JPS61250049A - Antifouling gelatinous composition - Google Patents
Antifouling gelatinous compositionInfo
- Publication number
- JPS61250049A JPS61250049A JP9157185A JP9157185A JPS61250049A JP S61250049 A JPS61250049 A JP S61250049A JP 9157185 A JP9157185 A JP 9157185A JP 9157185 A JP9157185 A JP 9157185A JP S61250049 A JPS61250049 A JP S61250049A
- Authority
- JP
- Japan
- Prior art keywords
- water
- gel
- elastomer
- antifouling
- teleblock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 26
- 230000003373 anti-fouling effect Effects 0.000 title claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229920001971 elastomer Polymers 0.000 claims abstract description 38
- 239000000806 elastomer Substances 0.000 claims abstract description 37
- 239000000839 emulsion Substances 0.000 claims abstract description 24
- 239000003995 emulsifying agent Substances 0.000 claims abstract description 18
- 239000002612 dispersion medium Substances 0.000 claims abstract description 13
- 229920001577 copolymer Polymers 0.000 claims abstract description 7
- 238000001879 gelation Methods 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 239000003921 oil Substances 0.000 abstract description 27
- 229920000642 polymer Polymers 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 7
- -1 vinyl compound Chemical class 0.000 abstract description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 abstract description 4
- 239000010721 machine oil Substances 0.000 abstract description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004945 emulsification Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000002736 nonionic surfactant Substances 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 abstract description 3
- 229920005570 flexible polymer Polymers 0.000 abstract 1
- 230000007774 longterm Effects 0.000 abstract 1
- 229920002554 vinyl polymer Polymers 0.000 abstract 1
- 239000000499 gel Substances 0.000 description 48
- 239000000017 hydrogel Substances 0.000 description 15
- 231100000614 poison Toxicity 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000003973 paint Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000003440 toxic substance Substances 0.000 description 8
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 7
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000007096 poisonous effect Effects 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 241000195493 Cryptophyta Species 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 235000015170 shellfish Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000004073 vulcanization Methods 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- 229920004939 Cariflex™ Polymers 0.000 description 2
- 241000238586 Cirripedia Species 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000002519 antifouling agent Substances 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- 229940112669 cuprous oxide Drugs 0.000 description 2
- 239000010727 cylinder oil Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 241000270298 Boidae Species 0.000 description 1
- 241000700670 Bryozoa Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- QECQLMGRLZYSEW-UHFFFAOYSA-N decoxybenzene Chemical compound CCCCCCCCCCOC1=CC=CC=C1 QECQLMGRLZYSEW-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- WBZKQQHYRPRKNJ-UHFFFAOYSA-L disulfite Chemical compound [O-]S(=O)S([O-])(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-L 0.000 description 1
- 230000009982 effect on human Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001418 larval effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- GSGDTSDELPUTKU-UHFFFAOYSA-N nonoxybenzene Chemical compound CCCCCCCCCOC1=CC=CC=C1 GSGDTSDELPUTKU-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229950006451 sorbitan laurate Drugs 0.000 description 1
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、船舶等の水没部分に応用して藻類、フジッ
ボ類、貝類等の水中生物の付着成長を防止する防汚性ゲ
ル状組成物に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention provides an antifouling gel composition that is applied to submerged parts of ships and the like to prevent the adhesion and growth of aquatic organisms such as algae, barnacles, and shellfish. It is related to.
ヨツト、ボート、貨物船、漁船等の船舶や灯浮標、ブイ
、石油備蓄構造物等の海洋・海底構造物ならびに魚網、
タコツボのような漁獲用具等については、その水没部分
に藻類、フジッボ類、こけむし類、貝類等の水中生物が
付着成長し、各種の弊害をもたらしている。例えば、海
洋構造物では水中生物の付着成長により構造物自体の腐
食が始まったり、付設管類中での水中生物の成長により
管類が詰まったりする。また、船舶では、上記水中生物
の船底等への付着により船体の重量が増加するとともに
、水に対する抵抗が増加するため、航行速力の低減を招
来し、燃料費が増大するというような問題が生じている
。さらに、魚網等の漁獲用具については長期間水中に浸
漬しておくと、上記水中生物が付着成長し、魚網の網目
が詰まったりして魚類の大量死等の被害を生ずるという
ような問題が生じている。Ships such as yachts, boats, cargo ships, fishing boats, marine and undersea structures such as light buoys, buoys, oil storage structures, and fishing nets;
Regarding fishing equipment such as octopus, aquatic organisms such as algae, barnacles, bryozoans, and shellfish grow attached to the submerged parts of the equipment, causing various harmful effects. For example, in marine structures, the structure itself begins to corrode due to attached growth of aquatic organisms, and the attached pipes become clogged due to growth of aquatic organisms in attached pipes. In addition, in ships, the weight of the ship increases due to the attachment of the above-mentioned aquatic organisms to the bottom of the ship, and the resistance to water increases, resulting in a reduction in sailing speed and problems such as increased fuel costs. ing. Furthermore, if fishing equipment such as fishing nets is left immersed in water for a long period of time, the above-mentioned aquatic organisms will attach and grow, clogging the mesh of the fishing net and causing damage such as mass mortality of fish. ing.
