[go: up one dir, main page]

JPS6125754A - Tool breaking detector - Google Patents

Tool breaking detector

Info

Publication number
JPS6125754A
JPS6125754A JP14204984A JP14204984A JPS6125754A JP S6125754 A JPS6125754 A JP S6125754A JP 14204984 A JP14204984 A JP 14204984A JP 14204984 A JP14204984 A JP 14204984A JP S6125754 A JPS6125754 A JP S6125754A
Authority
JP
Japan
Prior art keywords
speed
spindle
tool
main shaft
air bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14204984A
Other languages
Japanese (ja)
Other versions
JPS646899B2 (en
Inventor
Seido Koda
幸田 盛堂
Koji Ishibashi
幸治 石橋
Takayuki Tateishi
孝之 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP14204984A priority Critical patent/JPS6125754A/en
Publication of JPS6125754A publication Critical patent/JPS6125754A/en
Publication of JPS646899B2 publication Critical patent/JPS646899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0957Detection of tool breakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/10Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting speed or number of revolutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To obtain a detector applicable on a super high speed spindle for such as static pressure air bearing by constituting such that the breaking is detected from the droppage of rotary speed detected in contactless under application of torque between the spindle of machine tool and the spindle body. CONSTITUTION:The rotary speed under machining of work is fed as a speed signal V from a position detector 5 through frequency/voltage converter 7 to a subtractor 8 to calculate the difference between the referential output V0 under no- load rotation thus to obtain the speed variation DELTAV due to load operaton. The speed variation DELTAV is compared with the threshold Vr in a comparator 9. Exceeding of the speed variation DELTAV over the threshold Vr is considered to be breaking thus to stop the machine. With such arrangement, highly accurate detection is realized even for the super high speed spindle such as static pressure air bearing.

Description

【発明の詳細な説明】 JLl上生机朋分豆 本発明は工具折損検出装置に関するものであり、更に詳
しくは公知の電気的な導通もしくは超音波領域の材料破
壊信号による折損検出方法では工具の折損を検出するこ
とが不可能な主軸構造、例えば静圧空気軸受により非接
触状態に支承せられた主軸系に利用し得る工具折損検出
装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a tool breakage detection device, and more specifically, the present invention relates to a tool breakage detection device. The present invention relates to a tool breakage detection device that can be used for a spindle structure in which it is impossible to detect, for example, a spindle system supported in a non-contact manner by a hydrostatic air bearing.

従来■且皿 工作機械の主軸に装着された工具の折損検出手段として
、電気的な導通を利用して工具とワークとの接触の有無
を検知する方法や超音波(例えばアコースティック・エ
ミッシヨン)領域の材料破壊信号を折損検出信号として
利用する方法等が実用化されている。
Conventional methods for detecting breakage of tools attached to the spindle of countersunk machine tools include a method that uses electrical continuity to detect the presence or absence of contact between a tool and a workpiece, and a method that uses ultrasonic waves (e.g. acoustic emission). A method of using a material failure signal as a breakage detection signal has been put into practical use.

しかしながら上記の工具折損の検出手段に於いては、電
気的な導通もしくは超音波信号の伝播が主として金属材
料内で行われるため、近時汎用化されつつある静圧空気
軸受によって支承された超高速主軸に於いては工具折損
の検出が実質上不可能になる。即ち、静圧空気軸受を介
して回転自在に支承された主軸系に於いては、主軸その
ものが主軸頭に対して静圧空気軸受により非接触支持さ
れているため、電気的導通もしくは超音波信号の伝播が
殆ど不可能となり、工具折損の検出機能が実質上失われ
る。
However, in the above-mentioned tool breakage detection means, electrical conduction or ultrasonic signal propagation is mainly performed within the metal material, so ultra-high speed It becomes virtually impossible to detect tool breakage on the spindle. In other words, in a spindle system that is rotatably supported via a hydrostatic air bearing, the spindle itself is supported in a non-contact manner with respect to the spindle head by the hydrostatic air bearing, so there is no electrical continuity or ultrasonic signal. propagation becomes almost impossible, and the tool breakage detection function is virtually lost.

