[go: up one dir, main page]

JPS61253347A - Low carbon steel having superior cold workability - Google Patents

Low carbon steel having superior cold workability

Info

Publication number
JPS61253347A
JPS61253347A JP9337485A JP9337485A JPS61253347A JP S61253347 A JPS61253347 A JP S61253347A JP 9337485 A JP9337485 A JP 9337485A JP 9337485 A JP9337485 A JP 9337485A JP S61253347 A JPS61253347 A JP S61253347A
Authority
JP
Japan
Prior art keywords
steel
content
cold
tempering
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9337485A
Other languages
Japanese (ja)
Inventor
Itaru Matsubara
松原 格
Yoshiaki Yamada
山田 凱朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9337485A priority Critical patent/JPS61253347A/en
Publication of JPS61253347A publication Critical patent/JPS61253347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a steel having superior cold workability by extremely reducing the amounts of P, S and O as impurities in a low carbon steel and adding specified amounts of Cr, Ti and B as well as the irreducible minimum amounts of Si and Al so that wear resistance and toughness are provided by carburization, hardening and tempering. CONSTITUTION:This low carbon steel contains, by weight, 0.10-0.30% C, <0.3% Si, 0.10-0.40% Mn, <0.60% Cr, 0.01-0.05% Al, <0.010% P, <0.010% S, <50ppm O, 0.01-0.05% Ti and 0.0005-0.005% B. Since the steel contains Ti and B, the hardness is increased by carburization, hardening and tempering to provide superior wear resistance. The steel has superior suitability to cold working such as cold drawing or cold forging.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は冷間加工性に優れた低炭素鋼に関し、さらに詳
しくは、冷間引抜き、伸線、冷間鍛造等の冷間加工性を
有し、かつ、浸炭焼入れ焼戻しによって耐摩耗性および
靭性を付与することができる冷間加工性に優れた低炭素
鋼に関する。  。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a low carbon steel that has excellent cold workability, and more specifically, to a low carbon steel that has excellent cold workability such as cold drawing, wire drawing, and cold forging. The present invention relates to a low carbon steel having excellent cold workability and capable of imparting wear resistance and toughness through carburizing, quenching and tempering. .

「辞妥話省1 一般に、ボルト、ネジ等の冷開圧造製品は、熱間圧延線
材および棒鋼を脱スケール、潤滑被膜処理後所定の径お
よび寸法まで冷間引抜き加工により製造される。
In general, cold-open headed products such as bolts and screws are manufactured by descaling hot rolled wire rods and steel bars, treating them with a lubricating coating, and then cold drawing them to predetermined diameters and dimensions.

しかし、冷間加工率が大きいと、鋼材の加工硬化のため
に機械的性質、待に引張強さが上昇し、伸びや絞りが着
しく低下し、その*主では変形抵抗が大きいため冷間圧
遣或いは鍛造時の工具の寿命の低下を釆したり、圧造製
品の割れ発生による不良率増加等が生じるので、中間工
程において軟化焼鈍或いは球状化焼鈍を行なうことが必
要である。 また、熱間圧延材、中間焼鈍材等の冷間原
遺用線材および棒鋼は、低い変形抵抗、高い延性を有し
、割れ等の圧造欠陥のない良好な冷間圧造性が要求され
る。
However, when the cold working rate is high, the mechanical properties and tensile strength increase due to work hardening of the steel, and the elongation and reduction of area gradually decrease. It is necessary to perform softening annealing or spheroidizing annealing in an intermediate process because this may reduce the life of the tool during pressing or forging, or increase the defective rate due to cracking of the forged product. In addition, cold raw wire rods and steel bars such as hot rolled materials and intermediate annealed materials are required to have low deformation resistance, high ductility, and good cold heading properties without heading defects such as cracks.

その、ため、鋼材の化学成分、特に、P1S%O等の不
純物を低減し、また、圧延方法の改善によって冷間圧造
性の良好な材料が製作されており、また、タフピングネ
ジ、ドライウオール等の小物の浸炭熱処理製品はC0.
10〜0.30wt%程度の低炭素鋼を冷間圧延後、必
要な耐摩耗性を付与するために浸炭或いは浸炭窒化を施
し、焼入れ焼戻しを実施している。
Therefore, by reducing the chemical composition of steel materials, especially impurities such as P1S%O, and by improving the rolling method, materials with good cold heading properties are being manufactured. Small carburized heat treated products are C0.
After cold-rolling low carbon steel of about 10 to 0.30 wt%, carburizing or carbonitriding is performed to impart necessary wear resistance, followed by quenching and tempering.

そして、この種の表面浸炭鋼は浸炭後A、変態点以上に
加熱し、均一にオーステナイト組織とし、880°C前
後の温度で水中または油中に焼入れし、マルテンサイト
組織として表面浸炭部および芯部な硬化させた後、30
0〜350℃の温度で焼戻しをし、表面浸炭部および芯
部に靭性を付与している。
After carburizing, this type of surface carburized steel is heated above the transformation point to form a uniform austenitic structure, and then quenched in water or oil at a temperature of around 880°C to form a martensitic structure in the surface carburized parts and core. After curing for 30 minutes
It is tempered at a temperature of 0 to 350°C to impart toughness to the surface carburized part and core part.