このような水中生物の付着成長による各種の弊害を防止
するため、従来から、上記船舶、海洋・海底構造物等の
水没部分に塗料を塗装し、その塗料中に毒物を混入する
ということを中心に各種の提案がなされている。例えば
、亜酸化銅、有機錫系化合物等の毒物を合成樹脂、ロジ
ン等を主成分とする塗料に混合して、防汚塗料を作り、
これを上記水没部分に塗装するということが提案されて
いる。また、その塗料の防汚性を長期間保持させるため
にその防汚塗料の塗装面上にプラスチックシートや水不
溶性親水性樹脂等の皮膜を設けたりして上記塗装面を被
覆するという提案もなされている(特開昭49−606
0号参照)。In order to prevent various harmful effects caused by the adhesion and growth of aquatic organisms, the conventional method has been to apply paint to the submerged parts of the above-mentioned ships, marine/undersea structures, etc., and to mix poisonous substances into the paint. Various proposals have been made. For example, antifouling paints are made by mixing toxic substances such as cuprous oxide and organic tin compounds with paints whose main components are synthetic resins and rosin.
It has been proposed to paint this on the submerged areas. In addition, in order to maintain the antifouling properties of the paint for a long period of time, proposals have also been made to cover the painted surface with a plastic sheet or a film made of water-insoluble hydrophilic resin. (Unexamined Japanese Patent Publication No. 49-606
(See No. 0).
また最近では、有機錫系化合物を高分子重合体と結合し
、これを防汚塗料の成分とすることにより上記高分子重
合体を加水分解させて徐々に有機錫系化合物を溶出させ
、防汚効果を延長させる試みもなされている。Recently, organotin-based compounds have been combined with high-molecular polymers and used as a component of antifouling paints.The high-molecular polymers are hydrolyzed and the organic tin-based compounds are gradually eluted. Attempts have also been made to prolong the effect.
このように従来の提案法は、毒物を防汚塗料等の中に含
有させるということを中心に行われており、その毒物に
よって水中生物、特に海中生物が船舶等の水没部分に付
着することを防止するものである。しかしながら、この
ように塗料中に毒物を含有させることは単に水中生物の
付着防止をすることのみにとどまらず、水中に溶出する
毒物によって海水等の水の汚染が生じるという大きな問
題が生じる。特にこのような毒物による水中汚染は、そ
の水中に生息する魚類や貝類等に悪影響をもたらし、著
しい場合には、その死滅をもたらす可能性もあり、場合
によっては、そのような毒物等で汚染された魚類等を摂
取した人間等にも悪影響をおよぼすのである。In this way, conventionally proposed methods have focused on incorporating toxic substances into antifouling paints, etc., to prevent aquatic organisms, especially marine organisms, from adhering to submerged parts of ships, etc. It is intended to prevent However, the inclusion of poisonous substances in the paint is not only for preventing the adhesion of aquatic organisms, but also poses a serious problem in that the poisonous substances eluted into the water cause contamination of water such as seawater. In particular, water contamination with such toxic substances has a negative impact on fish and shellfish living in the water, and in severe cases, it may even lead to their death. It also has an adverse effect on humans who ingest the fish.
また、上記の各種の提案法は、すでに述べたように毒物
を徐々に水中に溶出させて水中生物の付着防止(防汚)
を図るため、毒物が溶出しつくされてしまえば、水中生
物に対する防汚効果がなくなり、再び水中生物の付着成
長が始まるようになる。したがって、防汚性を持続させ
るためには、再施工を行うことが必要となり、これには
莫大な経費がかかる。In addition, as mentioned above, the various proposed methods described above gradually elute toxic substances into water to prevent attachment of aquatic organisms (antifouling).
Therefore, once the toxic substances are eluted and exhausted, the antifouling effect on aquatic organisms disappears, and aquatic organisms begin to attach and grow again. Therefore, in order to maintain the antifouling property, it is necessary to perform re-application, which requires a huge amount of expense.
このように経費の面から、また毒物による海水汚染を防
汚するという点から、毒物を使用しないで水中生物の付
着成長を防止する方法の提供が強く要望されている。As described above, there is a strong demand for a method for preventing the attachment and growth of aquatic organisms without using poisonous substances from the viewpoint of cost and prevention of seawater contamination caused by poisonous substances.
この発明はこのような事情に鑑みなされたもので、毒物
によって水中汚染することなく長期間に渡って水中生物
の付着防止効果を発現しうる防汚性ゲル状組成物の提供
をその目的とするものである。The present invention was made in view of the above circumstances, and its purpose is to provide an antifouling gel composition that can prevent the adhesion of aquatic organisms over a long period of time without contaminating the water with toxic substances. It is something.
上記の目的を達成するため、この発明の防汚性ゲル状組
成物は、A−B−A型のテレブロック共重合体エラスト
マーおよび油成分からなる分散媒と、乳化剤により水を
細粒化してなる水分散相とを備え、分散媒と水分散相と
の相互の割合(水分散相)/(分散媒)が重量基準で8
5/15〜5/95に設定されているW/O型エマルジ
ョンの冷却ゲル化によって構成され、ゲル構造において
、上記水分散相が粒子状に分散された状態で保持されて
いるという構成をとる。In order to achieve the above object, the antifouling gel composition of the present invention is produced by using a dispersion medium consisting of an A-B-A type teleblock copolymer elastomer and an oil component, and an emulsifier to make water into fine particles. The mutual ratio of the dispersion medium and the aqueous dispersed phase (water dispersed phase)/(dispersion medium) is 8 on a weight basis.