■(゛べ 本発明の主要な目的は、近年、ワークの切削速度ならび
に加工精度を向上せしめる目的で多用されている静圧空
気軸受を備えた超高速主軸に装着し得る工具折損の検出
装置を提供することにある。
(The main purpose of the present invention is to provide a tool breakage detection device that can be attached to an ultra-high-speed spindle equipped with a hydrostatic air bearing, which has been widely used in recent years to improve the cutting speed and machining accuracy of workpieces.) It is about providing.

本発明の他の主要な目的は、公知の超音波領域の材料破
壊信号もしくは電気的な導通を利用する工具折損の検出
装置に認められた実用上の制約を全面的に解消し得る、
ワーク加工時の負蒲トルクによる主軸回転速度の低下の
有無を検出信号として使用する工具折損の検出装置を提
供することにある。
Another main object of the present invention is to completely overcome the practical limitations found in known tool breakage detection devices that utilize material failure signals or electrical continuity in the ultrasonic range.
An object of the present invention is to provide a tool breakage detection device that uses as a detection signal the presence or absence of a decrease in spindle rotational speed due to negative torque during workpiece machining.

゛  ための 上記目的に鑑みて本発明は、工作機械の主軸(1)と主
軸本体(2)との間に非接触の回転速度検出機構(3)
、(4)、(5)を形成してなる速度検出器(6)と、
該非接触式速度検出器に順次直列接続された減算器(8
)ならびに速度信号の比較回路(9)と、前記減算器(
8)に接続された無負荷回転速度信号の設定器(10)
と、前記速度信号の比較回路(9)に接続されたしきい
値設定回路(11)とからなる、工具折損検出装置を要
旨とするものである。
In view of the above object, the present invention provides a non-contact rotational speed detection mechanism (3) between the main spindle (1) and the main spindle body (2) of a machine tool.
, (4) and (5);
Subtractors (8) connected in series to the non-contact speed detector
) and speed signal comparison circuit (9), and the subtracter (
8) No-load rotation speed signal setting device (10) connected to
and a threshold setting circuit (11) connected to the speed signal comparison circuit (9).

また本発明の好適な実施態様に於いては、前記工作機械
の主軸(1)が、静圧空気軸受(12)を介して主軸本
体(2)内に回転自在に支持されている。
In a preferred embodiment of the present invention, the main shaft (1) of the machine tool is rotatably supported within the main shaft body (2) via a hydrostatic air bearing (12).

1乙施−例 第1図は本発明装置の全体構造を例示するブロック線図
であり、第2図は比較回路に表れた出力信号の波形を例
示する直交座標線図である。これらの図面に於いて主軸
本体(2)内には、主軸(1)に対しラジアル軸受とし
て機能する多孔質金属材料製の第1の静圧空気軸受部材
(12a)、(12b)および該主軸に対しスラスト軸
受として機能する前記同様の材料から製せられた第2の
静圧空気軸受部材(12G)、(12d)からなる静圧
空気軸受(12)と、上記のそれぞれの空気軸受部材に
対して圧縮空気を供給するための導通孔(13)、(1
4)が配設されている、主軸(1)は、上記の複数個の
静圧空気軸受部材によって回転自在に支持され、同時に
主軸本体(2)に対して非接触状態を維持して位置決め
されている。主軸(1)の側胴部には複数個のタービン
ポケット(14)を有するタービン(I5)が主軸(1
)と軸心を一致させて設けられており、主軸(1)は、
前記タービンボケッ1−04)に対向するように主軸本
体(2)の(7)胴部円周上に穿設された複数個のノズ
ル(16)から噴出する圧縮空気をタービン(15)内
に導入することにより高速度、例えば毎分5oooo回
転にも及ぶ高速度で回転駆動される。主軸(1)には常
法に従いコレット(17)を介して切削工具(18) 
、例えばドリルが固着されており、この切削工具(18
)に主軸(1)を介して回転駆動力を伝達することによ
りワークの加工が行われる。
1. EXAMPLE 1 FIG. 1 is a block diagram illustrating the overall structure of the apparatus of the present invention, and FIG. 2 is a rectangular coordinate diagram illustrating the waveform of the output signal appearing in the comparator circuit. In these drawings, inside the main shaft body (2) are first hydrostatic air bearing members (12a), (12b) made of porous metal material that function as radial bearings for the main shaft (1), and the main shaft. A hydrostatic air bearing (12) consisting of a second hydrostatic air bearing member (12G) and (12d) made of the same material as above, which functions as a thrust bearing for Conduction holes (13), (1) for supplying compressed air to
The main shaft (1), on which the main shaft (1) is disposed, is rotatably supported by the plurality of static pressure air bearing members, and at the same time is positioned while maintaining a non-contact state with respect to the main shaft body (2). ing. A turbine (I5) having a plurality of turbine pockets (14) is mounted on the side body of the main shaft (1).
), and the main shaft (1) is
Compressed air is ejected into the turbine (15) from a plurality of nozzles (16) bored on the circumference of the body (7) of the main shaft body (2) so as to face the turbine socket (1-04). By introducing it, it is driven to rotate at a high speed, for example, as high as 500 revolutions per minute. A cutting tool (18) is attached to the main shaft (1) via a collet (17) according to the usual method.
, for example, a drill is fixed, and this cutting tool (18
) The workpiece is processed by transmitting rotational driving force to the main shaft (1).