しかして、浸炭熱処理材の表面硬化層の硬さと芯部の靭
性とは互に相反する性質のものであり、上記説明した焼
戻し処理と密接な関係にあり、その温度に支配される。
Therefore, the hardness of the surface hardened layer and the toughness of the core of a carburized heat-treated material have contradictory properties, and are closely related to the tempering treatment described above and are controlled by the temperature thereof.

即ち、表面硬化層の硬さを確保するためには、焼戻し温
度を低くしなければならず、焼戻し温度が低いと芯部に
対する靭性の回復が不充分であり、表面は硬いが芯部は
靭性の劣化したものとなる。
In other words, in order to ensure the hardness of the hardened surface layer, the tempering temperature must be kept low; if the tempering temperature is low, the toughness of the core cannot be recovered sufficiently, and the surface is hard but the core is not tough. It becomes a deteriorated version.

また、芯部の靭性を向上させるには、焼戻し温度を高く
しなければならず、そして、焼戻し温度が高過ぎると表
面硬化層が軟化してしまい、芯部は高い靭性を有してい
るが表面が軟かく、浸炭の効果は失なわれてしまう。さ
らに、浸炭有効深さとの関連もあるが、表面および芯部
の硬度或いは靭性のバランスも問題となる。
In addition, in order to improve the toughness of the core, the tempering temperature must be increased, and if the tempering temperature is too high, the hardened surface layer will soften, and although the core has high toughness, The surface is soft and the carburizing effect is lost. Furthermore, although it is related to the effective depth of carburization, the balance between the hardness or toughness of the surface and core is also an issue.

このような、表面硬度或いは芯部靭性のバランスが悪い
とタフピングネジ、ドライウオール等の打込み施工時の
打込み荷重、時間或いは施工時の頭飛び等に問題を起す
ことがあり、また、タッピングネジ等浸炭熱処理材の場
合には遅れ破壊特性が問題となることが多い。
If the surface hardness or core toughness is unbalanced, it may cause problems such as the driving load, time, or head jump during installation of tuffing screws, drywall, etc. In the case of heat-treated materials, delayed fracture characteristics are often a problem.

この遅れ破壊の主原因は、殆んど鋼中に浸入した水素に
よるものであり1.水素が鋼中に浸入する時期は、次の
2つが考えられる。
The main cause of this delayed fracture is mostly hydrogen that has penetrated into the steel.1. There are two possible timings when hydrogen permeates into steel:

(イ)線材、棒鋼の酸洗時或いは製品の電気めっき時等
の工程で浸入する。
(a) Penetration occurs during processes such as pickling of wire rods and steel bars or electroplating of products.

(ロ)製品の使用後の外部環境により浸入する。(b) Infiltration by the external environment after the product is used.

そして、この(ロ)の場合は、腐蝕反応によって発生し
た水素が鋼中に浸入する場合であり、一般に、腐蝕性の
強い環境程遅れ破壊を生じ易くなるものであり、また、
材料の硬さ、強度も遅れ破壊性に大きく影響し、特に、
焼入れ焼戻し処理によって強度を高くした材料に遅れ破
壊特性が問題となっている。
In the case of (b), hydrogen generated by a corrosion reaction infiltrates the steel, and generally, the more corrosive the environment, the more likely it is that delayed fracture will occur.
The hardness and strength of the material also greatly affect delayed fracture resistance, especially
Delayed fracture characteristics have become a problem in materials whose strength has been increased through quenching and tempering.

従って、高強度の調質鋼においては、焼戻し温度をでき
るだけ高くし、例元ば、400℃以上の温度とすること
によって遅れ破壊特性の改善をはかることが一般的に行
なわれている。
Therefore, in high-strength annealed steel, it is common practice to improve the delayed fracture characteristics by increasing the tempering temperature as high as possible, for example, at a temperature of 400° C. or higher.

しかし、タッピングネジは低炭素鋼であるために、焼戻
し温度が400℃以上では製品として必要とする表面硬
度が得られないので、300〜350℃の温度で焼戻し
を行なっているが、この温度範囲は高強度調質鋼、特に
、低合金鋼の焼入れ焼戻し処理材の低温焼戻し脆化域で
あり、かつ、遅れ破壊特性の悪化温度域でもあり、炭素
鋼においては低温焼戻し脆化は顕著には現われ難いが、
同温度域における焼戻し処理は靭性に良好であるはずが
な(、遅れ破壊特性については低合金鋼と同様に顕著に
急坂する。
However, since tapping screws are made of low carbon steel, if the tempering temperature exceeds 400°C, the surface hardness required for the product cannot be obtained. is the low-temperature tempering embrittlement range of high-strength tempered steels, especially low-alloy steels that have been quenched and tempered, and is also the temperature range in which delayed fracture properties deteriorate; low-temperature tempering embrittlement is not noticeable in carbon steel. Although it is difficult to appear,
Tempering treatment in the same temperature range should be good for toughness (although the delayed fracture properties are noticeably steep, similar to low alloy steel.