It is constructed by cooling and gelling a W/O emulsion set from 5/15 to 5/95, and the gel structure has a structure in which the water dispersed phase is held in a dispersed state in the form of particles. .
本発明者らは、毒物を用いないで水中生物の付着成長を
防止する方法を解決するため、まず、水中生物の付着成
長機構について研究を重ねた。その結果、上記水中生物
が船舶等の水没部分に付着する場合には、まず、水中生
物の幼生体、例えばフジッボであればシブリス、藻類で
あればその・種子等が水没部分に付着しそこから成長し
ていくことを見い出した。したがって、このような水中
生物の幼生体の付着を防止することができれば、上記の
ような各種の弊害を除くことができる。そこで、本発明
者らは、そのような幼生体の付着防止についてさらに研
究を重ねた結果、上記幼生体は固定面に対して容易に付
着するがL物理的不安定面については、付着が困難であ
り、特に上記物理的不安定面を応力分散能力に優れたゲ
ル状組成物で構成すると顕著な効果が得られることを見
い出し、この発明に到達したのである。In order to find a method for preventing the attached growth of aquatic organisms without using poisonous substances, the present inventors first conducted repeated research on the attached growth mechanism of aquatic organisms. As a result, when the above-mentioned aquatic organisms attach to the submerged parts of ships, etc., first, the larvae of the aquatic organisms, such as the larvae of Fujibbo and the seeds of algae, attach to the submerged part and then move from there. I discovered that I can grow. Therefore, if the adhesion of such larvae of aquatic organisms can be prevented, the various adverse effects described above can be eliminated. As a result of further research on preventing the adhesion of such larvae, the present inventors found that the larvae easily adhere to fixed surfaces, but have difficulty adhering to physically unstable surfaces. In particular, the inventors have discovered that remarkable effects can be obtained by constructing the physically unstable surface with a gel-like composition having excellent stress dispersion ability, and have thus arrived at the present invention.
この発明の防汚性ゲル状組成物は、ゲル構造において、
水分散相が、連続状ではなく、粒子状に分散された状態
で保持されており、外力を加えると容易に変形するが、
この変形に際し、ゲル中に分散状態で含まれる水が応力
を吸収ないし分散させる働きをし、外力を排除するとそ
の変形が徐々に回復して原形に戻るという応力分散特性
を有している。したがって、水中生物の幼虫体が付着1
7ようとしても応力分散能力にもとづく物理的不安定面
およびゲル表面の油状物質の作用により、付着できない
のである。また、この防汚性ゲル状組成物では、乳化剤
の作用により水粒子が安定になっているため室温で長期
間放置しても減量は僅少である。そのうえ、−20℃程
度の低温下でも凍結せず、柔軟性を保持し、優れた防汚
性を発現する。この防汚性ゲル状組成物は、テレブロッ
ク共重合体エラストマーと油成分の種類、使用量、水含
有率等によって非常に柔軟なゲルから比較的強靭なゲル
まで広範囲に調整可能である。上記のような防汚性ゲル
状組成物は、例えば、A−B−A型のテレブロック共重
合体エラストマーおよび適宜の添加剤を過剰量の油成分
に加熱化で溶解したのち、この溶解系に乳化剤を添加し
、さらに水を徐々に滴下し乳化してW/O型エマルジョ
ンを生成させ、これを冷却し、水をエマルジョン粒子状
に包含した含水ゲルとすることにより得ることができる
。In the gel structure of the antifouling gel composition of the present invention,
The aqueous dispersed phase is not kept in a continuous state but in a particulate dispersed state, and is easily deformed when external force is applied.
During this deformation, the water contained in the gel in a dispersed state acts to absorb or disperse stress, and when the external force is removed, the gel has stress dispersion properties such that the deformation gradually recovers and returns to its original shape. Therefore, the larval bodies of aquatic organisms attach 1
Even if one tries to do so, due to the physical instability caused by the stress dispersion ability and the action of the oily substance on the gel surface, adhesion is not possible. In addition, in this antifouling gel composition, the water particles are stabilized by the action of the emulsifier, so even if it is left at room temperature for a long period of time, the weight loss is minimal. Moreover, it does not freeze even at low temperatures of about -20°C, maintains flexibility, and exhibits excellent stain resistance. This antifouling gel composition can be adjusted over a wide range from a very flexible gel to a relatively tough gel depending on the type, amount, water content, etc. of the teleblock copolymer elastomer and oil component. The above-mentioned antifouling gel composition can be prepared, for example, by dissolving an A-B-A type teleblock copolymer elastomer and appropriate additives in an excess amount of an oil component by heating, and then dissolving this dissolved system. It can be obtained by adding an emulsifier to the mixture, and then gradually adding water to emulsify the mixture to form a W/O emulsion, which is then cooled to form a water-containing gel containing water in the form of emulsion particles.