本発明に於いては主軸(1)の基端部に、同心円上に略
等間隔に矩形波信号出力用の穴(4)を穿設してなる円
板(3)を固着し、これに対応して主軸本体(2)の端
壁部分には前記穴(4)の回転移動軌跡上に位置するよ
うにディジタル出力形式の位置検出!S (5)を固着
している。これらの回転速度検出機構(3)、(4)、
(5)から構成された速度検出器(6)は、主軸(1)
と主軸本体(2)との間で非接触状態を維持しながら主
軸(1)の回転速度を検出するものであるが、代替手段
として上記同様の機能を有する(七の速度検出手段、例
えば主軸(1)に直結されたロータリーエンコーダある
いは回転速度検出装置として公知のタコメータ・ジェネ
レータ等を使用することも可能である。
In the present invention, a disk (3) having holes (4) for outputting rectangular wave signals formed at approximately equal intervals on a concentric circle is fixed to the base end of the main shaft (1). Correspondingly, the end wall portion of the spindle body (2) has position detection in digital output format so that it is located on the rotational movement locus of the hole (4)! S (5) is fixed. These rotational speed detection mechanisms (3), (4),
The speed detector (6) composed of (5) is connected to the main shaft (1).
The rotational speed of the main shaft (1) is detected while maintaining a non-contact state between the main shaft body (2) and the main shaft body (2). It is also possible to use a rotary encoder directly connected to (1) or a known tachometer generator or the like as a rotational speed detection device.

本発明装置に於いて主軸(1)が無負荷で回転している
場合には、位置検出器(5)からは主軸(1)の回転数
と円板(3)に穿設された穴(4)の数との積に対応し
た矩形波信号が一定の周期で出力される。ワークの加工
時に切削抵抗の増加に伴って主軸(1)の回転速度が低
下すると、矩形波信号の出力周期が回転速度の低下に対
応して長(なる。この矩形波信号は、周波数/電圧変換
器(7)によりアナログ信号に変換される。尚、位置検
出器(5)としてアナログ出力形式のセンサを使用した
場合には、周波数/電圧変換器(7)の設置は省略する
ことができる。
In the device of the present invention, when the main shaft (1) is rotating without load, the position detector (5) detects the rotational speed of the main shaft (1) and the hole ( A rectangular wave signal corresponding to the product of 4) and the number is output at a constant cycle. When the rotational speed of the spindle (1) decreases due to an increase in cutting resistance during machining of a workpiece, the output period of the square wave signal becomes longer (corresponding to the decrease in rotational speed). It is converted into an analog signal by the converter (7).If an analog output type sensor is used as the position detector (5), the installation of the frequency/voltage converter (7) can be omitted. .