[発明が解決し上らとする闇頭占] 本発明は上記に説明した従来技術における低炭素鋼の種
々の問題点に鑑み、本発明者の研究の結果、線材、棒鋼
の変形抵抗および変形能の向上、即ち、冷間圧造性を改
善するために鋼中のP、S、0等の不純物元素を低減し
て鋼の清浄化をはかり、Si、AIを必要最低限に抑え
、7工ライト固溶強化元素であり、かつ、加工硬化を増
加させるMn含有量を低下し、比較的少量の含有により
固溶軟化の機能を発揮し、冷開引抜き加工時に加工硬化
量の極めて小さいCrを含有させて冷間引抜き材の軟質
化と変形抵抗を減少させ、また、Ti、Bを含有させて
水、油何れの焼入れによっても充分な焼入れを行なえる
ようにし、浸炭熱処理によって、低Mn含有量で変形抵
抗を低く保ちながら材料自体の焼入れ特性を落し、表層
部の硬度は下げることなく芯部は低硬度、かつ、高靭性
が得られ、さらに、焼戻しを従来よりさらに低温度で行
なうことができ、材料の低温焼戻し脆性を緩和すること
ができ、その上、耐遅れ破壊特性をも改善することがで
きる冷間加工性に優れた低炭素鋼を開発したのである。
[The secret theory that the invention will solve] In view of the various problems of low carbon steel in the prior art explained above, the present invention is based on the research conducted by the inventor, and has been made to solve the problems of deformation resistance and deformation of wire rods and steel bars. In order to improve cold heading properties, impurity elements such as P, S, and 0 in the steel are reduced to purify the steel, and Si and AI are kept to the necessary minimum. It is a light solid solution strengthening element and reduces the Mn content, which increases work hardening, and exhibits a solid solution softening function with a relatively small amount of Cr, which has an extremely small amount of work hardening during cold-open drawing. By containing Ti and B, it is possible to soften the cold-drawn material and reduce its deformation resistance, and by containing Ti and B, it can be hardened sufficiently by either water or oil quenching, and by carburizing heat treatment, it can be made with a low Mn content. By reducing the hardening properties of the material itself while keeping the deformation resistance low, the core has low hardness and high toughness without reducing the hardness of the surface layer, and furthermore, tempering can be performed at a lower temperature than before. We have developed a low-carbon steel with excellent cold workability that can alleviate the material's low-temperature tempering brittleness and improve its delayed fracture resistance.

[問題点を解決するための手段] 本発明に係る冷間加工性に優れた低炭素鋼の特徴とする
ところは、 C0.10−0.30u+t%、51003wt%以下
、Mn 0.10〜0.40wt%、Or 0.60u
+t%以下、AIo、01〜0.05wt%、P 0.
010wt%以下、S 0.010iut%以下、05
0ppm以下を含有し、さらに、 Ti 0.01〜0.05u+t%、B 000005
〜0.005wt%を含有し、残部Feおよび不純物か
らなることにある。
[Means for solving the problems] The characteristics of the low carbon steel with excellent cold workability according to the present invention are as follows: C0.10-0.30u+t%, 51003wt% or less, Mn 0.10-0 .40wt%, Or 0.60u
+t% or less, AIo, 01-0.05wt%, P 0.
010wt% or less, S 0.010iut% or less, 05
Contains 0 ppm or less, furthermore, Ti 0.01-0.05u+t%, B 000005
~0.005 wt%, with the remainder consisting of Fe and impurities.

本発明に係る冷間加工性に優れた低炭素鋼について以下
詳細に説明する。
The low carbon steel with excellent cold workability according to the present invention will be described in detail below.

先ず、本発明に係る冷間加工性に優れた低炭素鋼の含有
成分および成分割合について説明する。
First, the components and component ratios of the low carbon steel with excellent cold workability according to the present invention will be explained.

Cは芯部をも含め焼入れ性を向上させ、浸炭熱処理後の
強度を維持するのに必要であり、含有量が0.10wt
%未満ではこのような効果は少なく、また、0.30w
t%を越える上うな高含有量では硬さが上昇し耐衝撃性
を害するようになる。よって、C含有量は0.10〜0
.30u+t%とする。因に、タッピングネジ等の用途
にはこの範囲における含有量が適している。
C is necessary to improve hardenability including the core and maintain strength after carburizing heat treatment, and the content is 0.10wt.
If it is less than 0.30w, this effect is small, and if it is less than 0.30w
If the content is too high, exceeding t%, the hardness will increase and the impact resistance will be impaired. Therefore, the C content is between 0.10 and 0.
.. 30u+t%. Incidentally, the content within this range is suitable for applications such as tapping screws.

