[go: up one dir, main page]

JPS61256243A - Monochromatic x-ray tomographic apparatus - Google Patents

Monochromatic x-ray tomographic apparatus

Info

Publication number
JPS61256243A
JPS61256243A JP60097813A JP9781385A JPS61256243A JP S61256243 A JPS61256243 A JP S61256243A JP 60097813 A JP60097813 A JP 60097813A JP 9781385 A JP9781385 A JP 9781385A JP S61256243 A JPS61256243 A JP S61256243A
Authority
JP
Japan
Prior art keywords
rays
ray
monocrystal
examined
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60097813A
Other languages
Japanese (ja)
Inventor
Katsuhisa Usami
勝久 宇佐美
Yoshio Suzuki
芳生 鈴木
Koji Sakai
宏二 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60097813A priority Critical patent/JPS61256243A/en
Publication of JPS61256243A publication Critical patent/JPS61256243A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain the titled tomographic apparatus having high resolving power, constituted so that a monocrystal element is arranged behind an object to be examined and X-rays diffracted by a monocrystal are detected to be formed into an image in the same side as X-rays incident to the surface of the monocrystal. CONSTITUTION:The titled tomographic apparatus is constituted of a slit 5 for determining the shape of parallel X-rays 1 made monochromatic by a proper technique and that of X-rays incident to an object to be examined, a rotatable and scanning possible stage 6 supporting the object to be examined, a slit 8 removing scattered X-rays from the object to be examined, a monocrystal 3 for enlarging an X-ray image, a slit 13 for permitting the transmission only of X-rays diffracted by the monocrystal, a position-sensitive type detector 11 arranged immediately after said slit 13 and a measuring/data processing system 12. By this constitution, the X-ray image can be arbitrarily enlarged according to a predetermined formula and the position resolving power inherently possessed by the detector 11 can be enhanced. Further, because only an extremely narrow wavelength region is diffracted from the aspect of the essence of an X-ray diffraction phenomena by the monocrystal, X-rays having a wavelength different from that of incident X-rays generated from the object to be examined can be removed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は単色で平行なX線源を用いた高分解能X線断層
撮影装置に係わり、特に工業材料の任意断面の密度、欠
陥、元素分布を高い空間分解能で得るのに好適なX線断
層撮影装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a high-resolution X-ray tomography device using a monochromatic and parallel X-ray source, and in particular, it is used to measure the density, defects, and element distribution of an arbitrary cross section of industrial materials. The present invention relates to an X-ray tomography apparatus suitable for obtaining high spatial resolution.

〔発明の背景〕[Background of the invention]

一般にX線断層撮影法(X−CT : X−ray C
om −puterized ’l’omograph
y )は、生体(人体)の診断装置として広く医療分野
で用いられている。
Generally, X-ray tomography (X-CT: X-ray C
om -puterized 'l'omograph
y) is widely used in the medical field as a diagnostic device for living organisms (human bodies).

本手法は非破壊的に被検体内部の観察が可能であるとい
う理由で、最近工業材料の内部欠陥検出等への応用が注
目されている。しかし従来の人体用断層撮影装置を工業
材料の内部観察に適用する念めには以下の問題点がある
。即ち、 第1に従来装置は白色X線源を用いており、いろいろな
エネルギーのX線の平均的吸収値を画像形成に用いてい
るため、欠陥(空孔)分布は得られても正確な密度分布
や元素分布は得られない。
Since this method enables non-destructive observation of the inside of a specimen, its application to detecting internal defects in industrial materials has recently attracted attention. However, there are the following problems when applying the conventional tomography apparatus for human body to internal observation of industrial materials. Firstly, conventional equipment uses a white X-ray source and uses the average absorption value of X-rays of various energies for image formation, so even if the defect (vacancy) distribution is obtained, it is not accurate. Density distribution and elemental distribution cannot be obtained.

