[go: up one dir, main page]

JPS61253736A - Method for manufacturing lanthanum hexaboride thin film cathode - Google Patents

Method for manufacturing lanthanum hexaboride thin film cathode

Info

Publication number
JPS61253736A
JPS61253736A JP9543685A JP9543685A JPS61253736A JP S61253736 A JPS61253736 A JP S61253736A JP 9543685 A JP9543685 A JP 9543685A JP 9543685 A JP9543685 A JP 9543685A JP S61253736 A JPS61253736 A JP S61253736A
Authority
JP
Japan
Prior art keywords
lab6
substrate
coat
vapor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9543685A
Other languages
Japanese (ja)
Inventor
Toshiyuki Aida
会田 敏之
Tokumi Fukazawa
深沢 徳海
Yukio Okamoto
幸雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9543685A priority Critical patent/JPS61253736A/en
Publication of JPS61253736A publication Critical patent/JPS61253736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To facilitate, for example, low voltage pulse activation in gas discharge display, by forming a coat having strong tolerance to ion impact with a comparably simple low work-load method of vapor-depositing hexaboric lantern under vacuum from its material on a heated substrate. CONSTITUTION:A hexaboric lantern (LaB6) thin coat partly containing amorphous LaB6 layer is formed with LaB6 material on a substrate heated from a room temperature up to 500 deg.C by the electron beam impact vapor-deposit method. In this process, a metal easy to react with boric compounds can be employed as the substrate, since the substrate temperature is low. A high quality coat containing less oxide film or impurities can be formed by employing LaB6 crystal body grown from sintered body as a material, and amorphous phase LaB6 can be included in LaB6 by letting the substrate temperature lower than 500 deg.C. Therefore, not only obtaining mechanical improvement of a vapor- deposited coat, but also this method allows to employ low cost substrates from soda glass series.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はバルクな材料において、すぐれた電子放出特性
を有することで知られている六硼化ランタン(LaBs
)の薄膜を使用した電子放出陰極の製造方法に関するも
のである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention uses lanthanum hexaboride (LaBs), which is known to have excellent electron emission properties, as a bulk material.
) The present invention relates to a method for manufacturing an electron-emitting cathode using a thin film.

[発明の背景〕 従来、陰極に用いるLaB、薄膜はX線回折的に単−相
である必要があった。そのため、LaB、薄膜の形成は
LaB、粉体を不活性ガス気流中でプラズマ溶射させる
(テレビジョン学会技術報告FD−572,1981年
)とか、LaB、粉体を有機溶剤と共に厚膜印刷法で塗
布する(特開昭55−62647 )とか、電子線衝撃
蒸着法で蒸着する際、基板温度を500”C以上の高温
に上げて、 LaB。
[Background of the Invention] Conventionally, the LaB thin film used for the cathode has been required to be single-phase in terms of X-ray diffraction. Therefore, thin films of LaB can be formed by plasma spraying LaB powder in an inert gas stream (Television Society Technical Report FD-572, 1981), or by thick film printing method using LaB powder together with organic solvents. (Japanese Patent Laid-Open No. 55-62647) or when depositing by electron beam impact evaporation, the substrate temperature is raised to a high temperature of 500"C or higher.

の結晶膜を形成させる(特公昭56−17780)など
の技術が必要であった。
This required a technology to form a crystalline film (Japanese Patent Publication No. 56-17780).

〔発明の目的〕[Purpose of the invention]

本発明の目的は基板上に、低仕事関係で高耐イオン衝撃
の膜を比較的簡便な方法で被着させ1例えば気体放電表
示パルスの低電圧駆動化を容易にすることにある。
SUMMARY OF THE INVENTION An object of the present invention is to deposit a film with low work and high ion bombardment resistance on a substrate by a relatively simple method, thereby facilitating low-voltage driving of, for example, gas discharge display pulses.

