[go: up one dir, main page]

JPS61252493A - Control unit of separate type heat pipe - Google Patents

Control unit of separate type heat pipe

Info

Publication number
JPS61252493A
JPS61252493A JP60095232A JP9523285A JPS61252493A JP S61252493 A JPS61252493 A JP S61252493A JP 60095232 A JP60095232 A JP 60095232A JP 9523285 A JP9523285 A JP 9523285A JP S61252493 A JPS61252493 A JP S61252493A
Authority
JP
Japan
Prior art keywords
transmitter
heat exchange
signals
heat pipe
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60095232A
Other languages
Japanese (ja)
Other versions
JPH0465317B2 (en
Inventor
Yutaka Hirayama
裕 平山
Hideki Takano
英樹 高野
Fuyuki Soma
冬樹 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60095232A priority Critical patent/JPS61252493A/en
Publication of JPS61252493A publication Critical patent/JPS61252493A/en
Publication of JPH0465317B2 publication Critical patent/JPH0465317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To minutely adjust a heat-exchange mediums of respective units to respective reference flow quantities by calculating the optimal distribution quantity of the heat exchange quantity with respect to a unit from the external condition and maintenance of a high controllability. CONSTITUTION:The requested heat exchange quantity is calculated from signals from a B gas transmitter 9, a B gas flow quantity transmitter 10, an exhaust gas temperature transmitter 11, and an exhaust gas flow quantity transmitter 12 by use of a function 13. By use of a signal from the function 13 the reference flow quantities with respect to respective units are set by functions 14A and 14B. The flow quantities are determined so that respective units are prevented from utilized in a region where the controllability is poor and the negative pressure operation is not carried out. The reference flow quantities are added to signals from water level deviation adjusting meters 7A and 7B of an evaporator. The opening degrees of circulating water control valves 4A and 4B are controlled by the adding signals.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート型ヒートパイプの熱交換量を最適
配分させる制御装置に関するもので、排ガスの熱交換を
複数の熱交換手段で行なうような分野に利用することが
できる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a control device that optimally distributes the heat exchange amount of a separate heat pipe, and is applicable to a field where heat exchange of exhaust gas is performed using a plurality of heat exchange means. can be used.

従来の技術 セパレート型ヒートパイプは熱交換器の一種であり、熱
交換媒体である水の蒸発器と凝縮器とが分離されて設け
られていることが特徴である。ヒートパイプシステムは
数セットのクローズドサイクルのユニットから成シ、各
ユニットは分離された蒸発器および凝縮器と、両者を接
続する循環水ポンプとから成っている。
Background Art Separate heat pipes are a type of heat exchanger, and are characterized in that an evaporator and a condenser for water, which is a heat exchange medium, are provided separately. A heat pipe system consists of several sets of closed cycle units, each consisting of a separate evaporator and condenser and a circulating water pump connecting them.

従来のセパレート型ヒートパイプの熱交換量の制御は、
加熱側ガス温度の温度制御や、蒸発器内水面レベル制御
であり、循環水流量制御弁を操作端としている。
Controlling the heat exchange amount of conventional separate heat pipes is
It controls the heating side gas temperature and the water level in the evaporator, and uses the circulating water flow rate control valve as the operating end.

発明が解決しようとする問題点 ところが、複数のユニットから成るシステムでは、外部
条件(加熱側ガス、被加熱側ガスの入口での温度、流量
)が一定であっても、バランス点は複数個存在する。例
えば、3つのユニットから成るシステムにおいて熱交換
量の合計を例えば「6」とした場合、各ユニットにおけ
る熱交換量は「3:2:IJと分配される場合や「2:
2:2」と分配される場合がある。それゆえ、各ユニッ
トが独自に制御目的を達成すべく動作するようにした従
来のシステムでは、次のような欠点がある。
Problems to be Solved by the Invention However, in a system consisting of multiple units, even if the external conditions (temperature and flow rate at the inlet of the heating side gas and heated side gas) are constant, there are multiple balance points. do. For example, if the total amount of heat exchanged in a system consisting of three units is set to "6", the amount of heat exchanged in each unit may be distributed as "3:2:IJ" or "2:
The distribution may be 2:2. Therefore, the conventional system in which each unit independently operates to achieve a control objective has the following drawbacks.

(1)ユニットによっては、熱交換量が過大または過小
となる制御性能の悪い領域で運用されるものがある。
(1) Some units are operated in areas with poor control performance, where the amount of heat exchange is too large or too small.

