0−5mot/l)とした
In addition, a constant temperature block (
The set temperature of a) is 30℃, which is 10℃ lower than that of block (b).
(AfC1 saturation concentration 1.7 moi 0-5 mot/l).

上記のように血清中のイオン濃度測定を終えた後1次の
血清を測定する九めにサンプルカップ(11)に希釈液
(4)のみを注入しこれを洗浄液として洗浄を行なう。
After completing the measurement of the ion concentration in the serum as described above, only the diluent (4) is injected into the sample cup (11) at the ninth point before the measurement of the first serum, and this is used as a washing liquid to perform washing.

また、適宜、CA−濃度既知の低濃度及び高濃度の較正
液−1(s) r較正液−1−ヲサンプルカップαυに
注入し希釈液(4)にて血清と同様な操作によシCt−
選択性電極の電極感度の較正を行なう、また、AfCl
の溶解度は小さい為、血清のCt−測定にも影響なく(
10倍希釈された血清中でのδを一濃度がおよそI X
 10−2m0L/lであるのに対しイオン交換水40
℃におけるAPCtの溶解度は2.5X10−’mob
/Lである)、Af(、Aの飽和溶液を調製するとして
もそのコストは僅かである。
In addition, as appropriate, inject CA-1 (s) of low and high concentration calibration solutions with known concentrations into the sample cup αυ and calibrate with the diluting solution (4) in the same manner as for serum. Ct-
Calibration of the electrode sensitivity of the selective electrode and AfCl
Since the solubility of is small, it does not affect serum Ct- measurement (
One concentration of δ in 10-fold diluted serum is approximately I
10-2 m0L/l, while ion-exchanged water 40
The solubility of APCt at °C is 2.5X10-'mob
Even if a saturated solution of A is prepared, the cost is small.

第2図に実施例−1の装置及び恒温ブロック(b)の温
度を40℃ではなく恒温ブロック(a)より10℃低い
20℃(APC2飽和濃度L I X 10−5mat
/L )に設定した装置(比較例−1)によるものと、
更KIO℃(Arcz飽和濃度0.7 X 10−’m
olA)に設定した装置(比較例−2)銀/塩化銀電極
の寿命テストの結果を示す。
Figure 2 shows that the temperature of the apparatus of Example-1 and constant temperature block (b) is not 40℃ but 20℃ lower than constant temperature block (a) by 10℃ (APC2 saturation concentration L I X 10-5 mat
/L) with the device (Comparative Example-1),
Further KIO℃ (Arcz saturation concentration 0.7 x 10-'m
The results of the life test of the silver/silver chloride electrode of the device (Comparative Example-2) set in olA) are shown.

なお上述したように血清分析と洗浄との繰返しを1サイ
クル、即ち1検体の測定とした。又、第2図の縦軸の感
度はl X I O−3mo17を及びI X 10−
2mol/lのNaC1溶液の電位差、即ちネルンスト
応答の傾きの絶対値を示したものである。
As described above, repetition of serum analysis and washing was defined as one cycle, that is, measurement of one sample. Moreover, the sensitivity on the vertical axis in FIG. 2 is l X I O-3mo17 and I X 10-
It shows the potential difference of a 2 mol/l NaCl solution, that is, the absolute value of the slope of the Nernst response.

第2図から明らかなように、実施例−1では血清3万検
体以上を分析しても感度の低下は認められず良好な性能
を示している。これに対し、比較例−1及び比較例−2
では徐々に感度が低下しているこれは実施例−1の装置
では1!極からのAtCtの溶出が生じないのに対し、
比較例−1および比較例−2の装置ではCt−選択性電
極周囲の温度でのAtCt飽和濃度に溝之ない量しかk
tctが供給されないためにイオン感応膜からAtCt
がサンプル液等へ徐々に溶出してイオン感応部が機能し
なくなるためである。
As is clear from FIG. 2, in Example 1, no decrease in sensitivity was observed even when more than 30,000 serum samples were analyzed, indicating good performance. On the other hand, Comparative Example-1 and Comparative Example-2
Then, the sensitivity gradually decreases. This is 1 for the device of Example-1! Whereas no elution of AtCt from the poles occurs,
In the devices of Comparative Example-1 and Comparative Example-2, the amount of k was only within the range of the AtCt saturation concentration at the temperature around the Ct-selective electrode.
AtCt is removed from the ion-sensitive membrane because tct is not supplied.
This is because the ions are gradually eluted into the sample liquid, etc., and the ion-sensing part becomes inoperable.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明のイオン濃度分析方法を用いれ
ば、ハロゲン化銀をイオン感応膜として用いた陰イオン
選択性電極のハロゲン化銀の溶出による電極の劣化を防
止して長期間に亘夛安定した測定ができるものである。
As detailed above, if the ion concentration analysis method of the present invention is used, deterioration of the anion-selective electrode using silver halide as an ion-sensitive membrane due to silver halide elution can be prevented and the electrode can be used for a long period of time. This allows for stable measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のイオン濃度分析方法を用いた塩素イオ
ン濃度分析装置の構成図、第2図は本発明のイオン濃度
分析方法及び他の方法による銀/塩化鋼電極の寿命テス
ト結果を示す特性図である。
Figure 1 is a block diagram of a chloride ion concentration analyzer using the ion concentration analysis method of the present invention, and Figure 2 shows the life test results of silver/chloride steel electrodes using the ion concentration analysis method of the present invention and other methods. It is a characteristic diagram.