〔発明の概要〕[Summary of the invention]

六硼化ランタン(LaB、)は導電性が室温で8 X 
10−”Ω1と良く、仕事関数も2.6  eVと低い
ので、高輝度電子線源材料として、すでに各種電子顕微
鏡の熱陰極に用いられている0本発明はLaB@を原料
にして、基板温度を室温から500℃の温度に設定して
、電子線衝撃蒸着法で、非晶質層を一部含むL a B
、薄膜を形成することにある。又1本発明の場合、基板
温度が低いので、硼化物と反応し易い金属も基板に用い
ることのできる利点がある。
Lanthanum hexaboride (LaB) has a conductivity of 8X at room temperature.
Since it has a good value of 10-"Ω1 and a low work function of 2.6 eV, it has already been used as a high-brightness electron beam source material for the hot cathodes of various electron microscopes. L a B containing a part of the amorphous layer was formed by electron beam impact evaporation at a temperature between room temperature and 500°C.
, to form a thin film. Furthermore, in the case of the present invention, since the substrate temperature is low, there is an advantage that metals that easily react with boride can also be used for the substrate.

〔発明の実施例〕[Embodiments of the invention]

以下5本発明の効果を実施例で説明する。 The effects of the present invention will be explained below using five examples.

実施例1 電子線衝撃蒸着法でLaB、薄膜の作製を行った。最初
に、原料に市販のLaB、焼結体(密度約90%)を用
いたところ、焼結体原料に含まれているガスが加熱とと
もに放出され、蒸着時の真空が10−”Torrから1
0−4Torrに低下し、蒸着膜の中に透明な酸化物を
形成してしまった。又、焼結体原料中の不純物も蒸着膜
の中で混入し易いことが分った。これはLaB、の融点
(2700℃)に比べて、通常の不純物の融点が低いた
め、優先的に蒸発するからである。これに対して、焼結
体原料を赤外線加熱装置で帯溶融し、(100>方位の
単結晶を蒸着原料に用いた所、原料からのガス発生や不
純物の放出もなく、高品質な膜を形成することができた
。第1表に蒸着原料に焼結体と育成結晶を用いて蒸着し
たとき、原料中と蒸着膜中に含まれる不純物濃度を発光
分光分析法(単位ppm )で調べた結果を示す。蒸着
原料に結晶体を用いることの利点は明らかである。
Example 1 A thin film of LaB was prepared by electron beam impact evaporation. First, when commercially available LaB and a sintered body (density about 90%) were used as raw materials, the gas contained in the sintered body raw material was released as it was heated, and the vacuum during vapor deposition ranged from 10-'' Torr to 1.
The pressure decreased to 0-4 Torr, and a transparent oxide was formed in the deposited film. It was also found that impurities in the raw material for the sintered body are likely to be mixed into the deposited film. This is because the melting point of ordinary impurities is lower than that of LaB (2700° C.), so they evaporate preferentially. On the other hand, when a sintered body raw material is zone-melted using an infrared heating device and a single crystal with a 100> orientation is used as a deposition raw material, a high-quality film is produced without gas generation or impurity release from the raw material. Table 1 shows the concentration of impurities contained in the raw material and the deposited film when vapor deposition was performed using a sintered body and a grown crystal as the vapor deposition raw material using emission spectrometry (unit: ppm). The results are shown below.The advantage of using a crystalline material as a vapor deposition raw material is clear.

実施例2 蒸着原料に<100>方位のLaB1+単結晶を用いて
、電子線衝撃蒸着法でLaB、薄膜の作製を行った。第
2表は基板に溶融石英板を用い、基板温度を室温、20
0℃、400℃、500℃。
Example 2 A LaB thin film was prepared by electron beam impact evaporation using a <100> oriented LaB1+ single crystal as a deposition raw material. Table 2 uses a fused quartz plate as the substrate, and the substrate temperature is room temperature and 20℃.
0℃, 400℃, 500℃.

