[go: up one dir, main page]

JPS61256636A - Reduction stepper - Google Patents

Reduction stepper

Info

Publication number
JPS61256636A
JPS61256636A JP60098473A JP9847385A JPS61256636A JP S61256636 A JPS61256636 A JP S61256636A JP 60098473 A JP60098473 A JP 60098473A JP 9847385 A JP9847385 A JP 9847385A JP S61256636 A JPS61256636 A JP S61256636A
Authority
JP
Japan
Prior art keywords
exposure
stage
reduction projection
mask
projection lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60098473A
Other languages
Japanese (ja)
Other versions
JPH0513370B2 (en
Inventor
Hisashi Takahashi
久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60098473A priority Critical patent/JPS61256636A/en
Publication of JPS61256636A publication Critical patent/JPS61256636A/en
Publication of JPH0513370B2 publication Critical patent/JPH0513370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To automatically correct the variation of a magnification and distor tion of the image of each exposure range by providing a position measurement mechanism, a position alignment mechanism, a distance adjustment mechanism which changes a relative distance between an exposure mask and a reduction projection lens, and a controller which controls the operations of the respective mechanisms. CONSTITUTION:A distance adjustment mechanism 5 moves a mask-holding mechanism 4 in accordance with the instruction from a controller 9 and changes the relative distance between a mask 1 and a reduction projection lens 3 to correct magnification and distortion. A stage 8 which moves to the XY directions is provided directly under the contract projection lens 3 and its posi tion is measured by a stage position measurement mechanism 8a such as a laser interferometer which counts the magnitude of the movement of the stage 8. The position of a semiconductor substrate 2 is aligned by a position alignment mechanism 8b in such a manner that a laser beam from a laser tube 6 is applied to an alignment mark and the reflected light is detected by a light detection element 7 and the stage 8 is moved by the instruction from the controller 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ゛ 本発明は縮小投影露光装置に関し、特に倍率や、各
露光範囲ごとの像の歪み(以下、ディストーションとい
う)の変動を自動的に補正することのできる縮小投影露
光装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reduction projection exposure apparatus, and in particular to an apparatus that automatically corrects variations in magnification and image distortion for each exposure range (hereinafter referred to as distortion). The present invention relates to a reduction projection exposure apparatus that can be used.

〔従来の技術〕[Conventional technology]

従来、半導体デバイスの製造工程では複数台の縮小投影
露光装置が使われておシ、また処理枚数(スループット
)の有利さから工程によって反射型一括露光装置(ミラ
ープロジェクションアライナ−)や、密着露光装置(コ
ンタクトアライナ−)と縮小投影装置との混用も行なわ
れている。
Conventionally, multiple reduction projection exposure systems have been used in the semiconductor device manufacturing process, and depending on the process, reflective exposure systems (mirror projection aligners) and contact exposure systems have been used to increase the number of sheets processed (throughput). (contact aligners) and reduction projection devices are also used together.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の方法では、 (1)複数台の縮小投影露光装置を・用いる場合、個々
の装置の持つレンズ特性の違いによるディストーション
の違いがあシ、また経時的に倍率が変動してしまう場合
もある。
The conventional method described above has the following problems: (1) When multiple reduction projection exposure devices are used, there may be differences in distortion due to differences in the lens characteristics of the individual devices, or the magnification may change over time. There is also.

(2)反射型一括露光装置や、密着露光装置と縮小投影
露光装置との混用では、露光方式が異なることから、素
子の配列精度や像の歪み方が違うので、位置合わせを精
度よく行なっても、像の重ね合わせが良くない(第3図
(a))という欠点があった。
(2) When using a reflective batch exposure device, a contact exposure device, and a reduction projection exposure device, the exposure methods are different, so the alignment accuracy of the elements and the way the image is distorted are different, so alignment must be performed with high precision. However, the problem was that the superposition of images was not good (Fig. 3(a)).