しかるに工業材料ではいわゆる欠陥分布だけでなく、密
度や元素分布情報取得が重要である。
However, for industrial materials, it is important to obtain not only so-called defect distribution information but also density and element distribution information.

第2の問題点は画像の空間分解能が従来装置ではφ0.
2 m〜φ0.5m程度であり、工業材料の内部観察に
は不十分である。
The second problem is that the spatial resolution of images is φ0.
The diameter is about 2 m to φ0.5 m, which is insufficient for internal observation of industrial materials.

上記問題点の第1の問題点に対し、強力なX線源例えば
シンクロトロン放射光を用い、結晶分光器等で単色化し
fcX線源を用い九断層撮影法が提案されている(文献
; L、 drodzins 、 Nue fearI
nstruments and Methods 20
6 (’ 83) p 547 。
To address the first of the above problems, a nine tomography method has been proposed that uses a powerful X-ray source, such as synchrotron radiation, and monochromates it with a crystal spectrometer or the like, and then uses an fc X-ray source (Reference; , drodzins , Nue fearI
instruments and methods 20
6 ('83) p 547.

p541)。該手法を用いれば第1の問題点は解決され
る。し、かし同時に解決することが必要な第2の問題点
即ち分解能の向上策これは透過したX線の検出方法に関
連するがこの点に関しては上記文献では何ら明確にされ
ていない。
p541). If this method is used, the first problem will be solved. However, there is a second problem that needs to be solved at the same time, that is, a method for improving resolution, which is related to the method of detecting the transmitted X-rays, but the above-mentioned document does not clarify anything regarding this point.

単色X線を光源とし、かつ空間分解能を高めるX線の検
出方法として、単色X線をスリット等で非常VC1a 
< ヘンクル状に絞す、シンシレ=7ヨンカウンタ、半
導体検出器等で検出する方法が容易に考えられるが、こ
の場合には計測所要時間が美大になるという新たな問題
が発生する。また−次元にシート状に広がった単色X線
ビームを作り、ビーム中に被検体を挿入、後方に位置敏
感型検出器を設置する手法も容易に考えられるが、この
場合には像の空間分解能は位置敏感製検出器の位置分解
能により決まυ、現状0〜0.2鴎程度が限度である。
As an X-ray detection method that uses monochromatic X-rays as a light source and improves spatial resolution, monochromatic X-rays are detected using a slit, etc.
< It is easy to think of a method of detection using a Henkle shape, a thin-circle counter, a semiconductor detector, etc., but in this case, a new problem arises in that the time required for measurement becomes longer. It is also easy to consider a method of creating a monochromatic X-ray beam spread in a -dimensional sheet shape, inserting the subject into the beam, and installing a position-sensitive detector behind it, but in this case, the spatial resolution of the image is determined by the position resolution of the position-sensitive detector, and the current limit is about 0 to 0.2.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、−次元に広かつ几シート状の単色平行
X線源と光源とし、−次元array検出器によシ透過
X線を検出する単色X線断層撮影装置に於て、被検体と
位置敏感型検出器との間に被検体を透過し7′f−X線
の強度分布(X線像)を損なうことなく該X線像を拡大
して位置敏感を検出器に導くようにした高分解能な単色
X線断層撮影装置を提供することにある。
An object of the present invention is to provide a monochromatic X-ray tomography apparatus that uses a monochromatic parallel X-ray source and a light source that are wide in the dimension and in the form of a solid sheet, and detects transmitted X-rays using a -dimensional array detector. and the position-sensitive detector so as to transmit the 7'f-X-rays through the subject and enlarge the X-ray image without damaging the intensity distribution (X-ray image) of the 7'f-X-rays to guide the position-sensitive X-rays to the detector. An object of the present invention is to provide a high-resolution monochromatic X-ray tomography apparatus.