700℃と変化させて得た約1μm厚さのLaB、薄膜
の構造をX線回折法で調べた結果である。X線回折的に
LaB、の単−相を得るためには基板温度を500℃以
上に上げる必要がある。しかし、LaB、薄膜の実用化
、たとえば気体放電表示パネルなどを考えた場合、下地
基板として溶融石英板を用いることは高価になりすぎる
ので経済的に不可能で1通常、融点が約600℃のソー
ダガラス系を用いなければならない。この点から、基板
温度500’C以下でソーダガラス上にLaB、と非晶
質の混合膜を約1μm蒸着した。その結果、意外にも蒸
着膜はLaB、と非晶質の混在であるせいか、機械的強
度が大きかった。また、蒸着時に、基板上に所定形状の
マスクを重ねることで、ピッチ0.2 wm、線幅0.
1 m程度の陰極線が多数得られるようにした。一方、
透明なソーダガラス上に、厚膜印刷法でN1陽極線をピ
ッチ0.2゛I、線幅0.03mmで多数形成した。陰
極線と陽極線が互いに向きあって直交する真空空間を形
成して、その中にNe−Ar(0,4%)ガスを導入し
て、放電維持電圧に及ぼす影響を調べた。実験結果を第
1図に示す1図には比較用として、従来のNi陰極−N
i陽極の場合1も示した。
These are the results of examining the structure of a LaB thin film with a thickness of approximately 1 μm obtained by changing the temperature to 700° C. using an X-ray diffraction method. In order to obtain a single phase of LaB in X-ray diffraction, it is necessary to raise the substrate temperature to 500° C. or higher. However, when considering the practical application of LaB and thin films, such as gas discharge display panels, it is economically impossible to use a fused silica plate as the base substrate because it is too expensive. Soda glass type must be used. From this point of view, a mixed film of LaB and amorphous was deposited to a thickness of approximately 1 μm on soda glass at a substrate temperature of 500'C or lower. As a result, the mechanical strength of the deposited film was unexpectedly high, probably because it was a mixture of LaB and amorphous materials. In addition, by overlapping a mask with a predetermined shape on the substrate during vapor deposition, a pitch of 0.2 wm and a line width of 0.
A large number of cathode rays with a length of about 1 m can be obtained. on the other hand,
A large number of N1 anode wires with a pitch of 0.2''I and a line width of 0.03 mm were formed on transparent soda glass by a thick film printing method. A vacuum space was formed in which cathode rays and anode rays were perpendicular to each other and faced each other, and Ne-Ar (0.4%) gas was introduced into the space to investigate the effect on the discharge sustaining voltage. The experimental results are shown in Figure 1. For comparison, the conventional Ni cathode-N
In the case of i anode, 1 is also shown.

LaB、陰極の場合2はNi陰極の場合に比べて、放電
維持電圧が100v近く低下し、ガス分圧変化に対する
変動も少ないのが分る。又、本発明の場合、定電圧で動
作させたときの放電電流の変化は従来のNi厚膜陰極に
比べて175以下であった。このことは、蒸着膜の中に
一部非晶質相を含んでいても、L a B、のもつ低仕
事関数と高耐イオン衝撃特性が良く発揮されることを示
す。
It can be seen that in the case of LaB cathode 2, the discharge sustaining voltage is lowered by nearly 100 V than in the case of Ni cathode, and the fluctuation with respect to gas partial pressure changes is also small. Further, in the case of the present invention, the change in discharge current when operated at a constant voltage was 175 or less compared to the conventional Ni thick film cathode. This shows that the low work function and high ion bombardment resistance of L a B can be well exhibited even if the deposited film contains a portion of the amorphous phase.

実施例3 実施例2記載の気体放電表示パネルにおいて、従来のN
i粉体陰極に本発明の非晶質相を含むLaB、薄膜を被
覆して、放電維持電圧を測定した。その結果、第1図の
場合と全く同様の性能を得た。
Example 3 In the gas discharge display panel described in Example 2, the conventional N
i A powder cathode was coated with a thin film of LaB containing an amorphous phase of the present invention, and the discharge sustaining voltage was measured. As a result, performance exactly the same as in the case of FIG. 1 was obtained.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で明らかになったように、本発明によれば
好ましくは原料に焼結体より育成したL a B a結
晶体を用いることで、酸化膜や不純物の少ない高品質膜
を形成でき、かつ基板温度を500℃以下にすることで
LaB、相の中に非晶質相を混在させることができ、蒸
着膜の機械的向上の他に安価なソーダガラス系を基板に
用いることもできるので、気体放電表示パネルへの適用
に際してはその工業的価値は極めて高い。
As clarified by the above examples, according to the present invention, by preferably using L a B a crystal grown from a sintered body as a raw material, a high quality film with less oxide film and impurities can be formed. , and by lowering the substrate temperature to 500°C or less, an amorphous phase can be mixed in the LaB phase, and in addition to mechanically improving the deposited film, an inexpensive soda glass system can also be used for the substrate. Therefore, its industrial value is extremely high when applied to gas discharge display panels.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は気体放電表示パネルにおける放電維持電圧とガ
ス圧力の関係を示す図である。 1・・・Ni陰極−Ni陽極の放電維持電圧とガス圧と
の関係、2・・・L a B、陰極−Ni陽極の放電維
持電圧とガス圧力の関係。
FIG. 1 is a diagram showing the relationship between discharge sustaining voltage and gas pressure in a gas discharge display panel. 1...Relationship between discharge sustaining voltage and gas pressure of Ni cathode-Ni anode, 2...Relationship between discharge sustaining voltage and gas pressure of L a B, cathode-Ni anode.