(2)加熱側ガス温度が上流側ユニットで冷却され過ぎ
て下流側ユニットが負圧になることがある。
(2) The heating side gas temperature may be cooled too much in the upstream unit and the downstream unit may become under negative pressure.

この場合、空気の漏れ込みが生じて熱交換効率が悪化し
たシ、系内酸化による短寿命化の原因となる。
In this case, air leakage occurs, resulting in poor heat exchange efficiency and shortened life due to oxidation within the system.

本発明は上記事情にかんがみてなされたもので、複数の
ユニットから成るセパレート型ヒートパイプの熱交換量
を最適配分することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to optimally allocate the amount of heat exchanged in a separate heat pipe consisting of a plurality of units.

問題点を解決するための手段 本発明によれば、複数の熱交換ユニットを含むセパレー
ト型ヒートパイプシステムにおいて、システム外部条件
よシ、負圧運用の防止及び高制御性の維持を考慮して、
各ユニットに対する熱交換量の最適配分量を算出し、各
ユニットの熱交換媒体をそれぞれの基準流量に微調整す
るようにしている。
Means for Solving the Problems According to the present invention, in a separate heat pipe system including a plurality of heat exchange units, in consideration of system external conditions, prevention of negative pressure operation, and maintenance of high controllability,
The optimum distribution amount of the heat exchange amount to each unit is calculated, and the heat exchange medium of each unit is finely adjusted to the respective reference flow rate.

実施例 図面は本発明による制御装置の制御系統をセパレート型
ヒートパイプの構成とともに示している。
Embodiment The drawings show a control system of a control device according to the present invention together with the configuration of a separate heat pipe.

セパレート型ヒートパイプは、蒸発器IA、IB、凝縮
器2人、2Bをそれぞれ有し、蒸発器IAと凝縮器2人
との間には循環水ポンプ3A及び循環水制御弁4Aを設
け、又蒸発器IBと凝縮器2Bとの間には循環水ポンプ
3B、循環水制御弁4Bを設ける。図示の例では、便宜
上排ガスによるBガスの加熱としたが、ガスは加熱側、
被加熱側とも、気体であれば何であっても差しつかえな
い。またクローズドサイクルは2ユニツトを示したが3
ユニツト以上でもよい。
The separate type heat pipe has evaporators IA and IB, two condensers, and 2B, respectively, and a circulating water pump 3A and a circulating water control valve 4A are provided between the evaporators IA and the two condensers, and A circulating water pump 3B and a circulating water control valve 4B are provided between the evaporator IB and the condenser 2B. In the illustrated example, the B gas is heated by the exhaust gas for convenience, but the gas is heated on the heating side,
On both sides to be heated, any gas may be used. Also, the closed cycle showed 2 units, but 3 units.
It may be more than one unit.

蒸発器IA、IBには蒸発器水面レベル発信器5A及び
5Bが設けられ、これらの出力は蒸発器水面レベル設定
器6A、6Bの出力とともに蒸発器水面レベル偏差調節
計7A、7Bに接続され、これらの出力は加算器8A、
8Bにそれぞれ接続される。
Evaporators IA and IB are provided with evaporator water level transmitters 5A and 5B, the outputs of which are connected to evaporator water level deviation controllers 7A and 7B together with the outputs of evaporator water level setters 6A and 6B, These outputs are sent to adder 8A,
8B respectively.

被加熱側ヒートパイプの上流にはBガス温度発信器9及
びBガス流量発振器10が設けられ、加熱側ヒートパイ
プの上流側にも排ガス温度発信器11及び排ガス流量発
信器12が設けられている。
A B gas temperature transmitter 9 and a B gas flow rate oscillator 10 are provided upstream of the heated side heat pipe, and an exhaust gas temperature transmitter 11 and an exhaust gas flow rate transmitter 12 are also provided upstream of the heating side heat pipe. .

これら発信器の各出力は、ヒートパイプシステムに要求
されている熱交換量を算出する関数13に接続されてい
る。図示の例では発信器9.1o、11.12の4つの
出力信号を用いているが、熱交換量を算出できる信号で
あれば、これに限定されるものではない。例えば、ボイ
ラプラントに適用される場合は、熱交換量はボイラ負荷
と排ガス温度、とより算出することができる。関数13
の出力は各ユニットに対する基準流量を算出する関数1
4A及び14Bに接続され、これらの出力は加算器8A
The output of each of these transmitters is connected to a function 13 that calculates the amount of heat exchange required of the heat pipe system. In the illustrated example, four output signals from the transmitters 9.1o and 11.12 are used, but the present invention is not limited to this as long as the signals can calculate the amount of heat exchange. For example, when applied to a boiler plant, the heat exchange amount can be calculated from the boiler load and exhaust gas temperature. Function 13
The output of is the function 1 that calculates the reference flow rate for each unit.
4A and 14B, these outputs are connected to adder 8A
.