上記A−B−A型のテレブロック共重合体エラストマー
(以下[テレブロックエラストマー」と略す)は、硬質
重合体Aと軟質重合体BとからなるA−B−A型構造の
エラストマーであり、Aブロックは例えば、スチレン、
メチルスチレン等のビニル化合物の硬質重合体で、その
ガラス転移温度が70℃以上のものであって、約/O0
0〜1oooooの平均分子量を有する重合体が有効で
ある。Bブロックは例えば、ブタジェン、イソプレン等
の共役ジエン化合物の軟質重合体で、そのガラス転移温
度が一50〜30℃の範囲内のものであって、約450
0〜/O00000の範囲の平均分子量を有する重合体
が有効である。The above A-B-A type teleblock copolymer elastomer (hereinafter abbreviated as [teleblock elastomer]) is an elastomer with an A-B-A type structure consisting of a hard polymer A and a soft polymer B, For example, the A block is styrene,
A hard polymer of vinyl compounds such as methylstyrene, whose glass transition temperature is 70°C or higher, and about /O0
Polymers having an average molecular weight of 0 to 1 ooooo are effective. The B block is, for example, a soft polymer of a conjugated diene compound such as butadiene or isoprene, and its glass transition temperature is within the range of 150 to 30°C, and is approximately 450°C.
Polymers having an average molecular weight in the range 0 to /O00000 are useful.
上記テレブロックエラストマーの末端Aブロックは、テ
レブロックエラストマーの大体15〜65重景%(以下
「%」と略す)からなるものである。The terminal A block of the teleblock elastomer consists of approximately 15 to 65 weight percent (hereinafter abbreviated as "%") of the teleblock elastomer.
上記テレブロックエラストマーとともに、分散媒を形成
する油成分としては、テレブロックエラストマーのBブ
ロックと相溶性を有し、Aブロックと非相溶性の室温で
液状の油状物質、例えばマシン油、シリンダー油、トラ
ンス油、ロジン油あるいは各種の流動パラフィン等があ
げられる。これらは単独で用いてもよいし、併せて用い
てもよい。なお、上記油状物質に融点120℃以下のパ
ラフィンワックス、融点150℃以下のワックス状の低
分子量ポリエチレン等、加熱により油状形態を示す物質
を添加した混合物もこの発明の油成分として用いること
ができる。The oil component that forms the dispersion medium together with the Teleblock elastomer includes oily substances that are liquid at room temperature and are compatible with the B block of the Teleblock elastomer and incompatible with the A block, such as machine oil, cylinder oil, Examples include transformer oil, rosin oil, and various liquid paraffins. These may be used alone or in combination. Note that a mixture in which a substance that becomes oily when heated, such as paraffin wax with a melting point of 120° C. or less or waxy low molecular weight polyethylene with a melting point of 150° C. or less, is added to the above oily substance can also be used as the oil component of the present invention.
上記油成分の使用量は、上記テレブロックエラストマー
5〜30重量部(以下「部」と略す)に対して/O0部
の範囲が含水ゲルの分散媒を形成するのに有効であり、
テレブロックエラストマーの使用量は主として最終含水
ゲル製品の含水量とその得るべき柔軟度の関係によって
決定される。The amount of the oil component to be used is within the range of /O0 parts based on 5 to 30 parts by weight (hereinafter abbreviated as "parts") of the teleblock elastomer, which is effective for forming a dispersion medium of the hydrogel.
The amount of teleblock elastomer used is determined primarily by the relationship between the water content of the final hydrogel product and its desired flexibility.
なお、最終含水ゲルの強靭性を増すために、必要ならば
テレブロックエラストマーに有効な架橋剤を併用しても
よい。この場合、使用し得る架橋剤としては、一般のゴ
ム類の加硫に用いられる加硫剤および加硫促進剤が有効
であり、例えば、過酸化ベンゾイル等の過酸化物、硫黄
、テトラメチルチウラムジサルファイト等である。加硫
剤および加硫促進剤の使用量は、テレブロックエラスト
マー/O0部に対して、0.01〜2部が適当であり、
最適使用量は最終含水ゲルの強靭性と柔軟性の関係から
決定される。さらに、テレブロックエラストマーあるい
は油成分に対して、熱劣化、酸化劣化、光劣化等を防ぐ
ための老化防止剤、酸化防止剤あるいは補強用充填剤9
着色用顔料もしくは染料等を添加することができる。In addition, in order to increase the toughness of the final hydrogel, a crosslinking agent effective for the teleblock elastomer may be used in combination, if necessary. In this case, the crosslinking agents that can be used are effective vulcanizing agents and vulcanization accelerators that are used for the vulcanization of general rubbers, such as peroxides such as benzoyl peroxide, sulfur, and tetramethylthiuram. Disulfite, etc. The appropriate amount of the vulcanizing agent and vulcanization accelerator to be used is 0.01 to 2 parts based on 0 parts of Teleblock elastomer/O.
The optimum amount to be used is determined based on the relationship between the toughness and flexibility of the final hydrogel. Furthermore, anti-aging agents, antioxidants, or reinforcing fillers 9 are added to the teleblock elastomer or oil component to prevent thermal deterioration, oxidative deterioration, photodegradation, etc.