本発明は前記問題点を解消した装置を提供するものであ
る。
The present invention provides an apparatus that solves the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は露光マスクを通過した光を縮小投影レンズに通
し、これを半導体基板上に被覆したホトレジストに照射
して露光を行う縮小投影露光装置において、半導体基板
の載置用ステージの位置を測定する位置測定機構と、ス
テージ上の半導体基板に付設された位置合せマークを用
いて位置合せを行う位置合せ機構と、露光マスクと縮小
投影レンズとの相対距離を変化させる距離調整機構と。
The present invention measures the position of a stage for mounting a semiconductor substrate in a reduction projection exposure apparatus that exposes a photoresist coated on a semiconductor substrate by passing light that has passed through an exposure mask through a reduction projection lens and exposing the photoresist coated on the semiconductor substrate. A position measurement mechanism, an alignment mechanism that performs alignment using alignment marks attached to a semiconductor substrate on a stage, and a distance adjustment mechanism that changes the relative distance between the exposure mask and the reduction projection lens.

これら各機構の動作制御を行う制御部とを有することを
特徴とする縮小投影露光装置である。
This reduction projection exposure apparatus is characterized by having a control section that controls the operation of each of these mechanisms.

〔実施例〕〔Example〕

以下1本発明の一実施例を図によって説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、露光マスク1はマスク保持機構4に保
持されている。マスク保持機構4にはピエゾ素子5が装
備されておシ、ピエゾ素子(距離調整機構)5は制御部
9からの指令を受けてマスク保持機構4を上下方向に移
動させ、マスク1と縮小投影レンズ3との相対距離を変
化させることにより1倍率やディストーションを補正す
る。縮小投影レンズ3の真下には、XY方向に移動する
ステージ8が設置され、ステージ8の位置は、ステージ
移動量をカウントするレーザー干渉計等のステージ位置
測定機構88にて測定される。半導体基板2としては第
2図に示すように露光領域の四隅に位置合せマーク10
を付設したものを用いる。半導体基板2の位置合せは、
レーザー管6からのレーデ−光をマークlOに照射しそ
の反射信号を受光素子7で受け、制御部9からの指令に
よシステージ8を移動させて行う位置合せ機構8bにて
行なわれる。10は光源である。
In FIG. 1, an exposure mask 1 is held by a mask holding mechanism 4. As shown in FIG. The mask holding mechanism 4 is equipped with a piezo element 5, and the piezo element (distance adjustment mechanism) 5 moves the mask holding mechanism 4 in the vertical direction in response to a command from the control unit 9, and the piezo element 5 moves the mask 1 and the reduced projection. By changing the relative distance to the lens 3, the 1 magnification and distortion are corrected. A stage 8 that moves in the XY directions is installed directly below the reduction projection lens 3, and the position of the stage 8 is measured by a stage position measuring mechanism 88 such as a laser interferometer that counts the amount of stage movement. As shown in FIG. 2, the semiconductor substrate 2 has alignment marks 10 at the four corners of the exposure area.
Use one with . The alignment of the semiconductor substrate 2 is as follows:
Radar light from the laser tube 6 is irradiated onto the mark 1O, a reflected signal thereof is received by the light receiving element 7, and the alignment mechanism 8b moves the stage 8 according to a command from the control section 9. 10 is a light source.

実施例において、ファースト露光を反射型一括露光装置
で行なう時、セカンド露光を施こす縮小投影露光装置の
露光領域ごとの、四隅にX、Y方向とも位置合わせマー
ク10のついている第2図のような露光マスクを用いて
ファースト露光を行なう。
In the embodiment, when the first exposure is carried out using a reflection-type batch exposure device, there are positioning marks 10 in both the X and Y directions at the four corners of each exposure area of the reduction projection exposure device that performs the second exposure, as shown in FIG. Perform first exposure using a suitable exposure mask.

