[go: up one dir, main page]

JPS61256A - Electrically conductive polyester composition - Google Patents

Electrically conductive polyester composition

Info

Publication number
JPS61256A
JPS61256A JP12106984A JP12106984A JPS61256A JP S61256 A JPS61256 A JP S61256A JP 12106984 A JP12106984 A JP 12106984A JP 12106984 A JP12106984 A JP 12106984A JP S61256 A JPS61256 A JP S61256A
Authority
JP
Japan
Prior art keywords
electrically conductive
conductive particles
polyester
conductive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12106984A
Other languages
Japanese (ja)
Inventor
Toshio Jitsumatsu
実松 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP12106984A priority Critical patent/JPS61256A/en
Publication of JPS61256A publication Critical patent/JPS61256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:An electrically conductive polyester composition having excellent moldability, obtained by dispersing electrically conductive particles in a specified polyester polymer, followed by the solid-phase polymerization thereof. CONSTITUTION:A composition which contains not more than 3wt% extractable low-molecular-weight material, has a resistivity less than 10<7>OMEGA.cm, and is obtained by dispersing electrically conductive particles in a polyester polymer in which the repeating unit of the formula comprises 70% or more of the polyester component, followed by the solid-phase polymerization thereof. The examples of suitable electrically conductive particles include particles of a conductive carbon black, a metal oxide of high whiteness, such as tin oxide or zinc oxide, a metal such as silver or iron or its alloy, a metal compound such as copper sulfide or zinc iodide, etc. The conductivity of the electrically conductive particles in terms of resistivity in the form of powders is preferably less than about 10<4>OMEGA.cm, especially less than 10<2>OMEGA.cm. And the electrically conductive particles should have a sufficiently small particle diameter; usually the average diameter of 1mum or smaller, preferably 0.5mum or smaller.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた成形加工性を有する導電性ポリエステル
組成物に関するものである。 ポリエステル、特にポリエチレンテレフタレートは優れ
た機械的特性、寸法安定性、耐熱性及び耐薬品性を有す
るため種々の用途、例えば繊維製品、フィルム、成形品
等に使用さtしている。一方、多くのポリエステル加工
製品で静電気が発圧し、帯電することは良く知られてお
り、かかるポリエステル加工製品に帯電防止性を付与す
る方法については従来から数多くの提案が為されている
。中でも、カーボンブラックや金属化合物などの導電性
粒子を分散する方法は恒久的な制電性を付与できる点で
最も有効なものと注目されている。しかしながら、制電
性を付与するためには多電のカーボンブラックや金属化
合物を合成重合体に分散させる必要があり、成形加工性
の低下、特に延伸工程の生産性の低下が問題となってい
る。妹にポリエチレンテレフタレートに代表される芳香
族ポリエステルの場合には、混練加工時に導電性粒子の
粒体に含まれるわずかな水分により加水分解を誘発する
ためか、得られた配合物は脆<、溶融流動性が著しく劣
るという欠点がある。それ故、制電性加工製品として天
川化さ才しているものははとんど無い現状である。本発
明はかかる欠陥を排除すべく鋭怠研兜の結果、本発明を
完成したものである。 本発明の目的は優れた成形加工性を有する導電性ポリエ
ステル組成物を提供するにある。 すなわち、本発明は、下記(I)式で示される繰返し単
位がポリエステル成分の少なくとも70モル%を占める
ポリエステル重合体に導電性粒子を分1    1゜’
ifA ’li、@ Iy Ct、x 6 、 m工お
。エイッ□鉦が8電電%以トで比抵抗が10’Ω・副未
満である導電性ポリエステル組成物である。 本発明において使用する導電性粒子は、粉末状での比抵
抗が1040・備程度以下のものであれば、あらゆる油
類の粒子が使用可能である。好適な導電性粒子として、
導電性カーボンブラックは勿論。 白皮の烏い酸化錫、酸化亜鉛、酸化鋼、亜酸化鋼、酸化
インジウム、酸化ジルコニウム、酸化タングステンなと
の金属酸化物、銀、ニッマル、銅、鉄などの金属或いは
これらの合金、硫化銅、沃化銅、沃化亜鉛などの全島化
合物を挙げることができる。 金属酸化物の多くのものは絶縁体に近い半尋体であって
本発明の目的に充分な導電性を示さないことが多い。し
かしながら、例えば、金属酸化物に適当な第2成分(不
純物)を少ル(,50%以下、特に25%以’F)添加
するなどの方法により、導電性を強化し、本発明の目的
に充分な導電性を有するものが得られる。このような導
電性強化側としては、酸化錫に対して酸化アンチモンが
、酸化亜鉛に対してアルミニウム、カリウム、インジウ
ム、ゲルマニウム、錫などの金属酸化物が使える。 更に、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化
錫、酸1じ鉄、酸化ケイ系、酸化アルミニウムなどの非
導電性無機物粒子の表向に上記金属、金属酸化物又は金
戯化合物の導電性皮膜を形成しすこ粒子も用いられる、 棉h;姓粒子の尋maは、粉末状での比抵抗が10’Ω
’l?ff+程度以下、9寺に102Ω・α桂慢、以下
か好ましく、101Ω・(:n+柱変度以下最も好まし
い。実際に102Ω・σ〜10=Ω・m程度のものか得
られ、本究明の目的に好壇に応用することができるか、
更に優れた4電性のものは一層好ましい。粉本の比抵抗
(体積抵抗率)は直径lσの絶縁体の円筒に試料を5 
rr詰め、を部からピストンによって200kQの圧力
を加オー、I流電圧(例えば0.[11〜1000V)
ye印加して(電流1mA以トで)測定するっまた、導
電性′RL+は充力小さい粒径のものでなくてljなら
ない。平均粒径が1〜211fnのものも使用小川性で
はないが、通常平均粒径が1μm以下、特に05μm以
t、最も好ましくは08μm以下のものが用いられる。 但し、カーボンブラックの場合は更に粒径の小さいもの
、すなわち通常平均粒径が01μm以下、0.02〜0
.05μm程度のものが用いられる。 不発明において便用するポリエステル屯合体は、テレフ
タル酸又はテレフタル酸のエステル形成性誘導体を主成
分とするジカルボン酸成分とエチレングリコール又はテ
トラメチレングリコールを主成分とするクリコール成分
とがら形成される熱用塑aポリエステル恵合体であり、
@tじ(1)式でボさJLる#!返し単位がポリエステ
ル成分の少なくとも70モル%を占めるものが好ましい
。共車台させるカルボン酸成分としては、例えはイソフ
タル酸、2.6−ナフタリンジカルボン鮭、アジピン酸
、セバシン酸など、又、エステル形成性誘導体としては
こnらジカルボン酸の低級アルキルエステル(例えばメ
チルエステル)、ジアリールエステル(秒lえばフェニ
ルエステル)などが乍げられ、又クリコール成分として
はシクロヘキザン