Coloring pigments, dyes, etc. can be added.
前記テレブロックエラストマーと油成分との溶。Dissolution of the teleblock elastomer and oil component.
解系に添加する乳化剤は、前記テレブロックエラストマ
ーと油成分からなる分散媒に対して、乳化された無数の
水分子の分散相を形成してW/O型エマルジョンの形態
を安定に保持する性質のものである必要があり、この種
の乳化剤として非イオンの界面活性剤が特に有効である
。その−例として、ポリエチレングリコールオレイルエ
ーテル。The emulsifier added to the solution system has the property of stably maintaining the form of a W/O emulsion by forming a dispersed phase of countless emulsified water molecules in the dispersion medium consisting of the teleblock elastomer and oil component. Nonionic surfactants are particularly effective as this type of emulsifier. As an example, polyethylene glycol oleyl ether.
ポリエチレングリコールノニルフェニルエーテル、ポリ
エチレングリコールドデシルフェニルエーテル、ソルビ
タンラウレート等があげられ、市販品としては、例えば
第一工業製薬社製商品名ノイゲンEA、ノイゲンET、
ソルゲン等が好適である。Examples include polyethylene glycol nonylphenyl ether, polyethylene glycol decylphenyl ether, sorbitan laurate, etc. Commercially available products include, for example, Noigen EA, Noigen ET, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
Sorgen and the like are preferred.
上記乳化剤により乳化され分散相となる水は、純水でも
、水道水、天然水等のようにある種の金属イオン、ハロ
ゲンイオン等のイオンを含んでいてもよい。また、これ
らの水には、含水ゲルの着色、難燃性向上その他の目的
で、水の乳化や最終ゲルの安定性を失わせない程度の香
料、染料9色素等の水溶性有機材料、炭酸カルシウム、
炭酸ナトリウム等の無機材料等を添加することができる
。なお、乳化剤の使用は、最終含水ゲル中に含ませる水
の量および種類によって異なるが、一般に水/O0部に
対して、1〜20部が適当であり、好ましくは5〜lO
部である。The water that is emulsified by the emulsifier and becomes a dispersed phase may be pure water or may contain ions such as certain metal ions and halogen ions, such as tap water and natural water. In addition, water-soluble organic materials such as fragrances, dyes, and carbonic acid may be added to this water to the extent that they do not affect the emulsification of the water or the stability of the final gel, for the purpose of coloring the hydrogel, improving flame retardancy, and other purposes. calcium,
Inorganic materials such as sodium carbonate, etc. can be added. The amount of emulsifier to be used varies depending on the amount and type of water contained in the final hydrogel, but in general, it is appropriate to use 1 to 20 parts, preferably 5 to 10 parts, based on 0 parts of water/O.
Department.
この発明の防汚性ゲル状組成物の製法は、特に限定する
ものではないが、好ましい製法として、まず上記テレブ
ロックエラストマーおよび適宜の添加剤を過剰量の油成
分に加熱下で溶解したのち、この溶解系に乳化剤として
非イオン性の界面活性剤を添加し、水を徐々に滴下して
乳化しW/O型エマルジョンを生成させる。その結果、
上記テレブロックエラストマーを溶解した油成分が分散
媒で水粒子が分散相となった安定な不均一系が形成され
る。つぎに、この不均一系を室温域まで冷却し系をゲル
化に導くことによって、水をエマルジョン粒子状に包含
した含水ゲルが得られる。The method for producing the antifouling gel composition of the present invention is not particularly limited, but a preferred method is to first dissolve the above-mentioned teleblock elastomer and appropriate additives in an excess amount of oil component under heating. A nonionic surfactant is added as an emulsifier to this dissolved system, and water is gradually added dropwise to emulsify it to form a W/O emulsion. the result,
A stable heterogeneous system is formed in which the oil component in which the teleblock elastomer is dissolved is the dispersion medium and the water particles are the dispersed phase. Next, this heterogeneous system is cooled to room temperature to induce gelation, thereby obtaining a hydrogel containing water in the form of emulsion particles.