Claims (1)

【特許請求の範囲】[Claims] 1、六硼化ランタンを原料にして、室温から500℃の
範囲で基板を加熱し、10^−^4Torr以下の真空
中で六硼化ランタンを電子線衝撃蒸着法により蒸着する
ことを特徴とする六硼化ランタン薄膜陰極の製造方法。
1. Using lanthanum hexaboride as a raw material, heating the substrate in the range from room temperature to 500°C, and depositing lanthanum hexaboride in a vacuum of 10^-^4 Torr or less by electron beam impact evaporation. A method for producing a lanthanum hexaboride thin film cathode.
JP9543685A 1985-05-07 1985-05-07 Method for manufacturing lanthanum hexaboride thin film cathode Pending JPS61253736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9543685A JPS61253736A (en) 1985-05-07 1985-05-07 Method for manufacturing lanthanum hexaboride thin film cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9543685A JPS61253736A (en) 1985-05-07 1985-05-07 Method for manufacturing lanthanum hexaboride thin film cathode

Publications (1)

Publication Number Publication Date
JPS61253736A true JPS61253736A (en) 1986-11-11

Family

ID=14137644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9543685A Pending JPS61253736A (en) 1985-05-07 1985-05-07 Method for manufacturing lanthanum hexaboride thin film cathode

Country Status (1)

Country Link
JP (1) JPS61253736A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428263A (en) * 1992-01-07 1995-06-27 Mitsubishi Denki Kabushiki Kaisha Discharge cathode device with stress relieving layer and method for manufacturing the same
JP2020148821A (en) * 2019-03-11 2020-09-17 国立研究開発法人物質・材料研究機構 Lanthanum hexaboride film and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428263A (en) * 1992-01-07 1995-06-27 Mitsubishi Denki Kabushiki Kaisha Discharge cathode device with stress relieving layer and method for manufacturing the same
JP2020148821A (en) * 2019-03-11 2020-09-17 国立研究開発法人物質・材料研究機構 Lanthanum hexaboride film and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4336277A (en) Transparent electrical conducting films by activated reactive evaporation
US5009922A (en) Method of forming a transparent conductive film
US4467240A (en) Ion beam source
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
JP2000282225A (en) Formation of transparent electrically conductive film and transparent electrically conductive film formed by this method
US6388366B1 (en) Carbon nitride cold cathode
JP2001357771A (en) Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device
JPS61284030A (en) Cathode for gas discharge display panels
JPS61253736A (en) Method for manufacturing lanthanum hexaboride thin film cathode
JPH11265653A (en) Electrode, and display device having the electrode
JP2000222944A (en) Substrate with ito transparent conductive film, and method of depositing ito transparent conductive film
KR100192228B1 (en) Manufacturing Method of Tin Oxide Thin Film
JPH0864110A (en) Carbide film coating electron emitting material and manufacture thereof
JPH03101033A (en) Manufacture of thin film
JPS5850419B2 (en) Method for manufacturing piezoelectric thin film
JPS6210269A (en) Vacuum evaporation device and production of thin film
JPH0329216A (en) Formation of transparent conductive film
JPS647445B2 (en)
KR20010106130A (en) Cold cathode and methods for producing the same
JPS61292817A (en) Formation of transparent conducting metal oxide film
JP2000243160A (en) Manufacture of transparent conductive layered body
KR0144627B1 (en) Manufacturing method for diamond phase film containing transition metal
JP2547204B2 (en) Method for forming bismuth titanate thin film
JPH01263188A (en) Calcium tungstate luminescent thin film and its manufacturing method
JPS628409A (en) Formation of transparent conducting metal oxide film