The present invention relates to a conductive polyester composition having excellent moldability. Polyesters, particularly polyethylene terephthalate, have excellent mechanical properties, dimensional stability, heat resistance, and chemical resistance, and are therefore used in a variety of applications, such as textile products, films, molded products, etc. On the other hand, it is well known that many polyester processed products generate static electricity and become charged, and many proposals have been made for methods of imparting antistatic properties to such polyester processed products. Among these, the method of dispersing conductive particles such as carbon black or metal compounds is attracting attention as the most effective method in that it can provide permanent antistatic properties. However, in order to impart antistatic properties, it is necessary to disperse highly charged carbon black or metal compounds into synthetic polymers, which poses a problem of decreased moldability, especially productivity in the stretching process. . In the case of aromatic polyesters, such as polyethylene terephthalate, the resulting compound is brittle and molten, probably because a small amount of water contained in the conductive particles induces hydrolysis during kneading. It has the disadvantage of extremely poor fluidity. Therefore, there are currently very few antistatically processed products that have been made into Amagawa. The present invention was completed as a result of thorough research to eliminate such defects. An object of the present invention is to provide a conductive polyester composition having excellent moldability. That is, in the present invention, conductive particles are added to a polyester polymer in which repeating units represented by the following formula (I) account for at least 70 mol% of the polyester component.
ifA'li, @Iy Ct, x 6, m-work. This is a conductive polyester composition having an electric resistance of 8% or more and a specific resistance of less than 10'Ω. As the conductive particles used in the present invention, particles of any oil can be used as long as they have a specific resistance in powder form of about 1040°C or less. As suitable conductive particles,
Of course conductive carbon black. Metal oxides such as white-skinned tin oxide, zinc oxide, steel oxide, suboxide steel, indium oxide, zirconium oxide, tungsten oxide, metals such as silver, nitrogen, copper, iron, etc., or alloys thereof, copper sulfide , copper iodide, zinc iodide and other all-island compounds. Many metal oxides are half-solid bodies that are close to insulators and often do not exhibit sufficient conductivity for the purpose of the present invention. However, for example, by adding a small amount (50% or less, especially 25% or more) of a suitable second component (impurity) to the metal oxide, the conductivity can be strengthened and the object of the present invention can be achieved. A product with sufficient electrical conductivity can be obtained. As such conductivity enhancing side, antimony oxide can be used for tin oxide, and metal oxides such as aluminum, potassium, indium, germanium, tin and the like can be used for zinc oxide. Furthermore, a conductive film of the above-mentioned metal, metal oxide or metal compound is applied to the surface of the non-conductive inorganic particles such as titanium oxide, zinc oxide, magnesium oxide, tin oxide, diferric acid, silicon oxide, aluminum oxide, etc. Shisuko particles are also used.
'l? ff+ degree or less, 102 Ω・α arrogance for 9 temples, preferably less than 101 Ω・(:n+ column deviation or less.Actually, a value of about 102 Ω・σ~10=Ω・m can be obtained, and the present research Can it be applied effectively to the purpose?
Those with even better tetraelectricity are even more preferred. The specific resistance (volume resistivity) of a powder book is calculated by placing a sample in an insulating cylinder with a diameter of lσ.
rr, apply a pressure of 200 kQ from the piston to the I current voltage (e.g. 0.[11 to 1000 V)
When measuring by applying ye (with a current of 1 mA or less), the conductivity 'RL+ must be of a particle size with a small charging force and must be lj. Although those having an average particle size of 1 to 211 fn are not suitable for use, those having an average particle size of 1 μm or less, particularly 05 μm or more, and most preferably 08 μm or less are used. However, in the case of carbon black, the particle size is even smaller, that is, the average particle size is usually 0.1 μm or less, 0.02 to 0.
.. A material with a diameter of about 0.05 μm is used. The polyester composite used in the present invention is a thermoplastic formed from a dicarboxylic acid component whose main component is terephthalic acid or an ester-forming derivative of terephthalic acid and a glycol component whose main component is ethylene glycol or tetramethylene glycol. a Polyester Keigata,
@tji (1) is the best JL #! It is preferred that the return units account for at least 70 mol% of the polyester component. Examples of carboxylic acid components to be used in the common vehicle include isophthalic acid, 2,6-naphthalene dicarboxylic acid, adipic acid, and sebacic acid, and examples of ester-forming derivatives include lower alkyl esters of dicarboxylic acids (such as methyl esters). ), diaryl esters (or phenyl esters), and glycol components include cyclohexane.