〔発明の概要〕[Summary of the invention]

すなわち、波長λGのX線を単結晶に入射させた時、ブ
ラッグ条件2d4sicθら=λ。を満たす時第1図に
示したように2θBの角度の方向に回折が生じ、回折さ
れたX線の方向が入射X線と該結晶面に対し同じ側に出
射する時(Brgg (ase ) 、入射角のある微
小な角度範囲と微小な波長幅のX線のみ全反射されるこ
とは衆知の事実でおる。ここでdoは該単結晶の回折に
あづかっている結晶格子面の間隔、θBは入射X線と該
結晶格子面のなす角である。″また実際の結晶表面と回
折にあずかる結晶格子面との角をαとする時、第1図に
示すように回折X線の横の広がυSは入射X線の横の広
がりSoと以下の関係があることも知られている。
That is, when X-rays of wavelength λG are incident on a single crystal, the Bragg condition 2d4sicθ et al.=λ. When the following is satisfied, diffraction occurs in the direction of the angle 2θB as shown in Figure 1, and when the direction of the diffracted X-rays is emitted on the same side of the crystal plane as the incident X-rays (Brgg (ase), It is a well-known fact that only X-rays with a certain small incident angle range and a small wavelength width are totally reflected.Here, do is the distance between the crystal lattice planes involved in the diffraction of the single crystal, θB is the angle between the incident X-ray and the crystal lattice plane.''Also, when the angle between the actual crystal surface and the crystal lattice plane that participates in diffraction is α, the horizontal angle of the diffracted X-ray is It is also known that the spread υS has the following relationship with the lateral spread So of the incident X-ray.

5−bSII        ・・・・・・・・・(1
)本発明の要点は、上記単結晶によるX線の回折現象を
利用し、断層撮影装置の検出システムに応用しようとす
るものである。即ち被検体後方に、微小な角度調整が可
能な2軸回転ゴニオメーター(θ−20回転ゴニオメー
タ−と呼ぶ)を設置し、θ回転ゴニオメータ−上にOく
αくθ蕗を成シ立つようにカッティングした単結晶を設
置し、20回転ゴニオメーター上に位置敏感型検出器を
設置し該単結晶により回折し次X線のみ検出しようとす
るものである。
5-bSII (1
) The main point of the present invention is to utilize the above-mentioned X-ray diffraction phenomenon caused by the single crystal and apply it to a detection system of a tomography apparatus. That is, a 2-axis rotary goniometer (referred to as a θ-20 rotary goniometer) that can be adjusted in small angles is installed behind the subject, and a θ angle of 0.05° is formed on the θ rotary goniometer. A cut single crystal is installed, a position-sensitive detector is installed on a 20-turn goniometer, and only the secondary X-rays are detected by diffraction by the single crystal.

本発明によればαを適当に選べば式(1)、■)により
X線像は任意に拡大出来ることになシ、位置敏感型検出
器が本来有している位置分解能をb倍向上させることが
出来る。また単結晶によるX線回折現象の本質上、非常
にせまい波長領域のみ回折されるので、被検体から発生
した入射X線の波長とは異なるX線例えばけい光X線や
非弾性散乱X線を除去することが出来画質の向上も期待
できる。
According to the present invention, if α is appropriately selected, the X-ray image can be enlarged arbitrarily according to equation (1), (■), and the positional resolution originally possessed by the position-sensitive detector is improved by a factor of b. I can do it. Furthermore, due to the nature of the X-ray diffraction phenomenon with a single crystal, only a very narrow wavelength region is diffracted, so X-rays that are different in wavelength from the incident X-rays generated from the object, such as fluorescent X-rays and inelastically scattered X-rays, are It can be removed and image quality can be expected to improve.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の=実施例を示す。装置は適当な手法に
より単色化された平行なX線束1、被検体へ入射するX
線の形状を決めるスリット5、被検体を支持する回転、
走査可能なステージ6、被検体からの散乱X線を除くス
リット8、X線像を拡大する単結晶3、単結晶により回
折されたX線のみを透過させるスリット13、スリット
13の直後に設置した位置敏感型検出器及び計測回路系
より構成されている。
FIG. 1 shows an embodiment of the present invention. The device uses a parallel X-ray flux 1 that has been made monochromatic by an appropriate method, and the X-ray beam incident on the subject.
A slit 5 that determines the shape of the line, a rotation that supports the subject,
A stage 6 that can be scanned, a slit 8 that removes scattered X-rays from the subject, a single crystal 3 that magnifies the X-ray image, a slit 13 that transmits only the X-rays diffracted by the single crystal, and was installed immediately after the slit 13. It consists of a position sensitive detector and a measurement circuit system.