Claims (1)

【特許請求の範囲】[Claims] イオン感応膜がハロゲン化銀よりなる陰イオン選択性電
極を用いるイオン濃度分析方法において、測定時、洗浄
時および較正時に前記イオン感応膜に接する被検試料液
、較正液及び洗浄液が有する濃度以上に保持された希釈
液、較正液及び洗浄液の中に、あらかじめハロゲン化銀
を前記温度における飽和濃度以上に含有させることを特
徴とするイオン濃度分析方法。
In an ion concentration analysis method using an anion-selective electrode in which the ion-sensitive membrane is made of silver halide, the concentration is higher than that of the test sample solution, calibration solution, and cleaning solution that come into contact with the ion-sensitive membrane during measurement, cleaning, and calibration. An ion concentration analysis method characterized in that silver halide is previously contained in the retained diluting solution, calibration solution, and cleaning solution at a concentration higher than the saturation concentration at the above-mentioned temperature.
JP60099604A 1985-05-13 1985-05-13 Method for analizing concentration of ion Pending JPS61258157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60099604A JPS61258157A (en) 1985-05-13 1985-05-13 Method for analizing concentration of ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60099604A JPS61258157A (en) 1985-05-13 1985-05-13 Method for analizing concentration of ion

Publications (1)

Publication Number Publication Date
JPS61258157A true JPS61258157A (en) 1986-11-15

Family

ID=14251693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60099604A Pending JPS61258157A (en) 1985-05-13 1985-05-13 Method for analizing concentration of ion

Country Status (1)

Country Link
JP (1) JPS61258157A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154956A (en) * 1986-12-19 1988-06-28 Terumo Corp Medical measuring apparatus and method
JPH0263454U (en) * 1988-10-31 1990-05-11
CN104931552A (en) * 2015-05-29 2015-09-23 苏州合欣美电子科技有限公司 Method for automatically detecting mercury metal ion concentration of vegetable base
CN112540110A (en) * 2020-11-30 2021-03-23 正大康地(开封)生物科技有限公司 Method for measuring calcium content in feed by using ion selective electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154956A (en) * 1986-12-19 1988-06-28 Terumo Corp Medical measuring apparatus and method
JPH0434102B2 (en) * 1986-12-19 1992-06-04 Terumo Corp
JPH0263454U (en) * 1988-10-31 1990-05-11
CN104931552A (en) * 2015-05-29 2015-09-23 苏州合欣美电子科技有限公司 Method for automatically detecting mercury metal ion concentration of vegetable base
CN112540110A (en) * 2020-11-30 2021-03-23 正大康地(开封)生物科技有限公司 Method for measuring calcium content in feed by using ion selective electrode
CN112540110B (en) * 2020-11-30 2022-05-20 正大康地(开封)生物科技有限公司 Method for measuring calcium content in feed by using ion selective electrode

Similar Documents

Publication Publication Date Title
US4172770A (en) Flow-through electrochemical system analytical method
US6554982B1 (en) Miniaturized solid-state reference electrode with self-diagnostic function
Matysik et al. Application of Zeolite‐Polydimethylsiloxane Electrodes to Potentiometric Studies of Cationic Species
JP2546786Y2 (en) Graphite-based solid-state polymer membrane ion-selective electrode
US20020065332A1 (en) Polymeric reference electrode membrane and reference electrode with the membrane
Burnett et al. IFCC recommended reference method for the determination of the substance concentration of ionized calcium in undiluted serum, plasma or whole blood
US6508921B1 (en) Lithium ion-selective electrode for clinical applications
US4619739A (en) Method and apparatus for measuring halogen ion concentration
JPS61258157A (en) Method for analizing concentration of ion
Durst et al. Recommendations for the electrometric determination of the pH of atmospheric wet deposition (acid rain)(Technical Report)
Lewenstam Design and pitfalls of ion selective electrodes
JPS63126497A (en) Reagent for determining chloride ion
Rayana et al. Recommendation for measuring and reporting chloride by ISEs in undiluted serum, plasma or blood: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division, Committee on Point of Care Testing and Working Group on Selective Electrodes
Zhang et al. Development of Magnesium‐Ion‐Selective Microelectrodes Based on a New Neutral Carrier ETHT 5504
Annino Determination of sodium in urine by specific ion electrode
Durst Sources of error in ion-selective electrode potentiometry
US20060042961A1 (en) Potentiometric measurement of chloride concentration in an acidic solution
JPS61290353A (en) Standard solution for ion sensor
JP3090505B2 (en) Sample diluent for ion measurement and ion measurement method
Slepchenko et al. An electrochemical sensor for detecting selenium in biological fluids on an arenediazonium tosylate-modified metal electrode
Farazmand et al. Construction of a pyridine-free Karl Fischer reagent for trace determination of water in non-aqueous media by coulometric detection
JP2816125B2 (en) How to measure chloride ion concentration
Fievet et al. Response of ion-selective sodium and potassium electrodes in the Beckman Astra 4 and Astra 8 analyzers.
KR100434870B1 (en) A composition for reference electrode membrane and reference electrode therewith
RU2539837C1 (en) Method for voltammetric determination of phenol in water and water bodies