無負荷回転時の基準出力(■0)を設定するための無負
荷回転速度信号の設定器(10)からの出力と、周波数
/電圧変換器(7)から出力された回転速度信号(V)
とは、減算器(8)にて差し引き演算され、該減算!1
(8)からは速度変動ΔV=V−Voが出力される。こ
こで速度変動の算出手段として、上記周波数/電圧変換
器(7)の代わりに直流/交流変換器を使用することも
できるが、何れの実施態様に於いても、ワークの切削抵
抗が零の場合、即ち、主軸(1)が無負荷状態に置かれ
ている場合には、減W器(8)の出力は零となる。
The output from the no-load rotation speed signal setter (10) for setting the reference output (■0) during no-load rotation, and the rotation speed signal (V) output from the frequency/voltage converter (7).
is subtracted by the subtractor (8), and the subtraction! 1
From (8), the speed fluctuation ΔV=V−Vo is output. Here, a DC/AC converter can be used instead of the frequency/voltage converter (7) as a means of calculating the speed fluctuation, but in any embodiment, the cutting resistance of the workpiece is zero. In other words, when the main shaft (1) is placed in a no-load state, the output of the wattage reducer (8) becomes zero.

減算器(8)の出力は、比較回路(9)に於いて、しき
い値設定回路(11)に予め設定された負の値をとるし
きい電圧値(Vr)と比較される。比較回路(9)は、
アナログ・コンパレータ回路から構成されており、比較
演算結果がΔ■くVrであれば、切削工具(18)に折
損を発生せしめることなくワークが正常に切削加工され
ており、これに伴う切削抵抗の増大により主軸(1)の
回転速度が低下しているものと判定される。一方、主軸
(1)の回転速度の低下が検知されない場合、即ち、比
較演算結果がΔ■>Vrである場合は、切削工具(18
)が折損しワークの加工が中断しているものと判定され
、工具折損の出力信号が出力され、該出力信号により工
作機械の停止ならびに折損工具の交換が実施される。
The output of the subtracter (8) is compared in a comparison circuit (9) with a negative threshold voltage value (Vr) set in advance in a threshold setting circuit (11). The comparison circuit (9) is
It consists of an analog comparator circuit, and if the comparison result is ∆■ - Vr, the workpiece has been successfully cut without causing any breakage to the cutting tool (18), and the resulting cutting resistance has decreased. It is determined that the rotational speed of the main shaft (1) is decreasing due to the increase. On the other hand, if a decrease in the rotational speed of the spindle (1) is not detected, that is, if the comparison calculation result is Δ■>Vr, then the cutting tool (18
) is determined to have interrupted the machining of the broken workpiece, and an output signal indicating that the tool is broken is output.The output signal causes the machine tool to be stopped and the broken tool to be replaced.

第2図は無負荷状態に於ける主軸回転数が1824OR
PMである場合の速度波形と、直径0.5a+11のド
リルによるワーク加工時の回転速度波形とを同一スケー
ルで表示したものであり、無負荷時に於ける回転速度変
動(回転速)は概ね301?PM稈度である。
Figure 2 shows the spindle rotation speed in the no-load state of 1824OR.
The speed waveform in the case of PM and the rotation speed waveform when machining a workpiece with a drill of diameter 0.5a + 11 are displayed on the same scale, and the rotation speed fluctuation (rotation speed) under no load is approximately 301? PM culm degree.

第2図の例示から理解し得る如く、ワークの切削加工時
に於いては約45ORPM程度の回転速度の低下が認め
られる。より具体的に説明すれば、点(A)にて切削工
具(18)がワークと接触し、該ワークへの切り込み量
が増大するにつれて主軸(1)の回転速度が次第に低下
し最下点(B>に到達する。切削工具(18)が前記最
下点(B)に対応する所定の深さ迄到達するとワークへ
の切り込みは終息するから切削負荷は殆どなくなり、こ
の後は切削工具(18)の後退により主軸(1)の回転
数は徐々に回復し、無負荷時と同一の回転数を示す点(
C)に復帰する。
As can be understood from the example shown in FIG. 2, during cutting of a workpiece, a decrease in rotational speed of about 45 ORPM is observed. To be more specific, the cutting tool (18) comes into contact with the workpiece at point (A), and as the depth of cut into the workpiece increases, the rotational speed of the spindle (1) gradually decreases until it reaches the lowest point ( When the cutting tool (18) reaches the predetermined depth corresponding to the lowest point (B), cutting into the workpiece ends, so the cutting load is almost eliminated, and after this, the cutting tool (18) ) retreats, the rotation speed of the main shaft (1) gradually recovers, and the point (
Return to C).