この製造例においては、テレブロックエラストマーと油
成分の所定割合の混合物は、約80〜170℃に加熱し
て溶解される。この溶解系は、約80℃以上の温度域に
おいてlO〜500ボイズの範囲の粘度を有する流動体
であり、温度の降下とともに急激に粘度が上昇し、50
℃ないし室温域においては流動性のない油性ゲルとなる
ものである。上記溶解系に対する水の乳化は大気圧下で
は約80〜/O0℃の温度域で行われ、オートクレーブ
のような加圧下では約/O0〜130℃の温度域で行わ
れる。このようにして乳化剤を添加したのち、水を徐々
に滴下してW/O型エマルジョンを生成させる。このW
/O型エマルジョンの冷却ゲル化に際して、型等を利用
することにより各種の形状のゲル製品を得ることができ
る。例えば上記W/O型エマルジョンに必要に応じて加
硫剤等を添加したのち、70〜90℃の温度域で流動性
を保ちながら、型に流し込んだり、押出機で押出したり
、もしくは塗布装置を用いて布1紙。In this production example, a mixture of teleblock elastomer and oil component in a predetermined ratio is heated to about 80-170°C to dissolve. This melting system is a fluid having a viscosity in the range of 10 to 500 voids in the temperature range of about 80°C or higher, and the viscosity increases rapidly as the temperature falls, and
It becomes an oily gel with no fluidity in the temperature range from °C to room temperature. Emulsification of water in the above-mentioned dissolution system is carried out at a temperature range of about 80 to 00C under atmospheric pressure, and in a temperature range of about 00 to 1300C under pressure such as in an autoclave. After the emulsifier is added in this manner, water is gradually added dropwise to form a W/O emulsion. This W
When cooling and gelling the /O type emulsion, gel products of various shapes can be obtained by using a mold or the like. For example, after adding a vulcanizing agent etc. to the W/O emulsion as necessary, it is poured into a mold, extruded with an extruder, or coated with a coating device while maintaining fluidity in the temperature range of 70 to 90°C. Use 1 paper of cloth.
離型紙等の表面に塗布したりしたのち、室温域まで冷却
することにより、各種の形状の含水ゲル製品を得ること
ができる。Hydrous gel products in various shapes can be obtained by applying it to the surface of release paper or the like and then cooling it to room temperature.
なお、この発明においては、上記製造例の各工程の態様
を適宜変更することができる。例えば、乳化剤の添加は
、熱的に安定な乳化剤を用いうる場合は、テレブロック
エラストマーと油成分との混合物に予め添加しておくこ
とができ、また乳化剤を溶解もしくは分散させた水をテ
レブロックエラストマーと油成分との加熱溶解系に添加
することもできる。また、分散相となる水の使用量は、
(水分散相)/(分散媒)の重量比が85/15〜5/
95の範囲内になるように設定する必要がある。水の使
用量が、両者の合計量の85%を超えると、相対的にテ
レブロックエラストマーと油成分との混合物の量が減少
し、含水ゲルの安定性が悪くなったり、W2O型が転相
してO/W型エマルジョンになりゲル化が不能になる。In addition, in this invention, the aspect of each process of the said manufacturing example can be changed suitably. For example, if a thermally stable emulsifier can be used, it can be added in advance to the mixture of the Teleblock elastomer and the oil component, or water in which the emulsifier is dissolved or dispersed can be added to the Teleblock elastomer. It can also be added to a heated melt system of elastomer and oil component. In addition, the amount of water used as the dispersed phase is
The weight ratio of (water dispersed phase)/(dispersion medium) is 85/15 to 5/
It is necessary to set it within the range of 95. If the amount of water used exceeds 85% of the total amount of both, the amount of the mixture of the teleblock elastomer and the oil component will decrease relatively, and the stability of the hydrogel will deteriorate, or the W2O type will undergo phase inversion. This results in an O/W type emulsion, and gelation becomes impossible.
逆に、水の使用量が両者の合計量の5%未満となると、
テレブロックエラストマーと油成分との混合物の量が著
しく増加し充分な機能を備えた含水ゲルが得られなくな
るのである。Conversely, if the amount of water used is less than 5% of the total amount of both,
The amount of the mixture of the teleblock elastomer and the oil component increases significantly, making it impossible to obtain a hydrogel with sufficient functionality.
したがって、上記エマルジョンを冷却ゲル化して得られ
るこの発明の防汚性ゲル状組成物は、水分散相が85〜
5%の範囲内にあり、テレブロックエラストマーと油成
分とからなる分散媒が15〜95%の範囲内になってい
るのである。Therefore, the antifouling gel composition of the present invention obtained by cooling and gelling the emulsion has an aqueous dispersed phase of 85 to 85%.
The content of the dispersion medium consisting of the teleblock elastomer and the oil component is within the range of 15 to 95%.
このようにして得られるこの発明の防汚性ゲル状組成物
は、テレブロックエラストマーと油成分の種類および使
用量、水含有率等によって非常に軟らかいゲルから比較
的強靭なゲルまで広範囲に調整することができ、かつそ
のいずれの状態においても、ゲル中の粒子状水分散相の
作用により、優れた応力分散特性を発現して水中生物の
付着防止を実現しうるのである。上記応力分散特性は、
従来の油性ゲルのゴム様の弾性(応力を加えると容易に
変形するが応力を除くと瞬時に復元する)とは異なり、
応力が加わるとその応力が水粒子の分散相によって吸収
ないし拡散され、応力が排除されたのち徐々に原形に回
復するというものであるため、水中生物の付着を極めて
有効に阻止しうるのである。The antifouling gel composition of the present invention obtained in this manner can be adjusted over a wide range from a very soft gel to a relatively tough gel depending on the type and amount of the teleblock elastomer and oil component used, water content, etc. In either state, the particulate water dispersed phase in the gel exhibits excellent stress dispersion properties and prevents aquatic organisms from adhering to the gel. The above stress dispersion characteristics are
Unlike the rubber-like elasticity of conventional oil-based gels (easily deformed when stress is applied, but instantly restored when stress is removed),
When stress is applied, the stress is absorbed or diffused by the dispersed phase of water particles, and after the stress is removed, it gradually recovers to its original shape, making it extremely effective in preventing the attachment of aquatic organisms.