Siは焼戻し軟化抵抗性、焼入れ性を向上させ、強度を
高くする元素であるが、また、フェライト地を硬化させ
冷開加工性に悪影響を与える元素でもあり、本発明に係
る鋼は冷間加工性の優れていることが重要なことである
ので、その点からもSi含有量が低いことが望ましく、
また、Siは浸炭性にも負の要因となる。よって、Si
含有量はOJu+t%以下とする。
Si is an element that improves temper softening resistance and hardenability and increases strength, but it is also an element that hardens the ferrite base and has a negative effect on cold workability. It is important to have excellent properties, so from that point of view as well, it is desirable that the Si content is low.
Moreover, Si also becomes a negative factor in carburizability. Therefore, Si
The content shall be OJu+t% or less.

Mnは焼入れ性の向上に大きく寄与する元素であり、調
質鋼では大量に含有されているが、フェライト固溶強化
元素でもあり、冷間加工時の加工硬化を助長し、Siと
同じく鋼の変形抵抗の低下に大きな障害となるものであ
り、本発明に係る鋼においてはSをMnSとして固定し
無害化するための下限含有量として0.10wt%は必
要であり、また、あまり多量に含有されると上記した悪
影響があるので上限は0.40u+t%とする。
Mn is an element that greatly contributes to improving hardenability, and is contained in large amounts in tempered steel, but it is also a ferrite solid solution strengthening element, promotes work hardening during cold working, and, like Si, increases the strength of steel. This is a major obstacle to reducing deformation resistance, and in the steel according to the present invention, a lower limit of 0.10 wt% is required as the lower limit content to fix S as MnS and render it harmless. If this happens, the above-mentioned adverse effects will occur, so the upper limit is set at 0.40u+t%.

CrはSi、Mnと同様にフェライト固溶強化元素であ
り加工硬化を助長する元素であるが、固溶強化の度合が
最小であり、また、冷間加工を行なうと加工硬化量はM
nより小さく、逆に加工軟化し鋼の軟質化特性を助長し
、さらに、鋼中のC1Nと結合して炭窒化物を形成し、
歪時効硬化特性を緩和し、熱間圧延線材、棒鋼を冷間引
抜き加工を行なう際、引張強さ、降伏点レベルを低くし
、伸び、絞り等の延性の劣化を軽減することができ、ま
た、浸炭焼入れ焼戻し等の熱処理をする鋼にCrの適量
含有は有効浸炭深さを深くし緒特性を改善するが、多量
の含有は引張強さが高くなり、冷開圧造時の変形抵抗が
大きくなる。よって、Cr含有量は0.60wt%以下
とする。この含有量においては、冷間加工時の加工硬化
におよぼす悪影響が少ない。
Cr, like Si and Mn, is a ferrite solid solution strengthening element and is an element that promotes work hardening, but the degree of solid solution strengthening is the smallest, and when cold working, the amount of work hardening is M
smaller than n, conversely softens during processing and promotes the softening characteristics of steel, and furthermore combines with C1N in steel to form carbonitrides,
By relaxing the strain age hardening characteristics, it is possible to lower the tensile strength and yield point level when cold drawing hot rolled wire rods and steel bars, and reduce the deterioration of ductility such as elongation and reduction of area. The inclusion of an appropriate amount of Cr in steel that undergoes heat treatment such as carburizing, quenching, and tempering increases the effective carburizing depth and improves the steel properties, but a large amount of Cr increases the tensile strength and increases the deformation resistance during cold-open heading. Become. Therefore, the Cr content is set to 0.60 wt% or less. At this content, there is little adverse effect on work hardening during cold working.

AIは脱酸および鋼中のNの固定および結晶粒度調整の
ために有効な元素であり、含有量が0.01wt%未満
ではこのような効果は少なく、また、脱酸時に生成する
A1□0.系介在物は冷開圧造時の割れの原因ともなる
ので、0.05Illt%を越えるような多量の含有は
必要がなく、さらに、低いAl含有量は本発明に係る鋼
においては大切なことである。よって、A1含有量は0
.01〜0.05wt%とする。
AI is an effective element for deoxidizing, fixing N in steel, and adjusting grain size. If the content is less than 0.01 wt%, this effect is small, and the amount of A1□0 produced during deoxidation is .. Since system inclusions can cause cracks during cold-open heading, it is not necessary to include them in large amounts exceeding 0.05 Illt%, and furthermore, a low Al content is important in the steel according to the present invention. be. Therefore, A1 content is 0
.. 01 to 0.05 wt%.

0はA1、Siと結合して酸化物となり、また、Ti酸
化物は鋼中のOが多いと巨大化する傾向にあるのででき
るだけ少な(することが望ましく、0はA1、Siおよ
びTiによる複合脱酸によって低水準に維持する。よっ
て、0含有量は50ppm以下とする。
0 combines with A1 and Si to form an oxide, and since Ti oxide tends to become large when there is a large amount of O in steel, it is desirable to minimize the amount of Ti oxide. It is maintained at a low level by deoxidation. Therefore, the 0 content is set to 50 ppm or less.