本実施例ではシンクロトロン放射光の白色X線源からチ
ャ/ネルカット結晶分光器により横の広が920麿、縦
の広がり5關、波長1人の単色X線束を得た。該X線束
をスリット2により6酎×0、1 wgに制限し被検体
に照射した。X線像拡大用結晶3にはSi単結晶を用い
、回折を生じさせる結晶格子面4を(220)に選び、
該格子面と実際の結晶表面とのなす角αを10.2°に
設定し友。
In this example, a monochromatic X-ray flux with a horizontal spread of 920 mm, a vertical spread of 5 mm, and a wavelength of 1 was obtained from a white X-ray source of synchrotron radiation using a channel/channel cut crystal spectrometer. The X-ray flux was limited to 6 x 0, 1 wg by the slit 2, and was irradiated to the subject. A Si single crystal is used as the crystal 3 for enlarging the X-ray image, and the crystal lattice plane 4 that causes diffraction is selected as (220).
The angle α between the lattice plane and the actual crystal surface was set to 10.2°.

また位置敏感型検出器11にはけい光体を塗布した素子
間隔25μm1高さ25麿、素子数1024個のフォト
ダイオードアレイを用い念。この時被検体を透過し、該
被検体の波長1人のX線の吸収係数に依存した強度分布
をもつ横の広が96閣のX線束は、Si結晶の(220
)面で回折、拡大され横の広がり約30mのX線束とな
って検出器で強度分布が検出される。すなわち被検体を
透過し九X線束は、結晶により約6倍に拡大されること
になり、フォトダイオードアレイ検出器固有の分解能に
対し、約6倍の空間分解能向上が期待できる。ま念結晶
により回折されるのは波長1人を中心にした極〈せまい
波長領域のものだけであり真に単色X線の画像取得が可
能になるとともにSハの向上が期待できる。
In addition, for the position-sensitive detector 11, a photodiode array coated with a phosphor and having an element spacing of 25 μm and a height of 25 μm and 1024 elements was used. At this time, the X-ray flux with a horizontal spread of 96 degrees, which passes through the object and has an intensity distribution that depends on the absorption coefficient of X-rays at the wavelength of the object, is the (220
) is diffracted and expanded into an X-ray flux with a lateral spread of approximately 30 m, and the intensity distribution is detected by a detector. In other words, the nine X-ray flux that passes through the object is expanded by about 6 times by the crystal, and it is expected that the spatial resolution will be improved by about 6 times compared to the resolution inherent to the photodiode array detector. What is diffracted by the mirror crystal is only those in a very narrow wavelength region centered on one wavelength, making it possible to obtain a truly monochromatic X-ray image, and also improving the S.