次に露光領域の四隅にX、Y方向とも位置合わせマーク
のついた露光マスクを用いて縮小投影露光装置で1枚セ
カンド露光を咎なうと、半導体基板上には第3図(b)
のような重ね合わせの像ができ、る。
Next, using an exposure mask with alignment marks in both the X and Y directions at the four corners of the exposure area and performing second exposure on one sheet using a reduction projection exposure device, the image shown in Figure 3(b) is formed on the semiconductor substrate.
A superimposed image like this is created.

この半導体基板を現像して再び本発明の縮小投影露光装
置にセットする。
This semiconductor substrate is developed and set again in the reduction projection exposure apparatus of the present invention.

第1図のようにX、Y移動ステージ8を移動させてレー
ザーを用いて位置合わせマークから出る信号を受光素子
7で検出する位置合わせ機構8bとステージ移動量を精
度よくカウントするレーザー干渉計等の機構8aによシ
、各露光領域の四隅にあるファースト露光とセカンド露
光それぞれの位置合わせマーク10の信号を検出した位
置を精度よく計測する。ファースト露光とセカンド露光
のディストーションや倍率は、第3図(、)のように各
露光領域ごとに異なる。それぞれの露光領域の7アース
ト露光に対するセカンド露光の位置合わせマークのズレ
量が相対的なディストーションであるから、各露光領域
ごとに計測し、制御部9に相対的なディ・スト−ジョン
を記憶させる。
As shown in Fig. 1, a positioning mechanism 8b that moves the X and Y moving stage 8 and uses a laser to detect the signal output from the positioning mark with the light receiving element 7, a laser interferometer that accurately counts the amount of stage movement, etc. The mechanism 8a accurately measures the positions where the signals of the alignment marks 10 for first exposure and second exposure at the four corners of each exposure area are detected. The distortion and magnification of the first exposure and the second exposure differ for each exposure area as shown in FIG. 3(,). Since the amount of deviation of the positioning mark of the second exposure for each exposure area with respect to the 7th exposure is a relative distortion, it is measured for each exposure area and the relative distortion is stored in the control unit 9. .

次に倍率やディストーションは縮小投影レンズ3と露光
マスク1の距離によって変動する。1枚目の半導体基板
によって得られた各露光領域の相対的なディストーショ
ンのデータをもとに制御部9は実験的に得られた関数に
よって、露光マスクlと縮小投影レンズ3との距離を露
光マスク保持機構4の四隅にもうけたピエゾ素子5で変
化させ、相対的ディストーションをなくすように、2枚
目以降露光する。
Next, the magnification and distortion vary depending on the distance between the reduction projection lens 3 and the exposure mask 1. Based on the relative distortion data of each exposure area obtained from the first semiconductor substrate, the control unit 9 adjusts the distance between the exposure mask l and the reduction projection lens 3 according to an experimentally obtained function. This is changed using piezo elements 5 provided at the four corners of the mask holding mechanism 4, and the second and subsequent sheets are exposed so as to eliminate relative distortion.