Pはできるだけ少ない方が鋼の強度レベルを低くし、圧
造時の変形抵抗を低くし、また、強度および耐摩耗性を
浸炭熱処理によって達成する場合、遅れ破壊特性が問題
となるので、P含有量を低くすることは極めて効果があ
る。しがし、製鋼工程における脱P上の問題があり、P
含有量は0.010wt%以下とする。
The P content should be as low as possible to lower the strength level of the steel and the deformation resistance during forging.Also, when achieving strength and wear resistance through carburizing heat treatment, delayed fracture characteristics become a problem, so the P content is It is extremely effective to lower the However, there is a problem with P removal in the steel manufacturing process, and P
The content shall be 0.010 wt% or less.

Sは鋼中において鉄と硫化物を形成し圧延時の割れ、ま
たは、疵発生の原因となり、また、鋼の変形能を悪化さ
せる。よって、S含有量はo、oi。
S forms sulfides with iron in steel, causing cracks or flaws during rolling, and also worsens the deformability of steel. Therefore, the S content is o, oi.

1%以下とする。1% or less.

Ti、Bは鋼の焼入れ性を向上させるのに有効な元素で
あり、Tiは鋼中のNを固定し、Bの焼入れ性向上を補
うと共にTiNとなって結晶粒粗大化防止にも寄与し、
A1含有量との関連もあるがTi含有量は下限は0.0
1wt%程度の少量でよく、また、0.05wt%を越
えるように含有量が多過ぎると炭窒化物の生成量も増し
て粗大化し、鋼の冷間圧延性を阻害する。上って、Ti
含有量は0.01〜0.05wt%とする。
Ti and B are effective elements for improving the hardenability of steel. Ti fixes N in steel, supplements the hardenability improvement of B, and also contributes to preventing crystal grain coarsening by turning into TiN. ,
There is a relationship with A1 content, but the lower limit of Ti content is 0.0
A small amount of about 1 wt% is sufficient, and if the content is too large, exceeding 0.05 wt%, the amount of carbonitrides produced increases and becomes coarse, which impairs the cold rollability of the steel. Go up, Ti
The content is 0.01 to 0.05 wt%.

Bは低いSi含有量と低いMn含有量による焼入れ性を
補助する元素であり、浸炭熱処理による芯部の強度増加
に極めて有効であり、0.0005wt%未満ではこの
ような効果は少なく、また、Q、0O511t%を越え
ると効果は飽和してしまい、このような少量の含有でも
これらの効果を発揮する。よって、S含有量は0.00
05〜0.005wt%とする。なお、Bが含有されて
も鋼の冷間加工性には全く関係がなく、焼入れ性を向上
させる分だけMn含有量、場合によっては、C含有量を
低くすることが可能となり、さらに、冷間加工性が改善
されることになる。
B is an element that assists hardenability due to the low Si content and low Mn content, and is extremely effective in increasing the strength of the core by carburizing heat treatment. If it is less than 0.0005 wt%, this effect is small, and If the content exceeds 11 t% of Q,0O5, the effect will be saturated, and even with such a small amount of content, these effects will be exhibited. Therefore, the S content is 0.00
05 to 0.005 wt%. Furthermore, even if B is contained, it has no effect on the cold workability of the steel, and it is possible to lower the Mn content and, in some cases, the C content by the amount that improves the hardenability. This results in improved workability.

[実施例] 次に、本発明に係る冷間加工性に優れた低炭素鋼の実施
例を説明する。
[Example] Next, an example of a low carbon steel having excellent cold workability according to the present invention will be described.

実施例 第1表に示す含有成分および成分割合の低炭素鋼を転炉
溶製により製造した。
Example Low carbon steel having the components and ratios shown in Table 1 was produced by melting in a converter furnace.

第1表のF、Gは本発明に係る冷間加工性に優れた低炭
素鋼に規定された鋼であり、A−Eは比較鋼である。
F and G in Table 1 are steels specified as low carbon steels with excellent cold workability according to the present invention, and A to E are comparative steels.

この第1表に示す鋼を線材圧延した5、5mmφの熱間
圧延線材の機械的性質を第2表に示す。
Table 2 shows the mechanical properties of hot-rolled wire rods with a diameter of 5.5 mm obtained by rolling the steel shown in Table 1 into wire rods.

第1図(a)(b)に、上記と同じ熱間圧延線材を酸洗
、石灰被膜処理をした後連続伸線機により冷間伸線した
鋼線の加工硬化特性(引張強さで示す。)と絞りの変化
を示す。
Figure 1 (a) and (b) show the work hardening properties (expressed in tensile strength) of the same hot-rolled wire rod as above, pickled and lime-coated, and then cold-drawn using a continuous wire drawing machine. ) and shows changes in aperture.

この第1図かられかるように、冷間伸線率と加工硬化量
との関係は加工硬化に大きな影響を与えるC、Si、M
n、P、Crのうち本発明に係る冷間加工性に優れた低
炭素鋼は特に低Si含有量、低M含有量化をはかったA
1キルド鋼であるためC含有量が一定であれば、Mn、
Cr含有量によりきまる。
As can be seen from Fig. 1, the relationship between the cold drawing rate and the amount of work hardening is such that C, Si, and M
Among n, P, and Cr, the low carbon steel with excellent cold workability according to the present invention is particularly A with low Si content and low M content.
Since it is a 1-killed steel, if the C content is constant, Mn,
It depends on the Cr content.