第2図に於いて、しきい値Vrを設定することにより、
ワークの加工条件が適正であるか否かが、即ち工具折損
の有無が第1図に示す検出装置により確認される。一方
、先行加工工程に於いて折損した切削工具(18)を交
換せずにそのまま使用した場合には、回転速度波形は第
2図に点線で表示するように略水平な直線となり、折損
検知信号が出力される。またワークの加工途上で切削工
具(18)が折損した場合には、回転速度波形は第2図
に二点鎖線で表示するように予め設定された最下点(B
)に到達することなく最初の回転数の水準に復帰する曲
線となり、この場合にも折損検知信号が出力される。
In FIG. 2, by setting the threshold value Vr,
The detection device shown in FIG. 1 confirms whether the machining conditions of the workpiece are appropriate, that is, whether or not the tool is broken. On the other hand, if the cutting tool (18) that was broken in the preceding machining process is used as is without being replaced, the rotational speed waveform becomes a substantially horizontal straight line as shown by the dotted line in Figure 2, and the breakage detection signal is is output. In addition, if the cutting tool (18) breaks during machining of the workpiece, the rotational speed waveform will be moved to the lowest point (B
), the curve returns to the initial rotational speed level, and a breakage detection signal is also output in this case.

尚、この場合には、検出装置に切削予定区間(R)の範
囲内に於いて、回転速度の低下の有無を判別するための
補助的なゲート回路を組み入れる必要がある。
In this case, it is necessary to incorporate an auxiliary gate circuit into the detection device to determine whether or not the rotational speed has decreased within the planned cutting section (R).

本発明装置は、自動化された数値制御工作機械、例えば
マシニングセンタに於いては、数値制御装置の補助信号
(M機能)を用いることによって、無負荷回転速度信号
ならびにしきい値の設定、出力信号の比較、あるいは更
に前記出力信号の比較による工具折損の有無の判定をす
べて自動的に実行することができる。尚、本発明の応用
例として、工具折損以外の原因による主軸(1)の回転
速度の低下あるいは停止を検知するための別のしきい値
(Ve)を設定することも可能であり、斯かる第2のし
きい値(Ve)により切削工具(18)が過負荷状態に
あるか否かも検出することができる。
In an automated numerically controlled machine tool, such as a machining center, the device of the present invention uses the auxiliary signal (M function) of the numerical control device to set the no-load rotational speed signal, threshold value, and control the output signal. Comparison or further comparison of the output signals to determine whether or not a tool is broken can all be performed automatically. In addition, as an application example of the present invention, it is also possible to set another threshold value (Ve) for detecting a decrease in rotational speed or stoppage of the spindle (1) due to causes other than tool breakage, and such a threshold value (Ve) can be set. The second threshold value (Ve) also makes it possible to detect whether the cutting tool (18) is overloaded.