【、4ジメタツール、ネオペンテレン
ゲリコール、2.2−ビス(4−ヒドロキシフェニル)
プロパン、ポリエチレングリコールなどを挙けることが
できる。ポリエステル重合体は結晶性のものであって面
相点合用りづであfl、1.f’、 ’!卸に限宅さス
゛シることはなく、任鳩に剪ぶことができる。+9II
第4ば、導電性複合繊維の導電性hν分として使用する
場合にはを1ち細形成性のものが1!1矛J、、 p、
bの忰5址からは好ましいか、日j幼籠三の劣るものも
便用し得る。 々チ重注枚子の+Jリエステル小台色への分散は俗融状
隘8で4〜拝混合すZ、こと(配線)によりなさrしる
か、84電性粒1の分散をできるたけ均一にすることか
好ましい。必要であれは、流!11・J性改吉刑(イ刈
ス、;ま、用塑炸j、ワックス類、ボ゛リアルキレンオ
キシドなとの低粘曵ポリマーフを安息添加することも好
ましい。導’FHPi粒子の混合ヰは、bl子の柚知、
導電性、粒子の連鉤形成師:及び混6づるポリエステル
重合体の性質や結晶性なきによって笈1ヤ      
  るが、畑禍lO〜80%(mffi)程度の範囲内
であり、多くの場合20〜75%程度である。 混練して得られた混合物は脆く、俗M流動性が著しく劣
るという欠点があるっその原因は、多用の導電性粒子を
ポリエステル重合体に均一に分散させるにはポリエステ
ル重合体も粉砕して便い、配線を2〜41g1練り返す
ことが必要であるが、導電性粒子やポリエステル重合体
の粉砕物に含まnるわずかな水分により(通常、粉体を
充分に乾燥することは困難であり、実行されることはは
と九と無い)混練時に加水分解をaS9tiしているも
のと推廻される。実際、混練して得られた混合物には抽
出低分子物が3〜12単hA、’17含まIしているこ
とが多い。 本発明の導電性ポリエステル組成物は、導電性粒子をポ
リエステル重合体に分散させた混合物を面相重合せしめ
ることにより得られる。成形加工性を改善するたは拍1
出低分子物を8%以トとすることが必要であり、持は1
1.θ%以トとすることが好ましい。面相組合は上記混
合物のベレットを識圧下或いは不活性気体の通気トに、
融点以下の温度(且つ、多くの場合180°C以上)で
加熱することによって本絹合反応を進める力性か採用さ
nるっ例えば、前記中成においてn=2であるエチレン
グリコールを主IJ兄分とするグリコール成分が得られ
るポリエチレンテレフタレート糸のものは200〜24
0°Cで固相重合せしめ、極限粘度〔η〕がF記(11
式で示される範囲、抽出可能な低分子物含有量を11箪
%以下とすることにより成形加工性が大巾に改善される
。これは本発明の好適な例で、他の結晶性のポリエステ
ル重合体又は共重合ポリエステルにも応用することがで
きる。 但し、Cは導電性粒子の含有率(重合%)all粘度は
フェノールとテトラクロロエタンの混合溶媒中(車量比
6:4)、20°Cで測定した値から算出する。抽出低
分子物は4!電性ポリ工ステル組成物の粉砕した試料1
2とクロロホルム10−をガラスアンプルに封入し、1
20°cで2時間加温し、冷却妓クロロホルムに溶解し
た低分子物(主として分子量が数千以下のもの)を定i
することによって求める。 本発明の導電性ポリエステル組成物は充分な導電性を有
していなくてはなら1、一般に1070・−見満の比抵
抗を何することが必要である。mmやフィルムなどの加
工製品に制電性を付与するためには、104Ω・α以下
が好ましく、102Ω・個以トが特に好ましい。更に電
磁波シールド効果をも付与するtこめには10°Ω■以
下が好ましく、l (1−20・m程度以下のものか特
に好丈しい。尋亀atリエステル組成物の比抵抗は、8
〜100匈/crAの圧力で直径0.5fiのノズルか
ら溶融押出して得たポリマー索に直流電圧(0,1−1
000V)を印加して測定した電気抵抗値から算出した
つ 本発明の導電性ポリエステル組成物は繊維やフィルム(
複合繊維或いは複合フィルムの導電性成分として用いる
場合も含む)として優れた成形加工性と性質を有する加
工製品を提供し、その工業的価値は極めて大きいもので
ある。 以下、実施例によって本発明を具体的に説明する。%は
特記しない限り重量%を示す。 実施例1゜ 分子ffi 15,000のポリエチレンテレフタレー
トで抽出低分子物1.8重量%の粉末74.5ffl量
%、導電性カーボンブラック25点量つ及び流動性成@
刑としてステアリン酸マグネシウム塩0.5臘iL%と
を常圧窒素気流ト280°Cで8回済融混練して、抽出
低分子物5.6%、極限粘度0,42、比抵抗1、l×
10Ω・mの導電性ポリエステル混合物(ペレット状)
にを得た。次いでA′を窒素気流化180”Cで2時間
結晶化乾燥を行った後、温度を285°CにLげ、05
鮎Hfで12時間内相重合を行い、尋を性ポリエステル
組成物Aを得た。抽出低分子物は0.8直置%、極限粘
度は0.61、比抵抗は4.4XloΩ・副であった。 次に、A7e導電性成分に、分子量15.000のポリ
エチレンテレフタレートで酸化チタンを085重量%含
むもの(Bとする)を保護成分に用いてで      
 第1図のような複合構造で溶融紡糸した。すなわち導
電性繊維にわける両成分の複合比(体積)はl:10、
紡糸温度295℃で直径0.25闘のオリフィスから紡
出し、冷却・オイリングしなからり、000m/分の速
度で捲取った。 次いで100°C180倍で延伸し、170°Cの熱板
に接触させた後、20デニール6フイラメントの延伸糸
Y1を得た。又、比較例として導電性成分にA′を用い
、延伸糸Y′1を得た。 実施例2゜ 表面に酸化錫皮膜を角する酸化チタン粒子に対して1.
5mi%の酸化アンチモンを混合焼成して導電性化した
粒子をDとする。Dの平均粒径は、0.25μm、@化
銅の含有量は15車星%、比抵抗4.8Ω・錆、外観は
白色に近い淡灰肯色で1度(光反射率は83%であった
。Dを60車魁%、ポリエチレングリコール(分子m6
03)1.5モル%共重合ポリエチレンテレフタレート
で抽出低分子Jm 2.2 重量%の粉末89重社%及
びステアリン酸マグネシウム塩1重量%とを実施例1と
同様浴融混練して、抽出低分子物3.2%、極限粘度o
、2i、比抵抗8.2 X 10Ω・αの導電性ポリエ
ステル混合物(ペレット状)C′を得た。次いで実施例
1と同様C′を固相重合して(但し、温度220°C1
時間15時間)、導電性ポリエステル組成物Cを得た。 Cの抽出低分子物は0.6%、極限粘度o、34、比抵
抗は12X1g2Ω・副であった。 次に、Cを導電性成分に用いて実施例1と同様に紡糸・
延伸しく但し、第2図のような複合構造、延伸倍坐2,
6倍)、72デニール24フイラメントの延伸糸¥2を
得た。又、比較例として導電性成分にC′を用い、延伸
糸Ygを得た。 これら延伸糸の製糸加工&(紡糸糸切れ亭、延撚糸切れ
亭)及び糸性能(強度、伸度、比抵抗)を第】表に示す