他の実施例は実施例1と基本的には同じ構成であるが、
拡大用結晶素子を結晶表面に平行に振動させる機構14
を加えたものである。結晶により回折されるX線の強度
は結晶の表面状態により影響全うける。即ち結晶表面に
小さなキズが存在すると回折されてきたX線束の強度分
布に、該キズによる構造が発生し、被検体により生じた
計測すべき強度分布に重なって検出され誤差の要因とな
る。本実施例では拡大用結晶の振動の幅を検出器素子間
隔の5倍以上にとり、又振動の周期はIX線像計測時間
の115以下に設定した。本手法Vこより1検出素子に
入射するX線は検出素子の5倍以上の領域から回折され
てくることになり、結晶表面状態の場所による違いを平
均化させうるという効果がある。
The other embodiments have basically the same configuration as the first embodiment, but
Mechanism 14 for vibrating the enlarging crystal element parallel to the crystal surface
is added. The intensity of X-rays diffracted by a crystal is completely influenced by the surface condition of the crystal. That is, if a small scratch exists on the crystal surface, a structure due to the scratch will occur in the intensity distribution of the diffracted X-ray flux, and will be detected as being overlapped with the intensity distribution to be measured generated by the object, causing an error. In this example, the width of the vibration of the magnifying crystal was set to be five times or more the distance between the detector elements, and the period of vibration was set to be 115 times or less than the IX-ray image measurement time. According to this method, X-rays incident on one detection element are diffracted from an area five times or more larger than the detection element, which has the effect of averaging out differences in crystal surface conditions depending on location.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、単色X線による断層像が高分解能で撮
影出来るので、工業材料中の任意断面の正確な密度分布
が非破壊で計測可能となるとともに、元素の吸収端前後
の波長を用い几断層像間の処理により非破壊的に高空間
分解能の元素分布取得が可能となる。
According to the present invention, tomographic images using monochromatic X-rays can be taken with high resolution, making it possible to non-destructively measure the accurate density distribution of arbitrary cross sections in industrial materials, and using wavelengths around the absorption edge of the elements. Processing between tomograms enables non-destructive acquisition of elemental distributions with high spatial resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は結晶によるX線の回折を示す原理図、第2図は
本発明の一実施例でX線の進む方向を示した単色X線断
層撮影装置の基本構成図である。 1・・・単色化され之X線束、2・・・回折されたX線
束、3・・・単結晶素子、4・・・単結晶中の結晶格子
面、6・・・被検体支持用回転、走■ステージ、7・・
・被検体、9・・・結晶素子用回転ステージ、10・・
・検出器用回転ステージ、11・・・位置敏感型検出器
、12・・・計測、データ処理系、14・・・結晶素子
振動台。
FIG. 1 is a principle diagram showing the diffraction of X-rays by a crystal, and FIG. 2 is a basic configuration diagram of a monochromatic X-ray tomography apparatus showing the direction in which X-rays travel according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Monochromated X-ray flux, 2... Diffracted X-ray flux, 3... Single crystal element, 4... Crystal lattice plane in single crystal, 6... Rotation for supporting the object , Run ■ Stage, 7...
・Subject, 9...Rotary stage for crystal element, 10...
- Detector rotation stage, 11...Position sensitive detector, 12...Measurement and data processing system, 14...Crystal element vibration table.

Claims (1)

【特許請求の範囲】 1、平行な白色X線から任意の波長を取り出すX線分光
器、被検体を走査、回転できる試料ステージ、及びX線
検出用位置検出器を有する単色X線断層撮影装置に於て
、被検体の後方に単結晶素子を設置し、該結晶表面に対
し入射X線と同じ側に該結晶により回折されたX線を検
出、画像形成することを特徴とする単色X線断層撮影装
置。 2、特許請求の範囲第1項に於て、前記結晶素子を結晶
表面に平行に振動させながら該結晶からの回折X線を検
出することを特徴とする単色X線断層撮影装置。
[Claims] 1. A monochromatic X-ray tomography device having an X-ray spectrometer that extracts any wavelength from parallel white X-rays, a sample stage that can scan and rotate a subject, and a position detector for X-ray detection. A monochromatic X-ray characterized in that a single crystal element is installed behind the subject, and X-rays diffracted by the crystal are detected and imaged on the same side of the crystal surface as the incident X-rays. Tomography device. 2. A monochromatic X-ray tomography apparatus according to claim 1, characterized in that diffracted X-rays from the crystal are detected while the crystal element is vibrated parallel to the crystal surface.
JP60097813A 1985-05-10 1985-05-10 Monochromatic x-ray tomographic apparatus Pending JPS61256243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097813A JPS61256243A (en) 1985-05-10 1985-05-10 Monochromatic x-ray tomographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097813A JPS61256243A (en) 1985-05-10 1985-05-10 Monochromatic x-ray tomographic apparatus