火皿Ω猜来 以上の説明から理解し得るように、本発明装置を採用す
ることによって、切削負荷による主軸回転速度の低下を
、予め設定された無負荷回転速度(f5号の出力ならび
にしきい値と比較演算することにより、切削工具に折損
が発生したか否かを確実に検知することができる。本発
明装置は、特別のセンサを付設することなく工具折損を
検出することができるから、殆ど全てのタイプの工作機
械に通用可能である。即ち、電気的導通や超音波領域の
材料破壊信号を利用する工具折損の検知が実質上不可能
な主軸構造、例えば、静圧空気軸受によって非接触状態
に支持された主軸構造に於いても、本発明装置は工具折
損の検出精度を顕著に向上せしめることができる。従っ
て本発明装置は、公知の検出装置によっては検知不能と
されていた小径の切削工具、例えば直径1ms+以下の
ドリル等に対しても優れた折損検出機能を発揮すること
ができる。また上記検出精度の向上に基づき、本発明装
置は、工具折損の検出以外の用途分野、例えば工具とワ
ークとの接触開始点の検出や工具摩耗の検出に於いても
良好な検出機能を発揮し得るものである。
As can be understood from the above explanation, by employing the device of the present invention, the decrease in spindle rotational speed due to cutting load can be reduced by adjusting the no-load rotational speed (output of f5 and the threshold value). It is possible to reliably detect whether or not a cutting tool has broken by performing a comparison calculation with It is applicable to all types of machine tools.In other words, it has a main shaft structure that makes it virtually impossible to detect tool breakage using electrical conduction or material failure signals in the ultrasonic range. Even in the case of a spindle structure supported in a fixed state, the device of the present invention can significantly improve the accuracy of detecting tool breakage.Therefore, the device of the present invention can detect tool breakage of small diameters that cannot be detected by known detection devices. It is possible to exhibit an excellent breakage detection function even for cutting tools such as drills with a diameter of 1 ms+ or less.Furthermore, based on the above-mentioned improvement in detection accuracy, the device of the present invention can be used in fields other than tool breakage detection, such as It can also exhibit good detection functions in detecting the starting point of contact between a tool and a workpiece and in detecting tool wear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の全体構造を例示するブロック線図
であり、第2図は比較回路に表れた出力信号の波形を例
示する直交座標線図である。 (1)−・主軸、(2)−主軸本体、(6)速度検出器
、(7)−周波数/電圧変換器、(8”) −減算器、
(9’) −速度信号の比較回路、(10)−無負荷回
転速度信号の設定器、(11)舅 ) L −□− 手続補正書 昭和59年10月24日 1、事件の表示 昭和59年特許願第142049号 2、発明の名称 工具折損検出装置 3、補正をする者 事件との関係 特許出願人 名称大阪機工株式会社 4、代理人 畳550 住 所 大阪府大阪市西区江戸W11丁目15番26号
5、M正の対象 明細書および図面 1、明細書中、第5頁第8行および第1θ行〜第11行 [タービンポケット(14) Jを 「タービンポケット(14°)」と補正する。 ■0図面中、第1図を別紙にて朱書して示すように補正
する。
FIG. 1 is a block diagram illustrating the overall structure of the device of the present invention, and FIG. 2 is a rectangular coordinate diagram illustrating the waveform of an output signal appearing in a comparator circuit. (1)--Spindle, (2)-Spindle body, (6) Speed detector, (7)-Frequency/voltage converter, (8")-Subtractor,
(9') - Speed signal comparison circuit, (10) - No-load rotation speed signal setting device, (11) L -□- Procedural amendment October 24, 1980 1, Incident display 1982 Patent Application No. 142049 2, Title of the invention: Tool breakage detection device 3, Relationship with the person making the amendment Patent applicant name: Osaka Kiko Co., Ltd. 4, Agent: Tatami 550 Address: 15 Edo W11-chome, Nishi-ku, Osaka City, Osaka Prefecture No. 26 No. 5, M positive subject Specification and Drawing 1, in the specification, page 5, line 8 and lines 1θ to 11 [Turbine pocket (14) J is referred to as "turbine pocket (14°)" to correct. ■Amend Figure 1 of the drawings to be shown in red on a separate sheet.

Claims (2)

【特許請求の範囲】[Claims] (1)工作機械の主軸と主軸本体との間に非接触の回転
速度検出機構を形成してなる速度検出器と、該非接触式
速度検出器に順次直列接続された減算器ならびに速度信
号の比較回路と、前記減算器に接続された無負荷回転速
度信号の設定器と、前記速度信号の比較回路に接続され
たしきい値設定回路とからなる、工具折損検出装置。
(1) Comparison of a speed detector formed by forming a non-contact rotational speed detection mechanism between the main spindle and the main spindle body of a machine tool, a subtractor connected in series to the non-contact speed detector, and a speed signal A tool breakage detection device comprising a circuit, a no-load rotation speed signal setter connected to the subtracter, and a threshold setting circuit connected to the speed signal comparison circuit.
(2)前記工作機械の主軸が静圧空気軸受を介して主軸
本体内に回転自在に支持されている、特許請求の範囲第
1項記載の工具折損検出装置。
(2) The tool breakage detection device according to claim 1, wherein the main shaft of the machine tool is rotatably supported within the main shaft body via a hydrostatic air bearing.
JP14204984A 1984-07-09 1984-07-09 Tool breaking detector Granted JPS6125754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14204984A JPS6125754A (en) 1984-07-09 1984-07-09 Tool breaking detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14204984A JPS6125754A (en) 1984-07-09 1984-07-09 Tool breaking detector

Publications (2)