また、縮小投影露光装置のもつ像の歪みは、露光領域が
狭いので、はとんどないと考えれば、セカンド露光して
現像するということをせずに、ファースト露光のディス
トーションを計測することの相対的なディストーション
を測定し、その値をもとに相対的なディストーションを
なくすように露光マスクと投影レンズの距離をチップご
とに変動させる手段を有することによル、反射型一括露
光装置やX線露光装置など転写像の歪、配列等の異なる
他機種の露光装置との混用を精度よく行うことができ、
また同機種の縮小投影装置間でも経時的に倍率が変動し
てしまった場合も自動的に補正できる。また、露光マス
クと露光マスク保持機構の間にゴミが入ってしまった場
合、あたかもディストーションが起ったように見えるが
、この場合でも自動的に補正でき、ディストーションや
倍率ずれによる重ね合わせ露光の不良がなくなり、歩留
シが飛躍的に向上できる効果を有するものである。
In addition, considering that image distortion caused by a reduction projection exposure device is unlikely due to the narrow exposure area, it is possible to measure the distortion of the first exposure without performing a second exposure and development. By having a means to measure the relative distortion and vary the distance between the exposure mask and the projection lens for each chip so as to eliminate the relative distortion based on the measured value, it is possible to It can be used accurately with other types of exposure equipment, such as line exposure equipment, which have different distortions and arrangements of transferred images.
Furthermore, even if the magnification changes over time between reduction projectors of the same model, it can be automatically corrected. In addition, if dust gets between the exposure mask and the exposure mask holding mechanism, it will appear as if distortion has occurred, but even in this case, it can be automatically corrected, and defects in overlay exposure due to distortion or magnification deviation can be corrected. This has the effect of dramatically improving the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す構成図、M2図
は一括露光装置に用いる露光マスクの説明図、第3図(
、)は従来の方法で重ね合わせて露光を行なった時の説
明図、第3図(b)は本発明を用いて重ね合わせ露光を
行なった時の説明図である。 l・・・露光マスク、2・・・半導体基板、3・・・縮
小投影レンズ、4・・・露光マスク保持機構、5・・・
ピエゾ素子、6・・・レーザー管、7・・・受光素子、
8・・−x−y移動ステージ、8a・・・ステージ位置
測定機構、8b・・・位置合せ機構、9・・・制御部、
lO・・・位置合わせマーク。 第1図 第2図 手続:?1山正書(方式) 1.事件の表示 特願昭60−98473号 2、発明の名称 縮小投影露光装置 3、補正をする者 事件との関係 特許出願人 住 所 東京m港区芝五丁目33番1号名 称 (42
3)日本電気株式会社 代表者関本忠弘 4、代理人 住 所  東京部千代田区神田佐久間町1丁目8番地昭
和60年7月30日(発送日) 5、補正の対象
Figure 1 is a block diagram showing the configuration of an embodiment of the present invention, Figure M2 is an explanatory diagram of an exposure mask used in a batch exposure device, and Figure 3 (
, ) are explanatory views when overlapping exposure is performed using the conventional method, and FIG. 3(b) is an explanatory view when overlapping exposure is performed using the present invention. 1... Exposure mask, 2... Semiconductor substrate, 3... Reduction projection lens, 4... Exposure mask holding mechanism, 5...
Piezo element, 6... laser tube, 7... light receiving element,
8...-xy moving stage, 8a... Stage position measurement mechanism, 8b... Positioning mechanism, 9... Control unit,
lO... Alignment mark. Figure 1 Figure 2 Procedure:? 1 Yama Seisho (Method) 1. Indication of the case Japanese Patent Application No. 60-98473 2, Name of the invention Reduction projection exposure device 3, Person making the amendment Relationship to the case Patent applicant Address 33-1 Shiba 5-chome, Minato-ku, Tokyo Name (42)
3) Representative of NEC Co., Ltd. Tadahiro Sekimoto 4, Agent address: 1-8 Kanda Sakuma-cho, Chiyoda-ku, Tokyo July 30, 1985 (shipment date) 5. Subject to amendment

Claims (1)

【特許請求の範囲】[Claims] (1)露光マスクを通過した光を縮小投影レンズに通し
、これを半導体基板上のホトレジストに照射して露光を
行う縮小投影露光装置において、半導体基板の載置用ス
テージの位置を測定する位置測定機構と、ステージ上の
半導体基板に付設された位置合せマークを用いて位置合
せを行う位置合せ機構と、露光マスクと縮小投影レンズ
との相対距離を変化させる距離調整機構と、これら各機
構の動作制御を行う制御部とを有することを特徴とする
縮小投影露光装置。
(1) Position measurement to measure the position of the stage on which the semiconductor substrate is placed in a reduction projection exposure apparatus that exposes the photoresist on the semiconductor substrate by passing the light that has passed through the exposure mask through the reduction projection lens and exposing the photoresist on the semiconductor substrate. an alignment mechanism that performs alignment using alignment marks attached to a semiconductor substrate on a stage, a distance adjustment mechanism that changes the relative distance between the exposure mask and the reduction projection lens, and the operation of each of these mechanisms. 1. A reduction projection exposure apparatus, comprising: a control section that performs control.
JP60098473A 1985-05-09 1985-05-09 Reduction stepper Granted JPS61256636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098473A JPS61256636A (en) 1985-05-09 1985-05-09 Reduction stepper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098473A JPS61256636A (en) 1985-05-09 1985-05-09 Reduction stepper

