[go: up one dir, main page]

JPS61252053A - Device for detecting abnormality of perforating tool - Google Patents

Device for detecting abnormality of perforating tool

Info

Publication number
JPS61252053A
JPS61252053A JP60092005A JP9200585A JPS61252053A JP S61252053 A JPS61252053 A JP S61252053A JP 60092005 A JP60092005 A JP 60092005A JP 9200585 A JP9200585 A JP 9200585A JP S61252053 A JPS61252053 A JP S61252053A
Authority
JP
Japan
Prior art keywords
standard deviation
load
drill
machining
load data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60092005A
Other languages
Japanese (ja)
Inventor
Yukio Munenaga
宗永 幸雄
Yasuhiro Fukumoto
康博 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60092005A priority Critical patent/JPS61252053A/en
Publication of JPS61252053A publication Critical patent/JPS61252053A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0957Detection of tool breakage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To improve accuracy in detecting abnormality in a perforating tool by replacing the width of dispersion of a load data with a standard deviation, based on load data in plural number of machinings. CONSTITUTION:A load applied to a drill is detected from the value of a current of main shaft of a drill driving motor by a load detecting means 1, and inputted into a microcomputer 3 via an A/D converter 2. A load data at the rear stage, particularly at the closing stage of machining of a workpiece in which dispersion occurs conspicuously, is inputted in this microcomputer 3, and a standard deviation is obtained from the load data of the defined number of times, and the abnormality, particularly the life, of a drill is detected based on a comparison between the obtained standard deviation and a reference standard deviation. Since the dispersion width sigmab of the loads of a drill with larger number of times of machining is greater than the dispersion width sigmaa of loads with smaller number of times of machining, the life of a drill can be accurately detected by comparing the dispersion widths with a standard deviation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ワークに所定の穴を穿設する、穴明工具の異
常検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an abnormality detection device for a drilling tool for drilling a predetermined hole in a workpiece.

(従来技術) 所定のプログラムに従って、ワークに対し、反復的に穿
設する工作機械にあっては、穴明工具の異常、特に穴明
加工具の寿命を精度良く検知することが必要とされる。
(Prior art) For machine tools that repeatedly drill into workpieces according to a predetermined program, it is necessary to accurately detect abnormalities in the drilling tool, especially the life of the drilling tool. .

従来、この種の装置としては、特開昭58−19695
4号公報に見られるように、ワーク加工時の工具に加わ
る負荷を検出し、その負荷の最大値が設定基準値より大
であるか否かによって、加工具の異常を検出することと
されていた。
Conventionally, this type of device was disclosed in Japanese Patent Application Laid-open No. 58-19695.
As seen in Publication No. 4, the load applied to the tool during workpiece processing is detected, and abnormalities in the processing tool are detected based on whether the maximum value of the load is greater than a set reference value. Ta.

(発明が解決しようとする問題点) しかし5加工具に加わる負荷は、ワークの硬さのばらつ
き、加工穴の曲がり等の要因で、ワーク毎に大きく異な
るため、工具の異常を精度良く判定し得ないものであっ
た。
(Problem to be solved by the invention) However, the load applied to the 5 processing tools varies greatly depending on the workpiece due to factors such as variations in workpiece hardness and bending of the machined hole, so tool abnormalities cannot be accurately determined. It was something I couldn't get.

すなわち、工具の異常を検出するのに用いられるデータ
そのものが、ばらつきを含むため、ある一定の設定基準
値との比較では、どうしても誤判定の問題を回避するこ
とができず、このことがら設定する基準値をどのレベル
に設定するかの判断が難しいという問題を有していた。
In other words, since the data used to detect tool abnormalities itself includes variations, it is impossible to avoid the problem of misjudgment when comparing with a certain set standard value. There was a problem in that it was difficult to determine at what level the reference value should be set.

本発明は、上記の問題点を勘案してなされたもので、そ
の技術的課題とするところは、穴明工具における異常検
出精度を向上するようにした穴明工具の異常検出装置を
提供することにある。
The present invention has been made in consideration of the above problems, and its technical problem is to provide an abnormality detection device for a drilling tool that improves the accuracy of abnormality detection in the drilling tool. It is in.