8Bにそれぞれ接続される。8B respectively.

作用 システムに要求される熱交換量はシステムの外部条件、
すなわちBガス温度発信器9、Bガス流量発信器10、
排ガス温度発信器11、排ガス流量発信器12の信号よ
シ関数13を用いて算出される。その関数13からの信
号を用いて各ユニットに対する基準流量を関数14A及
び14Bにて設定する。この基準流量は、各ユニットが
制御性の悪い領域で運用されたり、負圧運転とならない
ように決定される。各ユニットに最適な基準流量のそれ
ぞれは加算器8A及び8Bにて、微調整用フィードバッ
ク信号である蒸発器水面レベル偏差調節計7A、7Bか
らの信号と加算される。加算信号によシ循環水制御弁4
A、4Bの開度が操作される。
The amount of heat exchange required for the working system depends on the external conditions of the system,
That is, the B gas temperature transmitter 9, the B gas flow rate transmitter 10,
It is calculated using the signals of the exhaust gas temperature transmitter 11 and the exhaust gas flow rate transmitter 12 and the function 13. Using the signal from the function 13, the reference flow rate for each unit is set by functions 14A and 14B. This reference flow rate is determined to prevent each unit from operating in a region with poor controllability or from operating under negative pressure. The optimal reference flow rates for each unit are added by adders 8A and 8B to signals from the evaporator water level deviation controllers 7A and 7B, which are feedback signals for fine adjustment. Circulating water control valve 4 according to the addition signal
The opening degrees of A and 4B are operated.

なお、本例では、レベル一定制御の例を上げたが、出口
排ガス温度制御の場合も同様である。
In this example, an example of constant level control is given, but the same applies to outlet exhaust gas temperature control.

発明の効果 複数の熱交換ユニットを含むセパレート型ヒートパイプ
システムでは、バランス点が複数個存在するため、従来
のように、各ユニットが個別に動作スるシステムでは、
ユニットによっては制御性が悪かったり、負圧運転され
ていたが、本発明によれば、各ユニットのバランス点を
運転上都合の良いところにそれぞれ限定することができ
るので、上記のような欠点を解消することができる。
Effects of the Invention In a separate heat pipe system including multiple heat exchange units, there are multiple balance points, so in a conventional system where each unit operates individually,
Some units had poor controllability or were operated under negative pressure, but according to the present invention, the balance point of each unit can be limited to a convenient point for operation, so the above drawbacks can be overcome. It can be resolved.

また、必要熱交換量はシステム外部条件よシ算出してい
るため、先行的に運用条件を変えることにもなシ、制御
の連応性も著しく改善される。
Furthermore, since the required heat exchange amount is calculated based on the system external conditions, there is no need to change operating conditions in advance, and control coordination is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による制御装置の系統をセパレート型ヒー
トパイプの構成とともに示した図である。 IA、IB・・蒸発器、2A、2Bφ・凝縮器、3A、
3Bφ・循環水ポンプ、4A、4B・・循環水制御ポン
プ、5A、5B−一蒸発器水面レベル発信器、6A、6
B・・蒸発器水面レベル設定器、7A。 7B・・蒸発器水面レベル偏差調節計、8A、8B・・
加算器、9・・Bガス温度発信器、IO・・Bガス流量
発信器、11・・排ガス温度発信器、12・・排ガス流
量発信器、13 、14A、 14B −−(ほか1名
The drawing is a diagram showing a system of a control device according to the present invention together with a configuration of a separate heat pipe. IA, IB・Evaporator, 2A, 2Bφ・Condenser, 3A,
3Bφ・Circulating water pump, 4A, 4B・・Circulating water control pump, 5A, 5B-Evaporator water level transmitter, 6A, 6
B...Evaporator water level setting device, 7A. 7B...Evaporator water level deviation controller, 8A, 8B...
Adder, 9...B gas temperature transmitter, IO...B gas flow rate transmitter, 11...Exhaust gas temperature transmitter, 12...Exhaust gas flow rate transmitter, 13, 14A, 14B -- (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 分離されたヒートパイプの間に複数の熱交換ユニツトを
設け、各ユニツトは蒸発器、凝縮器、循環水ポンプ及び
循環水流量制御弁で構成されてその循環水流量制御弁を
各ユニツトで個別に制御してなる制御装置において、各
ユニツトによつて熱交換すべき総量をシステム外部条件
より算出する手段と、算出された熱交換量を各ユニツト
の最適運用条件に応じて配分して各ユニツトにおける循
環水流量制御弁の制御系をそれぞれ調節する手段とを備
えてなるセパレート型ヒートパイプの制御装置。
A plurality of heat exchange units are installed between the separated heat pipes, and each unit is composed of an evaporator, a condenser, a circulating water pump, and a circulating water flow rate control valve. In the control device that performs the A separate type heat pipe control device comprising means for adjusting the control system of each circulating water flow rate control valve.
JP60095232A 1985-05-02 1985-05-02 Control unit of separate type heat pipe Granted JPS61252493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60095232A JPS61252493A (en) 1985-05-02 1985-05-02 Control unit of separate type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60095232A JPS61252493A (en) 1985-05-02 1985-05-02 Control unit of separate type heat pipe