以上のように、この発明の防汚性ゲル状組成物は、水中
生物の付着防止のために極めて有効な応力分散性を有し
ているため、船舶等の水没部分等に応用することにより
、水中生物の付着防止に卓越した効果を発揮する。しか
も、このものは、毒物を使用していないため、水中汚染
の恐れがな(、しかも毒物の消失による防汚効果の失効
を生じることなく長期間防汚効果を持続するのであり、
経費の大幅な節約を実現しうるのである。As described above, the antifouling gel composition of the present invention has stress dispersion properties that are extremely effective for preventing the adhesion of aquatic organisms, so it can be applied to submerged parts of ships, etc. Demonstrates outstanding effectiveness in preventing adhesion of aquatic organisms. Moreover, since this product does not contain any toxic substances, there is no risk of contamination of the water (and it maintains its antifouling effect for a long time without losing its antifouling effect due to the disappearance of toxic substances).
Significant cost savings can be achieved.
つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.
〔実施例1〕
効率のよい撹拌機、還流冷却器および窒素ガス導入口を
備えたIIi?三つロフラスコに、粘度330センチポ
イズ(20℃)のマシン油(出光興産社製、ダフニメカ
ニックオイルーメカニック75) /O0部およびスチ
レン−ブタジェン−スチレンテレブロックエラストマー
(シェル化学社製、カリフレックスTR−1/O1)/
O部を入れ、窒素ガス気流中で撹拌しながら約130℃
に加熱し溶解した。この溶解物に乳化剤(第一工業製薬
社製、ノイゲンEA−50)5部を加えて溶解させた後
、フラスコ内の温度を80〜90’Cに保ちよく撹拌し
ながら蒸留水/O0部を約2時間かけて徐々に滴下し、
W/O型エマルジョンを生成させた。[Example 1] IIi? equipped with an efficient stirrer, reflux condenser and nitrogen gas inlet. In a three-necked flask, machine oil with a viscosity of 330 centipoise (20°C) (manufactured by Idemitsu Kosan Co., Ltd., Daphne Mechanic Oil-Mechanic 75) /0 parts and styrene-butadiene-styrene teleblock elastomer (manufactured by Shell Chemical Co., Ltd., Califlex TR- 1/O1)/
Add part O and heat to approximately 130°C while stirring in a nitrogen gas stream.
It was heated to dissolve. After adding and dissolving 5 parts of an emulsifier (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Neugen EA-50) to this solution, 0 parts of distilled water/O was added while keeping the temperature inside the flask at 80-90'C and stirring well. Gradually drip over about 2 hours,
A W/O emulsion was produced.
得られた白色の乳化物を約80’Cに加温して流動性を
与え、深さ50mのモールド内に流し込んだ後、室温域
まで冷却することによって、容積300X/O0X50
mの柔軟な含水ゲルを得た。The obtained white emulsion was heated to about 80'C to give it fluidity, poured into a mold with a depth of 50 m, and then cooled to room temperature to have a volume of 300X/O0X50.
A flexible hydrogel of m was obtained.
この含水ゲルは、水中に12時間放置した耐水性試験で
もゲルの変形は認められず、また室温(20℃)で20
日間放置した時のゲル重量減少率は1.7%と僅少であ
った。This water-containing gel did not show any deformation even in a water resistance test where it was left in water for 12 hours.
The gel weight reduction rate when left for days was as small as 1.7%.
つぎに、この含水ゲルの応力分散特性を測定するため、
伝動式応力測定機レオメータ−(富士理科工業社製、R
UD−J型)を用いて測定した結果を第1図を参照して
説明する。直径18mで重さ34.5gの鋼鉄製金属球
(A)を連設した棒(B)はレオメータ一本体(図示せ
ず)に連動されており、金属球(A)をゲル(C)内に
徐々に沈めてゆき、金属球(A)の針入距離(H)と棒
(B)にかかる応力の関係を測定する。このようにして
測定した結果、針入距離(H)が30mmで金属球(A
)がゲル(C)中に埋まってしまう状態において、その
(B)部にかかる反撥応力は約3QOgと小さかった。Next, in order to measure the stress dispersion properties of this hydrogel,
Transmission stress measuring device rheometer (manufactured by Fuji Rika Kogyo Co., Ltd., R
The results of measurements using the UD-J type will be explained with reference to FIG. A rod (B) on which a steel metal ball (A) with a diameter of 18 m and a weight of 34.5 g is connected is linked to a rheometer body (not shown), and the metal ball (A) is inserted into the gel (C). The relationship between the penetration distance (H) of the metal ball (A) and the stress applied to the rod (B) is measured. As a result of measurement in this way, the penetration distance (H) was 30 mm and the metal ball (A
) was buried in the gel (C), the repulsive stress applied to the (B) portion was as small as about 3QOg.
また、この金属球を取り除いた場合、約1.5分で完全
に元の形に回復した。Furthermore, when this metal ball was removed, it completely recovered to its original shape in about 1.5 minutes.