(問題点を解決するための技術的手段)本発明は、穴明
加工が摩耗するに従って、工具に加わる負荷のばらつき
幅が大きくなることに着目し、この負荷のばらつき幅に
よって穴明加工の異常を判定するようにしたものである
(Technical means for solving the problem) The present invention focuses on the fact that as the drilling process wears out, the variation in the load applied to the tool increases. It is designed to determine.

すなわち、ワーク加工時の穴明加工に加わる負荷を検出
する負荷検出手段と、該負荷検出手段からの負荷信号を
受け、該負荷信号のうち穴明加工毎の代表負荷データを
記憶するデータ記憶手段と、所定の過去最新加工回数に
おける代表負荷データから標準偏差を算出する演算手段
と、該演算手段で求められた標準偏差と基準標準偏差と
を比較し、前記標準偏差が基準標準偏差より大であると
きに、異常判定信号を出力する判定手段とを設けること
とし、複数の加工回数における負荷データに基づき、負
荷データのばらつき幅を標準偏差に置換えて、加工具の
異常を検出するように構成したものである。
That is, a load detection means for detecting the load applied to drilling during workpiece processing, and a data storage means for receiving a load signal from the load detection means and storing representative load data for each drilling of the load signal. and a calculation means that calculates a standard deviation from representative load data for a predetermined past latest number of machining operations, and compares the standard deviation obtained by the calculation means with a reference standard deviation, and determines whether the standard deviation is larger than the reference standard deviation. At a certain time, a determination means for outputting an abnormality determination signal is provided, and the apparatus is configured to detect an abnormality in the processing tool by replacing the variation width of the load data with a standard deviation based on the load data obtained at a plurality of machining times. This is what I did.

(実施例) 以下、所定のプログラムに従って、エンジン部品(鋳造
品)に袖穴等の長孔(加工長さが加工径の1.5倍以上
)を、繰り返し穿設する場合を例に、本発明の詳細な説
明する。
(Example) The following is an example of the case where long holes such as sleeve holes (machined length is 1.5 times or more of the machining diameter) are repeatedly drilled in engine parts (castings) according to a predetermined program. Detailed description of the invention.

第1図は実施例の異常検出装置を示すもので、異常検出
装置は、ドリル(図示省略)に加わる負荷を検出する手
段1と、負荷検出手段lからの負荷信号をデジタル信号
に変換するA/D変換器2と、デジタル化された負荷信
号からドリルの異常を判別するマイクロコンピュータ3
とから概略構成されており、負荷検出手段1は、ドリル
駆動モータの主軸電流値から、ドリルに加わる負荷を検
出することとされている。
FIG. 1 shows an abnormality detection device according to an embodiment. The abnormality detection device includes means 1 for detecting a load applied to a drill (not shown), and A for converting a load signal from the load detection means l into a digital signal. /D converter 2 and a microcomputer 3 that determines whether there is an abnormality in the drill from the digitized load signal.
The load detection means 1 is configured to detect the load applied to the drill from the main shaft current value of the drill drive motor.

また、マイクロコンピュータ3には、加工終了直前信号
が入力されるようになっており、この加工終了直前信号
により、負荷検出手段1からのワーク加工終了直前にお
ける負荷信号がマイクロコンピュータ3に取り込まれ、
この加工終了直前の負荷データに基づいて、ドリルの異
常が判断される。
Further, a signal immediately before the end of machining is inputted to the microcomputer 3, and by this signal just before the end of machining, a load signal from the load detection means 1 just before the end of workpiece machining is taken into the microcomputer 3.
Based on this load data immediately before the end of machining, it is determined whether there is an abnormality in the drill.

マイクロコンピュータ3でなされるドリル異常判別につ
いて説明すれば、所定回数の負荷データから標準偏差を
求め、この得られた標準偏差と基準標準偏差との比較に
基づいてドリルの異常、特に寿命の検出がなされる。
To explain the drill abnormality determination performed by the microcomputer 3, the standard deviation is obtained from the load data of a predetermined number of times, and based on the comparison between the obtained standard deviation and the reference standard deviation, the drill abnormality, especially the life span, is detected. It will be done.