Publications (2)

Publication Number Publication Date
JPS61256636A true JPS61256636A (en) 1986-11-14
JPH0513370B2 JPH0513370B2 (en) 1993-02-22

Family

ID=14220630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098473A Granted JPS61256636A (en) 1985-05-09 1985-05-09 Reduction stepper

Country Status (1)

Country Link
JP (1) JPS61256636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224624A (en) * 1985-07-24 1987-02-02 Nippon Kogaku Kk <Nikon> Exposure method and exposure system
JPS6313331A (en) * 1986-07-04 1988-01-20 Hitachi Ltd Reduction projection exposure equipment
JPH0715876B2 (en) * 1985-07-03 1995-02-22 株式会社ニコン Exposure method and photolithography apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132270A (en) * 1977-04-20 1978-11-17 Thomson Csf Optical device for projecting pattern
JPS58110040A (en) * 1981-12-23 1983-06-30 Fujitsu Ltd Pattern formation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132270A (en) * 1977-04-20 1978-11-17 Thomson Csf Optical device for projecting pattern
JPS58110040A (en) * 1981-12-23 1983-06-30 Fujitsu Ltd Pattern formation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715876B2 (en) * 1985-07-03 1995-02-22 株式会社ニコン Exposure method and photolithography apparatus
JPS6224624A (en) * 1985-07-24 1987-02-02 Nippon Kogaku Kk <Nikon> Exposure method and exposure system
JPH0715878B2 (en) * 1985-07-24 1995-02-22 株式会社ニコン Exposure method and photolithography apparatus
JPS6313331A (en) * 1986-07-04 1988-01-20 Hitachi Ltd Reduction projection exposure equipment

Also Published As

Publication number Publication date
JPH0513370B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
KR100303743B1 (en) An exposure method
US5751404A (en) Exposure apparatus and method wherein alignment is carried out by comparing marks which are incident on both reticle stage and wafer stage reference plates
US5798195A (en) Stepping accuracy measuring method
JPH04317316A (en) Projection aligner
US6654096B1 (en) Exposure apparatus, and device manufacturing method
JPH09237752A (en) Adjustment of projection optical system and projection aligner using it
JPH0822951A (en) Method of detecting coma aberration of projection optical system
JP2646412B2 (en) Exposure equipment
JPH0584663B2 (en)
US6124922A (en) Exposure device and method for producing a mask for use in the device
US4792693A (en) Step-and-repeat exposure method
JP2914315B2 (en) Scanning reduction projection exposure apparatus and distortion measuring method
KR19990045161A (en) Positioning and Projection Exposure Equipment
JPS61256636A (en) Reduction stepper
JPH11233398A (en) Aligner and exposure method
JPS63107139A (en) Wafer pre-alignment system
JPH09306811A (en) Method for exposure
JPS60177625A (en) projection exposure equipment
JP3104813B2 (en) Alignment apparatus, projection exposure apparatus, and element manufacturing method
JP3387072B2 (en) Exposure method and apparatus, and element manufacturing method
JPH0766115A (en) Aligner
JPH08227845A (en) Method for inspecting projection optical system and projection exposure apparatus for executing method thereof
JPH1152545A (en) Reticle and pattern transferred by the same as well as method for aligning reticle and semiconductor wafer
JP3237022B2 (en) Projection exposure equipment
JPH0821534B2 (en) Alignment method and calibration substrate for alignment apparatus