。第1表がら明らがなように本発明の導電性ポリエステ
ル組成物A、Cを用いたYl及びY2は固相重合してい
ないものに比べ、製糸加工佑二が優t【、月つ良好な糸
性能を有している導電性複合縁vtrであることが詔め
られた。 第1表
[, 4 dimethatol, neopentelene gelicol, 2,2-bis(4-hydroxyphenyl)
Examples include propane and polyethylene glycol. Polyester polymers are crystalline and are used for surface point bonding.1. f', '! It is not sold exclusively to wholesalers, and can be pruned as desired. +9II
Fourth, when used as the conductivity hv of conductive composite fibers, the number of finely formed fibers is 1!1 J,, p,
It is preferable from the 5th place of b, or the worse one of the 3rd place of the Japanese child can also be used conveniently. The dispersion of the 84 electrified particles 1 into the +J Liester Kodai color is done by mixing 4 to 4 in the general melting state 8 (wiring), or dispersing the 84 electroconductive particles 1 as much as possible. It is preferable to make it uniform. Whatever is necessary, flow! 11. It is also preferable to add a low viscosity polymer such as plastic powder, waxes, and polyalkylene oxide. Ha, BL child Yuzuki,
Due to its conductivity, particle chain formation, and the properties and lack of crystallinity of the mixed polyester polymer, it is possible to
However, it is within the range of about 80% (mffi) of field damage, and in most cases it is about 20-75%. The mixture obtained by kneading is brittle and has extremely poor fluidity. This is due to the fact that in order to uniformly disperse the conductive particles used in the polyester polymer, the polyester polymer must also be pulverized. However, due to the small amount of moisture contained in the ground conductive particles and polyester polymer (normally, it is difficult to dry the powder sufficiently, It is assumed that hydrolysis is carried out during kneading (which is rarely carried out). In fact, the mixture obtained by kneading often contains 3 to 12 monohA,'17I extracted low molecular weight substances. The conductive polyester composition of the present invention can be obtained by subjecting a mixture of conductive particles dispersed in a polyester polymer to phase polymerization. Tip 1 to improve moldability
It is necessary to keep the amount of low molecular weight substances at 8% or more, and the content is 1.
1. It is preferable to set it to θ% or less. For the surface assembly, the pellet of the above mixture is heated under normal pressure or in an inert gas aeration chamber.
For example, in the above intermediate formation, ethylene glycol with n=2 is used as the main IJ. The polyethylene terephthalate yarn from which the glycol component, which is the older brother, can be obtained is 200 to 24
Solid phase polymerization was carried out at 0°C, and the intrinsic viscosity [η] was expressed as F (11