ところで、一般に、ドリルの折損直前にあっては、ドリ
ルの摩耗が進行しており、このドリルの摩耗によって、
加工穴の穿設における直進性が失われ、ドリルが曲がり
ながらワーク内に進入するという現象が多発する。この
ことから、ドリルに加わる負荷は、ワーク加工後期、特
に終期に、ばらつきが顕著に表われる。
By the way, just before a drill breaks, it is generally worn out, and due to this drill wear,
There are many cases where the straightness of drilling a machined hole is lost and the drill enters the workpiece while being bent. For this reason, the load applied to the drill varies significantly during the latter stages of workpiece machining, especially at the final stage.

したがって、この特徴的な現象を、具体的なデータとし
て取り入れるべく、前述のように加工終了直前の負荷を
寿命判定の基礎データとし、この負荷データのばらつき
幅でドリルの寿命を判別することしたものである。この
点について詳しく説明すると、第2図中、実線Aは加工
回数の少ないドリルの負荷のばらつき@(σa)を示す
もので、破線Bは加工回数の多いドリルの負荷のばらつ
き幅(σb)を示すものである。この図から明らかなよ
うに、加工回数(使用時間)が増すにつれて、換言すれ
ばドリルが摩耗するにつれて、ばらつき幅が大(σaく
σb)となっていることが理解される。この現象を利用
し、ばらつき幅を標準偏差で比較すれば、個々のデータ
のばらつきに惑わされることなく、ドリル寿命の検出を
正確になしうることとなる。
Therefore, in order to incorporate this characteristic phenomenon into concrete data, we decided to use the load immediately before the end of machining as the basic data for life determination, and to judge the life of the drill based on the variation range of this load data. It is. To explain this point in detail, in Fig. 2, the solid line A shows the load variation @ (σa) for drills with a small number of processing operations, and the broken line B shows the load variation width (σb) of a drill that has a large number of processing operations. It shows. As is clear from this figure, it is understood that as the number of machining operations (time of use) increases, in other words, as the drill wears, the variation width increases (σa + σb). By utilizing this phenomenon and comparing the variation width with the standard deviation, it becomes possible to accurately detect the drill life without being confused by variations in individual data.

このような寿命検出を、第3図に示すフ、ローチャート
に基づいて、具体的に説明する。
Such life detection will be specifically explained based on the flowchart shown in FIG.

先ず、ステップ10においてドリルに加わる負荷、つま
り前述した主軸電流信号の取込みがなされる。ここで、
主軸電流信号の取込みを、加工終了直前のものとすべく
、タイマ(図示省略)により加工開始から所定時間経過
後に主軸電流信号の取込みがなされるようになっている
First, in step 10, the load applied to the drill, that is, the spindle current signal mentioned above, is captured. here,
In order to capture the spindle current signal immediately before the end of machining, a timer (not shown) causes the spindle current signal to be captured after a predetermined period of time has elapsed from the start of machining.

このようにして取込まれた加工路T直前の主軸電流値か
ら、ステップ20で、代表負荷データχの決定、記憶が
なされる。この代表負荷データχの決定は、前述した加
工1回毎の主軸電流値の平均により決定してもよく、あ
るいは最大値をもって代表負荷データχとしてもよい。
In step 20, representative load data χ is determined and stored from the spindle current value just before the machining path T taken in this way. The representative load data χ may be determined by the average of the spindle current values for each machining cycle described above, or the maximum value may be used as the representative load data χ.

そして、ドリルの穴明回数が初回からn回まで至ったと
きに、ステップ30に進み、ステップ30で標準偏差σ
1の算出がなされる。標準偏差σ1は下記の式に基づい
て算出される。
Then, when the number of holes drilled by the drill reaches n times from the first time, the process proceeds to step 30, and in step 30, the standard deviation σ
1 is calculated. The standard deviation σ1 is calculated based on the following formula.

このようにして得られた標準偏差σlに係数kを乗算し
て基準標準偏差σ0の設定なされる(ステップ40)、
ここに係数にはドリルの個体差を補償する補正係数であ
り、実験により得られるものである。尚、上記標準偏差
σ1はドリルの交換毎に算出される。
The reference standard deviation σ0 is set by multiplying the standard deviation σl obtained in this way by a coefficient k (step 40).
The coefficient here is a correction coefficient for compensating for individual differences in drills, and is obtained through experiments. Note that the standard deviation σ1 is calculated every time the drill is replaced.