低Mn含有量とする程加工硬化量は少なくなり、軟質化
し冷間加工時の変形抵抗も減少し、冷間圧造時の割れ発
生限界圧縮率も高くなり、途中に軟化焼鈍、球状化焼鈍
を行なってもこの傾向には変化がない。なお、Ti、B
含有鋼の冷間引抜き、伸線、冷間圧造性等の冷間加工性
はTi、Bを含有しないものと略同じである。従って、
冷間圧造時の工具寿命の向上効果が得られ、冷間引抜軽
率にもよるが、中間焼鈍工程の簡略化または省略の可能
性がある。なお、降伏点強さ、または、0.2%耐力の
変化は引張強さと同様な傾向を示し上昇する。
The lower the Mn content, the less the amount of work hardening, the softer the material, and the lower the deformation resistance during cold working. Even if we do this, there will be no change in this trend. In addition, Ti, B
The cold workability of the steel containing Ti and B, such as cold drawing, wire drawing, and cold heading properties, is approximately the same as that of steel that does not contain Ti and B. Therefore,
The effect of improving tool life during cold heading can be obtained, and depending on the cold drawing process, there is a possibility of simplifying or omitting the intermediate annealing process. Note that the change in yield point strength or 0.2% proof stress shows the same tendency as the tensile strength and increases.

第2図はジョミニー一端焼入れ法(ビレット→鍛伸→焼
ならし→″EL験片加鋏片焼入れ→硬さ測定)による本
発明に係る冷間加工性に優れた低炭素鋼および比較鋼の
焼入れ性を測定した場合を示しである。
Figure 2 shows the low carbon steel with excellent cold workability according to the present invention and the comparative steel obtained by the Jominy single end quenching method (billet → forging → normalizing → EL test piece and scissors piece quenching → hardness measurement). This figure shows the hardenability measured.

同レベルのC含有量の低炭素鋼において、Mn含有量の
相違、Ti、B含有が焼入れ性の違いに明確に現われて
いる。
Among low carbon steels with the same level of C content, the difference in Mn content, Ti, and B content clearly appears in the difference in hardenability.

第3図(a)(b)は第2図における焼入れ性の違い、
特に、Ti5Bの含有した場合の効果を浸炭焼入れ焼戻
し処理を行なう低Mn低炭素鋼に適用し、浸炭焼入れ性
の調査結果を示しである。
Figure 3 (a) and (b) show the difference in hardenability in Figure 2,
In particular, the effect of containing Ti5B was applied to low Mn low carbon steel that undergoes carburizing, quenching and tempering treatment, and the results of investigation on carburizing and hardenability are shown.

鋼の変形抵抗低下要因の一つであるMnは、反面焼入れ
性向上元素であるためMn0.10〜0.4011t%
の鋼は焼入れ媒体にもよるが、特に、第3図(b)に示
す線径3.0Illalの試験片の油焼入れの場合(8
80℃の温度に45分保持して油焼入れし、180℃の
温度に30分保持後空冷)は充分焼きが入らず芯部の硬
度が不足する場合がある。
Mn is one of the factors that lowers the deformation resistance of steel, but on the other hand, it is an element that improves hardenability, so Mn is 0.10 to 0.4011t%.
Although it depends on the quenching medium, in particular, in the case of oil quenching of a test piece with a wire diameter of 3.0Illal as shown in Figure 3(b) (8
If the material is hardened in oil by holding it at a temperature of 80°C for 45 minutes, then cooling in air after being held at a temperature of 180°C for 30 minutes, the hardness of the core may not be sufficient.

これに対して、Ti、Bを適量含有していることにより
芯部の硬度は充分に高くなり、低温焼戻し脆化域を避け
、かつ、靭性が向上する焼戻し温度を自由に選択するこ
とができる。
On the other hand, by containing appropriate amounts of Ti and B, the hardness of the core becomes sufficiently high, making it possible to avoid the low-temperature tempering embrittlement region and freely select the tempering temperature that improves toughness. .

なお、水焼入れの場合(880″Cの温度に45分保持
後水焼入れし、180℃の温度に30分保持後空冷)、
同様に試験片径は3. Oma+であるが、Ti、Bの
含有がなくとも表層部、芯部共に充分な硬度が得られる
が、さらに、Ti、B含有によってより大径のものに指
向できるし、また、焼戻し温度の選択によってより高靭
性の鋼として性状改善をはかることができる。
In the case of water quenching (water quenching after holding at a temperature of 880"C for 45 minutes, air cooling after holding at a temperature of 180"C for 30 minutes),
Similarly, the test piece diameter is 3. Although it is Oma+, sufficient hardness can be obtained in both the surface layer and the core without the inclusion of Ti and B, but furthermore, by containing Ti and B, it is possible to achieve a larger diameter, and it is also possible to select the tempering temperature. This makes it possible to improve the properties of a steel with higher toughness.