By controlling the extractable low molecular weight content to 11% or less within the range shown by the formula, moldability is greatly improved. This is a preferred example of the present invention, which can also be applied to other crystalline polyester polymers or copolyesters. However, C is the content of conductive particles (polymerization %), and all viscosity is calculated from the value measured at 20°C in a mixed solvent of phenol and tetrachloroethane (volume ratio 6:4). There are 4 extracted low molecular weight substances! Pulverized sample 1 of electrically conductive polyester composition
2 and chloroform 10- are sealed in a glass ampoule,
After heating at 20°C for 2 hours and cooling, the low molecular weight substances (mainly those with a molecular weight of several thousand or less) dissolved in chloroform were quantified.
Ask by doing. In order for the conductive polyester composition of the present invention to have sufficient conductivity, it is generally necessary to have a specific resistance of 1070. In order to impart antistatic properties to processed products such as millimeters and films, the resistance is preferably 10 4 Ω·α or less, and particularly preferably 10 2 Ω·α or less. Furthermore, the resistivity of the resistivity which also provides an electromagnetic shielding effect is preferably 10°Ω or less, and the resistivity of approximately 1-20·m or less is particularly preferable.
A DC voltage (0,1-1
The conductive polyester composition of the present invention was calculated from the electrical resistance value measured by applying 000 V).
The present invention provides processed products with excellent moldability and properties (including when used as a conductive component of composite fibers or composite films), and has extremely great industrial value. Hereinafter, the present invention will be specifically explained with reference to Examples. % indicates weight % unless otherwise specified. Example 1: Extracted with polyethylene terephthalate having a molecular ffi of 15,000, powder containing 1.8% by weight of a low-molecular compound, 74.5% by weight of conductive carbon black, 25 points of conductive carbon black, and a fluid composition @
As a treatment, 0.5 iL% of magnesium stearate was melt-kneaded 8 times at 280°C in a nitrogen stream at normal pressure to obtain an extracted low molecular weight substance of 5.6%, an intrinsic viscosity of 0.42, a specific resistance of 1, l×
10Ω・m conductive polyester mixture (pellet form)
I got it. Next, A' was crystallized and dried at 180"C for 2 hours under a nitrogen stream, and then the temperature was raised to 285°C, and the temperature was increased to 0.5
Inner phase polymerization was carried out using Ayu Hf for 12 hours to obtain a fat-like polyester composition A. The extracted low molecular weight substance was 0.8% on direct exposure, the intrinsic viscosity was 0.61, and the specific resistance was 4.4XloΩ·sub. Next, in the A7e conductive component, polyethylene terephthalate with a molecular weight of 15.000 containing 0.85% by weight of titanium oxide (referred to as B) was used as a protective component.