このようにして設定された基ぺξ標準偏差σ0に対し、
過去最新m凹加工の代表負荷データ(χ)から上述の式
に基づいて算出された標準偏差σ2(ステップ50)と
の比較がなされ(ステップ60)、過去最新m凹加工の
標準偏差σ2が設定基準標準偏差σ0より大であるとき
には、ドリルが寿命状態にあるとして、寿命警報信号が
出力される(ステップ70)。ステップ80に示すリセ
ットは寿命警報信号の解除のために設けられたもので、
ここでは手動式とされている。
For the base ξ standard deviation σ0 set in this way,
A comparison is made with the standard deviation σ2 (step 50) calculated based on the above formula from the representative load data (χ) of the past latest m-concave machining (step 60), and the standard deviation σ2 of the past latest m-concave machining is set. When it is larger than the reference standard deviation σ0, it is determined that the drill is at the end of its life, and a life warning signal is output (step 70). The reset shown in step 80 is provided to cancel the life warning signal.
Here it is said to be manual.

勿論、過去最新m凹加工の代表データχはドリル加工毎
に更新される。このことから、ドリル交換後m回加工の
後は、突発的な事故によっ−で大きく負荷が変動した場
合、必然的に得られる標準偏差も大となり、これにより
ドリルの折損等の異常も検出しうることとなる。
Of course, the representative data χ of the latest m-recess machining in the past is updated for each drilling process. From this, after machining m times after replacing the drill, if the load fluctuates significantly due to a sudden accident, the standard deviation obtained will inevitably become large, and this will also detect abnormalities such as drill breakage. It is possible.

以上一実施例を説明したが、基準標準偏差σ0を予め実
験により求めた実験値を設定するものあっでもよい。ま
たワークの材質等により、ワーク加工初期、あるいは中
期に大きな負荷変動として表われる場合には、そのとき
の負荷を検出し、標準偏差を算出するデータとして使用
しうることは勿論である。(発明の効果) 以上の説明から明らかなように1本発明よれば、複数回
の加工における負荷データに基づいて穴明工具の異常を
検出するため、ワーク加工毎のデータ変動による誤判定
の問題が解消され、またその判別を、データのばらつき
幅、つまり標準偏差により行うことから、異常検出精度
を優れたものとすることができると共に基準値の設定も
容易なものとすることができる。
Although one embodiment has been described above, it is also possible to set the reference standard deviation σ0 to an experimental value obtained through experiments in advance. Furthermore, if large load fluctuations occur in the early or middle stages of machining the workpiece due to the material of the workpiece, the load at that time can of course be detected and used as data for calculating the standard deviation. (Effects of the Invention) As is clear from the above description, according to the present invention, abnormalities in the drilling tool are detected based on load data from multiple machining operations, so there is a problem of misjudgment due to data fluctuations for each workpiece machining process. is eliminated, and since the determination is made based on the data variation range, that is, the standard deviation, the abnormality detection accuracy can be improved and the reference value can be easily set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例にかかる装置の全体構成図、第2図はド
リル摩耗による負荷データのばらつき幅を示す説明図、 第3図はドリル寿命検出のフローチャートである。 l・・・負荷検出手段 3・・・マイクロコンピュータ ステップ20・・・記憶手段 ステップ50争・争演算手段
FIG. 1 is an overall configuration diagram of the apparatus according to the embodiment, FIG. 2 is an explanatory diagram showing the range of variation in load data due to drill wear, and FIG. 3 is a flowchart for detecting drill life. l...Load detection means 3...Microcomputer step 20...Storage means step 50 Conflict/conflict calculation means

Claims (1)