第4図は焼戻し性能曲線であり、Ti、B含有低Mn、
高Mnの炭素鋼の比較において試験片を所定の温度に水
焼入れ後焼戻し温度を200〜500°Cの温度範囲に
変えて、降伏点、引張強さ、伸び、絞り、衝撃値を調査
した結果を示しである。
Figure 4 is a tempering performance curve, showing Ti, B-containing low Mn,
In a comparison of high Mn carbon steels, the yield point, tensile strength, elongation, area of area, and impact value were investigated by water quenching test pieces to a predetermined temperature and changing the tempering temperature to a temperature range of 200 to 500°C. is shown.

この第4図から明らかなように、焼戻し温度の上昇と共
に降伏点、引張強さは低下し、伸び、絞り、衝撃値は高
くなるが、低Mn炭素鋼が絞り、衝撃値の向上効果が顕
著であることがわかる。
As is clear from Fig. 4, as the tempering temperature increases, the yield point and tensile strength decrease, and the elongation, reduction of area, and impact value increase, but low Mn carbon steel reduces and the impact value has a remarkable improvement effect. It can be seen that it is.

第5図は引張強さと衝撃値の関係を示してあり、低Mn
鋼の同引張強さに対し衝撃値水準が高く靭性バランスの
よい鋼である。
Figure 5 shows the relationship between tensile strength and impact value.
It is a steel with a high impact value level and a good balance of toughness for the same tensile strength as steel.

これが、タフピングネジ等浸炭熱処理鋼のくさび引張試
験時或いは施工時の頭飛びの問題を解決するもので、耐
摩耗性を得るための裏面部硬度は浸炭熱処理条件に左右
され、打込み時の荷重等を含め打込み性にかかわるが硬
度が高いばかりでは充分ではな(、芯部方向への硬度分
布並びに靭性とのバランスがより大切である。また、遅
れ破壊特性の面からも、遅れ破壊特性の最も悪い300
〜350℃の温度領域で焼戻しをしており、この温度域
を避けるための解決にも有効である6[発明の効果1 以上説明したように、本発明に係る冷間加工性に優れた
低炭素鋼は上記の構成を有しているものであるから、浸
炭焼入れ焼戻し処理により鋼材の表層部は耐摩耗性を得
るために硬度を高くすることができ、芯部は良好な靭性
とすることができ、例えば、タフピングネジ、ドライウ
オール等の直径5mm以下の小さいものであっても焼入
れ不足となるという問題がなく、さらに、焼戻し温度を
低温とすることができるので低温焼戻し脆性を緩和する
ことができ、かつ、耐遅れ破壊特性を改善することがで
きるという優れた効果を有するものであ
This solves the problem of head skipping during wedge tensile tests or construction of carburized heat-treated steel such as tufting screws.The hardness of the back surface to obtain wear resistance depends on the carburizing heat treatment conditions, and It is not enough just to have high hardness (hardness distribution in the direction of the core and balance with toughness are more important). 300
Tempering is carried out in a temperature range of ~350°C, which is also effective in solving the problem of avoiding this temperature range6 Carbon steel has the above structure, so by carburizing, quenching and tempering, the surface layer of the steel can be hardened to achieve wear resistance, while the core has good toughness. For example, there is no problem of insufficient hardening even for small items with a diameter of 5 mm or less, such as tufted screws and dry walls.Furthermore, since the tempering temperature can be lowered, low-temperature tempering brittleness can be alleviated. It has the excellent effect of improving delayed fracture resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は減面率と引張強さ、減面率と絞りとの関係を示
す図、第2図は硬度と試験片表面からの距離の関係を示
す図、第3図は水焼入れと油焼入れによる硬度と表層部
からの距離の関係を示す図、第4図は焼戻し性能曲線を
示す図、第5図は引張強さと衝撃値との関係を示す図で
ある。 才2図 林駄)¥に@&光耗島獲 (笥匍) 牙311A(幻 表層計1・うの〉巨細イー) 矛3図 (b) 麦1首?ろ・うクエ巨気電 (側角) 才5図 3I礒屹;
Figure 1 shows the relationship between area reduction rate and tensile strength, and area reduction rate and area of area reduction, Figure 2 shows the relationship between hardness and distance from the specimen surface, and Figure 3 shows the relationship between water quenching and oil quenching. FIG. 4 is a diagram showing the relationship between hardness due to quenching and distance from the surface layer, FIG. 4 is a diagram showing a tempering performance curve, and FIG. 5 is a diagram showing the relationship between tensile strength and impact value. Sai 2 Zu Rinda) ¥ に @ & Kosare Shimatake (笥匍) Fang 311A (phantom surface total 1, Uno>Giant Yi) Spear 3 (b) 1 head of barley? Ro・Ukue gigantic electric power (lateral angle) 5 figure 3I 礒屹;

Claims (1)