Publications (2)

Publication Number Publication Date
JPS61252493A true JPS61252493A (en) 1986-11-10
JPH0465317B2 JPH0465317B2 (en) 1992-10-19

Family

ID=14132014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60095232A Granted JPS61252493A (en) 1985-05-02 1985-05-02 Control unit of separate type heat pipe

Country Status (1)

Country Link
JP (1) JPS61252493A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275852A (en) * 1988-09-12 1990-03-15 Tokyo Electric Power Co Inc:The hot water generator
US5607011A (en) * 1991-01-25 1997-03-04 Abdelmalek; Fawzy T. Reverse heat exchanging system for boiler flue gas condensing and combustion air preheating
JP2009216262A (en) * 2008-03-07 2009-09-24 Toyota Industries Corp Ebullient cooling device and cooling method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606985U (en) * 1983-06-22 1985-01-18 バブコツク日立株式会社 Forced circulation heat exchange equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606985B2 (en) * 1982-02-03 1985-02-21 大阪瓦斯株式会社 How to keep carbon monoxide converter warm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606985U (en) * 1983-06-22 1985-01-18 バブコツク日立株式会社 Forced circulation heat exchange equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275852A (en) * 1988-09-12 1990-03-15 Tokyo Electric Power Co Inc:The hot water generator
US5607011A (en) * 1991-01-25 1997-03-04 Abdelmalek; Fawzy T. Reverse heat exchanging system for boiler flue gas condensing and combustion air preheating
JP2009216262A (en) * 2008-03-07 2009-09-24 Toyota Industries Corp Ebullient cooling device and cooling method

Also Published As

Publication number Publication date
JPH0465317B2 (en) 1992-10-19

Similar Documents

Publication Publication Date Title
US5916251A (en) Steam flow regulation in an absorption chiller
JPS61252493A (en) Control unit of separate type heat pipe
CN107560471A (en) A kind of high efficient heat exchanging system of adjustable concurrent-countercurrent mode
CN207438834U (en) A kind of subscriber access system for regional cooling and heating system
JPS61152916A (en) Binary cycle power generation plant
CN210050872U (en) Workshop heating energy-saving system of silicon steel normalizing production line
US11454412B2 (en) HVAC system and control method thereof
JPS5733749A (en) Temperature control system of hot water heater
JPS5733750A (en) Temperature control system of hot water heater
JP2691454B2 (en) Temperature control device
JPS63117125A (en) Exhaust gas straightening device for gas turbine
JPH0435680B2 (en)
JPS6215662Y2 (en)
CZ294560B6 (en) Method of extending power control range of a stationary oxidation fluidized bed boiler and a boiler for making the same
JP2703050B2 (en) Water wall temperature controller
SU1328657A1 (en) Method of controlling gas-liquid surface heat-exchanger
JPS6235011B2 (en)
SU1121537A1 (en) Boiler unit
JPH0410361B2 (en)
JPH02197779A (en) Temperature automatic control method for cooling device
CN115574372A (en) Double-partition large-temperature-difference two-network water supply temperature self-control method and heat exchange device
SU732630A1 (en) Method for automatically controlling air temperature at the output of air heater
SU1086299A1 (en) Injection vapour cooler
JPH01273936A (en) Hot water heating and cooling equipment for combined heat and power plants
JPH02122125A (en) Hot water heating device