Publications (1)

Publication Number Publication Date
JPS61256243A true JPS61256243A (en) 1986-11-13

Family

ID=14202195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097813A Pending JPS61256243A (en) 1985-05-10 1985-05-10 Monochromatic x-ray tomographic apparatus

Country Status (1)

Country Link
JP (1) JPS61256243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264479A (en) * 1992-01-27 1993-10-12 Philips Gloeilampenfab:Nv X-ray analyzer
JP2694049B2 (en) * 1991-05-14 1997-12-24 ブイ―レイ イメージング コーポレイション Method for obtaining an image of the internal structure of an object
DE10127267A1 (en) * 2001-06-05 2002-12-19 Siemens Ag Computer tomography medical imaging device incorporates an X- ray diffraction based spectrum measurement arrangement so that conclusions about tissue type can be made

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2694049B2 (en) * 1991-05-14 1997-12-24 ブイ―レイ イメージング コーポレイション Method for obtaining an image of the internal structure of an object
JPH05264479A (en) * 1992-01-27 1993-10-12 Philips Gloeilampenfab:Nv X-ray analyzer
US5446777A (en) * 1992-01-27 1995-08-29 U.S. Philips Corporation Position-sensitive X-ray analysis
DE10127267A1 (en) * 2001-06-05 2002-12-19 Siemens Ag Computer tomography medical imaging device incorporates an X- ray diffraction based spectrum measurement arrangement so that conclusions about tissue type can be made
DE10127267B4 (en) * 2001-06-05 2008-01-03 Siemens Ag Medical imaging X-ray machine

Similar Documents

Publication Publication Date Title
JP5273955B2 (en) X-ray imaging apparatus and X-ray imaging method
CN115598157B (en) A short-wavelength characteristic X-ray diffraction device and method based on array detection
JP2009002805A (en) Small angle/wide angle x-ray measuring device
JP3081002B2 (en) Test object inspection device by gamma or X-ray
JP5403728B2 (en) Neutron diffractometer
JP5483840B2 (en) X-ray imaging apparatus and X-ray imaging method
JPS61256243A (en) Monochromatic x-ray tomographic apparatus
JP4031113B2 (en) X-ray inspection method and X-ray inspection apparatus
KR100703819B1 (en) Fluorescence X-Ray Analyzer
Däbritz et al. Kossel and pseudo Kossel CCD pattern in comparison with electron backscattering diffraction diagrams
CN112649451A (en) Fast industrial computed tomography for large objects
JP2005528594A (en) X-ray diffraction apparatus and method
JP2020516896A (en) Talbot X-ray microscope
US12209978B2 (en) Laboratory-based 3D scanning X-ray Laue micro-diffraction system and method (Lab3DμXRD)
WO2011052419A1 (en) X-ray imaging device and x-ray imaging method
EP3845892B1 (en) X-ray scattering apparatus
JP4823125B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
JP4561312B2 (en) X-ray image reconstruction device
CN110520716B (en) TALBOT X-ray microscope
JP2001281174A (en) Inclusion detection method and inclusion detection device
JP2016161284A (en) Three-dimensional quantification method and device using diffraction x-ray
JPH06235704A (en) Monochromatic X-ray CT system
WO2019171920A1 (en) Radiation phase imaging device
JP2988995B2 (en) Storage phosphor, X-ray diffraction apparatus and X-ray diffraction method
WO2006095468A1 (en) X-ray diffraction analyzer and analyzing method