Publication Number Publication Date
JPS6125754A true JPS6125754A (en) 1986-02-04
JPS646899B2 JPS646899B2 (en) 1989-02-06

Family

ID=15306214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14204984A Granted JPS6125754A (en) 1984-07-09 1984-07-09 Tool breaking detector

Country Status (1)

Country Link
JP (1) JPS6125754A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164537A (en) * 1987-12-17 1989-06-28 Rikagaku Kenkyusho Detection of tool anomaly by main spindle revolution speed change signal
US5513587A (en) * 1994-04-13 1996-05-07 Pegasus Sewing Machine Mfg. Co., Ltd. Thread tensioning for chain stitch sewing machine
JPH09285944A (en) * 1996-04-23 1997-11-04 Toshiba Mach Co Ltd Main spindle abnormality detector for air bearing type machine tool
US6098555A (en) * 1998-09-22 2000-08-08 Suzuki Manufacturing Co., Ltd. Chain-off forming apparatus for cover stitch sewing machines
JP2011093061A (en) * 2009-10-30 2011-05-12 Waida Seisakusho:Kk Rotation spindle with torque detection function
JP2018127829A (en) * 2017-02-09 2018-08-16 公益財団法人鉄道総合技術研究所 Tip saw type portable rail cutter for rail gas pressure welding, rail cutting method, and rail pressure welding method
JP2018161698A (en) * 2017-03-24 2018-10-18 学校法人福岡工業大学 Tool wear estimation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164537A (en) * 1987-12-17 1989-06-28 Rikagaku Kenkyusho Detection of tool anomaly by main spindle revolution speed change signal
US5513587A (en) * 1994-04-13 1996-05-07 Pegasus Sewing Machine Mfg. Co., Ltd. Thread tensioning for chain stitch sewing machine
JPH09285944A (en) * 1996-04-23 1997-11-04 Toshiba Mach Co Ltd Main spindle abnormality detector for air bearing type machine tool
US6098555A (en) * 1998-09-22 2000-08-08 Suzuki Manufacturing Co., Ltd. Chain-off forming apparatus for cover stitch sewing machines
JP2011093061A (en) * 2009-10-30 2011-05-12 Waida Seisakusho:Kk Rotation spindle with torque detection function
JP2018127829A (en) * 2017-02-09 2018-08-16 公益財団法人鉄道総合技術研究所 Tip saw type portable rail cutter for rail gas pressure welding, rail cutting method, and rail pressure welding method
JP2018161698A (en) * 2017-03-24 2018-10-18 学校法人福岡工業大学 Tool wear estimation method

Also Published As

Publication number Publication date
JPS646899B2 (en) 1989-02-06

Similar Documents

Publication Publication Date Title
US4786220A (en) Cutting tool wear monitor
US4694686A (en) Cutting tool wear monitor
JP3644129B2 (en) Cutting apparatus and abnormality detection method thereof
EP0962281A3 (en) Industrial machine having abnormal vibration detecting function
EP0078421A2 (en) Adaptive control system for machine tool or the like
JPH0257262B2 (en)
US4697964A (en) Boring machine
CA1243744A (en) Cutting tool wear monitor
JPH09285945A (en) Machine tool equipped with tool wear detecting function
JPS6125754A (en) Tool breaking detector
JPH01222851A (en) Method for detecting thrust force of main spindle of machine tool
JPS6188015A (en) Preload control spindle unit
JPH0938815A (en) Load detecting spindle unit
JPS6236826B2 (en)
JP3300604B2 (en) Tool damage detection method and device
JPH0155941B2 (en)
JPS57182161A (en) Seizure detecting device for machining with spinning work
CN220120240U (en) Quantitative drilling tool vibration rotating speed dynamic strain measurement system
CN218613150U (en) Clamping inspection device for machining shaft parts of numerical control lathe
JP2970497B2 (en) Method and apparatus for detecting AE of rotating body using oil film
JPH0788746A (en) Cutting Abnormality Detection and Emergency Return Method in Gear Processing Machine
JPS6346218Y2 (en)
JP2002066848A (en) Processing equipment for hydrodynamic bearings
JPS62193751A (en) Multi-blade tool damage detecting device
JPH09272044A (en) Detecting method for cutting torque in machine tool and its device