A composite structure as shown in Figure 1 was melt-spun. In other words, the composite ratio (volume) of both components divided into conductive fibers is l:10,
It was spun from an orifice with a diameter of 0.25 mm at a spinning temperature of 295° C., and was wound at a speed of 0.000 m/min without cooling or oiling. The yarn was then drawn at 100° C. at 180 times and brought into contact with a hot plate at 170° C., to obtain a drawn yarn Y1 of 20 denier 6 filaments. Further, as a comparative example, drawn yarn Y'1 was obtained using A' as the conductive component. Example 2 1. For titanium oxide particles having a tin oxide film on the surface.
Particles made conductive by mixing and firing 5 mi% of antimony oxide are referred to as D. The average particle size of D is 0.25μm, the content of copper oxide is 15%, the resistivity is 4.8Ω, rust, and the appearance is a light gray color close to white, and the appearance is 1 degree (light reflectance is 83%). 60% D, polyethylene glycol (molecular m6
03) Extracted with 1.5 mol% copolymerized polyethylene terephthalate 2.2% by weight of low molecular weight Jm powder and 1% by weight of magnesium stearate were melt-kneaded in a bath in the same manner as in Example 1 to obtain an extracted low molecular weight Jm. Molecular substance 3.2%, intrinsic viscosity o
, 2i, and a conductive polyester mixture (pellet form) C' having a specific resistance of 8.2×10Ω·α was obtained. Next, C' was subjected to solid phase polymerization in the same manner as in Example 1 (however, at a temperature of 220° C.
15 hours), a conductive polyester composition C was obtained. The extracted low molecular weight substance of C was 0.6%, the intrinsic viscosity was 34, and the specific resistance was 12×1 g2Ω·sub. Next, using C as a conductive component, spinning was carried out in the same manner as in Example 1.
However, the composite structure as shown in Fig. 2, the stretched double seat 2,
6 times), a drawn yarn of 72 denier 24 filaments for ¥2 was obtained. Further, as a comparative example, drawn yarn Yg was obtained using C' as the conductive component. The spinning process (spun yarn breakage, drawn and twisted yarn breakage) and yarn performance (strength, elongation, specific resistance) of these drawn yarns are shown in Table 1. As is clear from Table 1, Yl and Y2 using the conductive polyester compositions A and C of the present invention showed superior silk-spinning processing compared to those not subjected to solid phase polymerization. It was proposed to be a conductive composite edge VTR with thread performance. Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明の導電性ポリエステル組成物を用い
て紡出した繊維の横断面をボすもので、A、C成分が前
記組成物よりなるものである。 7ノ   カネボウ合繊株式会社 − 第1図    第2図 手続補正書 昭和59年8月2を日
Figures 1 and 2 are cross-sectional views of fibers spun using the conductive polyester composition of the present invention, in which components A and C are comprised of the above-mentioned composition. 7. Kanebo Gosen Co., Ltd. - Figure 1 Figure 2 Procedural amendment dated August 2, 1980