【特許請求の範囲】[Claims] (1)穴明工具に加わる負荷を検出する負荷検出手段と
、 該負荷検出手段からの負荷信号を受け、該負荷信号のう
ち穴明加工毎の代表負荷データを記憶するデータ記憶手
段と、 所定の過去最新加工回数における代表負荷データから標
準偏差を算出する演算手段と、 該演算手段で求められた標準偏差と基準標準偏差とを比
較し、前記標準偏差が基準標準偏差より大であるときに
、異常判定信号を出力する異常判定手段と、 を備えていることを特徴とする穴明工具の異常検出装置
(1) Load detection means for detecting a load applied to a drilling tool; Data storage means for receiving a load signal from the load detection means and storing representative load data for each drilling process among the load signals; A calculation means for calculating a standard deviation from representative load data for the past latest number of machining times, and a comparison between the standard deviation obtained by the calculation means and a reference standard deviation, and when the standard deviation is larger than the reference standard deviation, An abnormality detection device for a drilling tool, comprising: an abnormality determination means for outputting an abnormality determination signal;
JP60092005A 1985-04-29 1985-04-29 Device for detecting abnormality of perforating tool Pending JPS61252053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092005A JPS61252053A (en) 1985-04-29 1985-04-29 Device for detecting abnormality of perforating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092005A JPS61252053A (en) 1985-04-29 1985-04-29 Device for detecting abnormality of perforating tool

Publications (1)

Publication Number Publication Date
JPS61252053A true JPS61252053A (en) 1986-11-10

Family

ID=14042328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092005A Pending JPS61252053A (en) 1985-04-29 1985-04-29 Device for detecting abnormality of perforating tool

Country Status (1)

Country Link
JP (1) JPS61252053A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337790A (en) * 1992-06-01 1993-12-21 Ntn Corp Tool failure sensing device
JP2011020221A (en) * 2009-07-16 2011-02-03 Honda Motor Co Ltd Method for predicting life of rotary blade device
CN109277882A (en) * 2018-09-25 2019-01-29 江苏西格数据科技有限公司 A kind of machine tool monitoring system
JP2019030954A (en) * 2017-08-07 2019-02-28 Dmg森精機株式会社 Machine tool and method for calculating the degree of tool wear
WO2025027864A1 (en) * 2023-08-03 2025-02-06 ファナック株式会社 Threshold value calculation device and computer-readable storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337790A (en) * 1992-06-01 1993-12-21 Ntn Corp Tool failure sensing device
JP2011020221A (en) * 2009-07-16 2011-02-03 Honda Motor Co Ltd Method for predicting life of rotary blade device
JP2019030954A (en) * 2017-08-07 2019-02-28 Dmg森精機株式会社 Machine tool and method for calculating the degree of tool wear
CN109277882A (en) * 2018-09-25 2019-01-29 江苏西格数据科技有限公司 A kind of machine tool monitoring system
WO2025027864A1 (en) * 2023-08-03 2025-02-06 ファナック株式会社 Threshold value calculation device and computer-readable storage medium

Similar Documents

Publication Publication Date Title
EP1407853B1 (en) Apparatus for detecting or predicting tool breakage
US6937942B2 (en) Method and apparatus of detecting tool abnormality in a machine tool
US5243533A (en) Tool abnormality detecting device
JP3446518B2 (en) Rotary tool abnormality detection method and device
JPS61252053A (en) Device for detecting abnormality of perforating tool
JPH03294149A (en) Tool abnormality detecting device
JPS61252052A (en) Device for detecting abnormality of perforating tool
US6859680B2 (en) Numerical controlling unit having tool-breakage detecting function
JP2748889B2 (en) Tool wear compensation device
JPH0661676B2 (en) Life detection device for drilling tools
JPH02256448A (en) Abnormality detecting device for cutter tool in machine tool
JP2001277075A (en) Load detecting method and device for cutting tool in machine tool
US20210197331A1 (en) Machine tool and tool changing method
CN113751744A (en) Machining method for machine tool
JP3166430B2 (en) Monitoring method of cutting load and monitoring method of loader load
JPS61182574A (en) Foreknowing device for tool breakage
JPH0620652B2 (en) Drilling load monitoring system for numerically controlled machine tools
JP3105537B2 (en) Abnormality prediction device and method for rotary tool
JPH0313028B2 (en)
JP2025072184A (en) Machining abnormality detection method and machining abnormality detection device
JPS61142053A (en) Tool breakage detection device
JPH0616981B2 (en) Tool loss detector
JPS61131855A (en) Drill breakage detecting apparatus
JP2025015081A (en) Abnormality detection device and abnormality detection method of cutting tool
JP2021079486A (en) Method and device for detecting sign of breakage of drill, and program