【特許請求の範囲】 C 0.10〜0.30wt%、Si 0.3wt%以
下、Mn 0.10〜0.40wt%、Cr 0.60
wt%以下、Al 0.01〜0.05wt%、P 0
.010wt%以下、S 0.010wt%以下、O 
50ppm以下を含有し、さらに、 Ti 0.01〜0.05wt%、B 0.0005〜
0.005wt%を含有し、残部Feおよび不純物から
なることを特徴とする冷間加工性に優れた低炭素鋼。
[Claims] C 0.10-0.30wt%, Si 0.3wt% or less, Mn 0.10-0.40wt%, Cr 0.60
wt% or less, Al 0.01-0.05wt%, P 0
.. 0.010wt% or less, S 0.010wt% or less, O
Contains 50 ppm or less, and further contains Ti 0.01 to 0.05 wt%, B 0.0005 to
A low carbon steel with excellent cold workability, characterized by containing 0.005 wt% and the remainder consisting of Fe and impurities.
JP9337485A 1985-04-30 1985-04-30 Low carbon steel having superior cold workability Pending JPS61253347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9337485A JPS61253347A (en) 1985-04-30 1985-04-30 Low carbon steel having superior cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9337485A JPS61253347A (en) 1985-04-30 1985-04-30 Low carbon steel having superior cold workability

Publications (1)

Publication Number Publication Date
JPS61253347A true JPS61253347A (en) 1986-11-11

Family

ID=14080526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9337485A Pending JPS61253347A (en) 1985-04-30 1985-04-30 Low carbon steel having superior cold workability

Country Status (1)

Country Link
JP (1) JPS61253347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261388B1 (en) 1998-05-20 2001-07-17 Nippon Steel Corporation Cold forging steel having improved resistance to grain coarsening and delayed fracture and process for producing same
US8075420B2 (en) * 2009-06-24 2011-12-13 Acushnet Company Hardened golf club head
WO2018061101A1 (en) 2016-09-28 2018-04-05 新日鐵住金株式会社 Steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798657A (en) * 1980-12-06 1982-06-18 Nisshin Steel Co Ltd Carburizing steel with superior workability and carburizability
JPS58120719A (en) * 1982-01-08 1983-07-18 Kobe Steel Ltd Manufacture of case hardening b steel
JPS58164758A (en) * 1982-03-25 1983-09-29 Daido Steel Co Ltd Carburizing steel
JPS59126718A (en) * 1983-01-07 1984-07-21 Daido Steel Co Ltd Manufacture of stel material with superior cold workability
JPS60230960A (en) * 1984-04-27 1985-11-16 Daido Steel Co Ltd Steel for cold forging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798657A (en) * 1980-12-06 1982-06-18 Nisshin Steel Co Ltd Carburizing steel with superior workability and carburizability
JPS58120719A (en) * 1982-01-08 1983-07-18 Kobe Steel Ltd Manufacture of case hardening b steel
JPS58164758A (en) * 1982-03-25 1983-09-29 Daido Steel Co Ltd Carburizing steel
JPS59126718A (en) * 1983-01-07 1984-07-21 Daido Steel Co Ltd Manufacture of stel material with superior cold workability
JPS60230960A (en) * 1984-04-27 1985-11-16 Daido Steel Co Ltd Steel for cold forging

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261388B1 (en) 1998-05-20 2001-07-17 Nippon Steel Corporation Cold forging steel having improved resistance to grain coarsening and delayed fracture and process for producing same
US8075420B2 (en) * 2009-06-24 2011-12-13 Acushnet Company Hardened golf club head
US20120088600A1 (en) * 2009-06-24 2012-04-12 Helene Rick Hardened golf club head
US8500573B2 (en) * 2009-06-24 2013-08-06 Acushnet Company Hardened golf club head
WO2018061101A1 (en) 2016-09-28 2018-04-05 新日鐵住金株式会社 Steel
KR20190041502A (en) 2016-09-28 2019-04-22 닛폰세이테츠 가부시키가이샤 River

Similar Documents

Publication Publication Date Title
JP5315790B2 (en) High strength PC steel wire with excellent delayed fracture resistance
EP2546379A1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
EA011363B1 (en) Steel for oil well pipe and method for manufacturing thereof
JP2007332438A (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JPH0156124B2 (en)
EP3020841B1 (en) Coil spring, and method for manufacturing same
JPWO2004057049A1 (en) Bearing steel excellent in manufacturability and corrosion resistance, its manufacturing method, bearing parts and its manufacturing method
JPH06271930A (en) Production of high strength and high toughness steel excellent in fatigue property
JPH05320749A (en) Production of ultrahigh strength steel
JP2007023310A (en) Steel for machine structural use
JPH039168B2 (en)
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPS6137334B2 (en)
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPS61253347A (en) Low carbon steel having superior cold workability
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH0254416B2 (en)
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JPH048486B2 (en)
JPS63206449A (en) Low-carbon steel for cold forging
JPH0526850B2 (en)
JPH04329824A (en) Production of martensitic stainless steel for cold forging
JPS61227129A (en) Manufacture of high strength steel having superior resistance to sulfide stress corrosion cracking
JPH0151526B2 (en)