Claims (1)

【特許請求の範囲】 (1)下記( I )式で示される繰返し単位がポリエス
テル成分の少なくとも70モル%を占めるポリエステル
重合体に導電性粒子を分散し固相重合してなる、抽出可
能な低分子物含有量が3重量%以下で比抵抗が10^7
Ω・cm未満である導電性ポリエステル組成物。 ▲数式、化学式、表等があります▼(n=2又は4)・
・・( I ) (2)導電性粒子がカーボンブラックである特許請求の
範囲第1項記載の組成物。 (3)導電性粒子が金属、導電性金属化合物或いは表面
にこれらの皮膜を有する粒子である特許請求の範囲第1
項記載の組成物。 (4)ポリエステル重合体が( I )式においてn=2
であり、且つ固相重合後の抽出低分子物含有量が1重量
%以下で且つ極限粘度〔η〕が下記(II)式で示される
範囲である特許請求の範囲第1項記載の組成物。 0.6([100−C]/[100])≦〔η〕≦1.
3([100−C]/[100])・・・・・・・・・
(II) 但し、Cは導電性粒子の含有率(重量%)
[Scope of Claims] (1) An extractable low-density polymer produced by dispersing conductive particles in a polyester polymer in which repeating units represented by the following formula (I) account for at least 70 mol% of the polyester component and solid-phase polymerizing the polyester polymer. Molecular substance content is 3% by weight or less and resistivity is 10^7
A conductive polyester composition having a resistance of less than Ω·cm. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(n=2 or 4)・
...(I) (2) The composition according to claim 1, wherein the conductive particles are carbon black. (3) Claim 1 in which the conductive particles are metals, conductive metal compounds, or particles having a coating of these on their surfaces.
Compositions as described in Section. (4) Polyester polymer is n=2 in formula (I)
The composition according to claim 1, wherein the extracted low molecular weight content after solid phase polymerization is 1% by weight or less, and the intrinsic viscosity [η] is within the range shown by the following formula (II). . 0.6 ([100-C]/[100])≦[η]≦1.
3 ([100-C]/[100])・・・・・・・・・
(II) However, C is the content of conductive particles (% by weight)
JP12106984A 1984-06-12 1984-06-12 Electrically conductive polyester composition Pending JPS61256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12106984A JPS61256A (en) 1984-06-12 1984-06-12 Electrically conductive polyester composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12106984A JPS61256A (en) 1984-06-12 1984-06-12 Electrically conductive polyester composition

Publications (1)

Publication Number Publication Date
JPS61256A true JPS61256A (en) 1986-01-06

Family

ID=14802068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12106984A Pending JPS61256A (en) 1984-06-12 1984-06-12 Electrically conductive polyester composition

Country Status (1)

Country Link
JP (1) JPS61256A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124833A (en) * 1989-10-04 1991-05-28 Toray Eng Co Ltd Drawing and winding machine of yarn
EP0614115A1 (en) * 1993-03-01 1994-09-07 Konica Corporation Plastic film subjected to antistatic prevention and silver halide photographic light-sensitive material using the same
JP2008060611A (en) * 2007-11-19 2008-03-13 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2012207329A (en) * 2011-03-29 2012-10-25 Unitika Ltd Polyester fiber and net using the same
CN106380797A (en) * 2016-08-31 2017-02-08 广东顺德顺炎新材料股份有限公司 Flame-retardant and strengthened heating PBT material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843193A (en) * 1971-10-02 1973-06-22
JPS53149298A (en) * 1977-05-28 1978-12-26 Dynamit Nobel Ag Manufacture of polytetramethyleneterephthalate having high viscosity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843193A (en) * 1971-10-02 1973-06-22
JPS53149298A (en) * 1977-05-28 1978-12-26 Dynamit Nobel Ag Manufacture of polytetramethyleneterephthalate having high viscosity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124833A (en) * 1989-10-04 1991-05-28 Toray Eng Co Ltd Drawing and winding machine of yarn
US5506050A (en) * 1990-02-25 1996-04-09 Konica Corporation Plastic film subjected to antistatic prevention and silver halide photographic light-sensitive material using the same
EP0614115A1 (en) * 1993-03-01 1994-09-07 Konica Corporation Plastic film subjected to antistatic prevention and silver halide photographic light-sensitive material using the same
JP2008060611A (en) * 2007-11-19 2008-03-13 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2012207329A (en) * 2011-03-29 2012-10-25 Unitika Ltd Polyester fiber and net using the same
CN106380797A (en) * 2016-08-31 2017-02-08 广东顺德顺炎新材料股份有限公司 Flame-retardant and strengthened heating PBT material and preparation method thereof

Similar Documents

Publication Publication Date Title
US3133898A (en) Diphenol terephthalate-diphenol isophthalate copolyesters
JPS5839175B2 (en) Antistatic synthetic polymer composition
WO2005068530A1 (en) Polyester composition comprising carbon black
JPS61256A (en) Electrically conductive polyester composition
JP2002003623A (en) Biaxially oriented polyester film
JPS61243824A (en) Electroconductive polyester composition
JPS61113824A (en) Electrically conductive composite fiber
JP2000044815A (en) Resin composition and transporting jig comprising the same in electronic field
WO1991004856A1 (en) A composite polyester film
JP2854221B2 (en) Conductive composite fiber
JP2004044035A (en) Conductive conjugate fiber
RU2001164C1 (en) Conducting filament
JP2000044778A (en) Resin composition and component for upset-detecting switch made of the same
JP4763451B2 (en) Conductive composite fiber
JPH0559147B2 (en)
JPS6323965A (en) Electrically conductive organic composition
KR0149378B1 (en) Method of preparing polyester film
JP2856798B2 (en) Conductive fiber
KR940009256A (en) Polyester film
JP3046509B2 (en) Conductive composite fiber
JPH0232156A (en) Molded electrically conductive liquid crystal resin product
JPS63288216A (en) Antistatic polyester fiber
JP2556090B2 (en) Method for producing polyester film
JPS5915148B2 (en) Polyester composition with antistatic properties
JP2006097196A (en) Antistatic fiber and method for producing the same