上記の性質は、この発明の含水ゲルが柔軟かっ強靭で優
れた応力分散特性を有することを示している。この応力
分散特性は、ゲル中の水粒子が外力に対して容易に変形
し、外力を吸収あるいは分散させる結果、現れると思わ
れる。The above properties indicate that the hydrogel of the present invention is flexible, tough, and has excellent stress dispersion properties. This stress dispersion property appears as a result of the water particles in the gel deforming easily in response to external force and absorbing or dispersing the external force.
〔比較例1〕
11ビーカ内に、マシン油(出光興産社製、ダフニメカ
ニックオイルーメカニック75)/O0部およびスチレ
ン−ブタジェン−スチレンテレブロックエラストマー(
シェル化学社製、カリフレックスTR−1/O1)
/O部を入れ、約130℃に加熱し溶解した。この溶解
物を実施例1と同様のモールド内に流し込んだ後冷却し
て、容積300x/O0x50龍の油性ゲルを得た。[Comparative Example 1] In a beaker, 0 parts of machine oil (manufactured by Idemitsu Kosan Co., Ltd., Daphne Mechanic Oil-Mechanic 75) and styrene-butadiene-styrene teleblock elastomer (
Shell Chemical Co., Ltd., CARIFLEX TR-1/O1)
/O part was added and heated to about 130°C to dissolve. This melt was poured into the same mold as in Example 1 and then cooled to obtain an oily gel with a volume of 300x/00x50.
この油性ゲルについて、実施例1と同様にして応力分散
特性を測定した結果、金属球の針入距離301mの点で
その(B)部にかかる反撥応力は約1800gと非常に
大きい反撥弾性を示した。また、ゲル中から金属■、y
を取り除(と、瞬時にゲルは元の形に回復する高弾性ゲ
ルの性状を示した。As a result of measuring the stress dispersion properties of this oil-based gel in the same manner as in Example 1, the repulsive stress applied to the part (B) at a penetration distance of 301 m from the metal ball was approximately 1800 g, which showed extremely high repulsive resiliency. Ta. In addition, metals ■, y from the gel
was removed (and the gel instantly recovered to its original shape, exhibiting the properties of a highly elastic gel).
〔実施例2〕
粘FJj240センチボイズ(20℃)のシリンダー油
(出光興産社製、MC−500)/O0部およびスチレ
ン−ブタジェン−スチレンテレブロックエラストマー(
シェル化学社製、カリフレックスTR−1/O7)20
部を実施例1と同様のフラスコに入れ、窒素ガス気流中
で撹拌しながら約140℃に加熱し溶解した。この溶解
物に乳化剤(第一工業製薬社製、ノイゲンET−80)
/O部を加えて、実施例1と同様にしてイオン交換水3
00部を乳化し、W/O型エマルジョンを生成させた。[Example 2] Cylinder oil (manufactured by Idemitsu Kosan Co., Ltd., MC-500) with viscosity FJj of 240 centiboise (20°C) / 0 parts of 0 and styrene-butadiene-styrene teleblock elastomer (
Manufactured by Shell Chemical Co., Ltd., CARIFLEX TR-1/O7) 20
A portion of the mixture was placed in the same flask as in Example 1, and heated to about 140° C. with stirring in a nitrogen gas stream to dissolve. An emulsifier (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Neugen ET-80) is added to this solution.
Ion-exchanged water 3 was prepared in the same manner as in Example 1 by adding /O part.
00 parts were emulsified to produce a W/O emulsion.
つぎに、この白色乳化物を約80℃に加温して流動性を
与え、モールド内に流し込んだ後、冷却して、容積30
0xlOOx50鶴の含水ゲルを得た。Next, this white emulsion is heated to about 80°C to give it fluidity, poured into a mold, and then cooled to a volume of 30°C.
A hydrous gel of 0xlOOx50 Tsuru was obtained.
〔実施例3〕
粘度170センチボイズ(20℃)の流動パラフィン(
和光純薬社製、試薬1級)/O0部およびスチレン−ブ
タジェン−スチレンテレブロックエラストマー(シェル
化学社製、カリフレックスTR−1/O7)15部の溶
解物に、乳化剤(第一工業製薬社製、ノイゲンEA−7
3)/O部を加え、実施例1と同様にして水道水250
部を乳化しW/O型エマルジョンを生成させた。つぎに
、この乳化物を約80℃に加温してモールド内に流し込
んだ後、冷却して、容積300X/O0X/O11の含
水ゲルパッドを得た。[Example 3] Liquid paraffin with a viscosity of 170 centiboise (20°C)
An emulsifier (Daiichi Kogyo Seiyaku Co., Ltd.) was added to a solution of 15 parts of styrene-butadiene-styrene teleblock elastomer (Califlex TR-1/O7, made by Shell Chemical Co., Ltd.) and 15 parts of styrene-butadiene-styrene teleblock elastomer (Califlex TR-1/O7, made by Shell Chemical Company). Manufactured by Neugen EA-7
3) Add 250% of tap water in the same manner as in Example 1, adding part O.
A W/O type emulsion was produced by emulsifying the mixture. Next, this emulsion was heated to about 80°C, poured into a mold, and then cooled to obtain a hydrogel pad having a volume of 300X/O0X/O11.
このゲルパッドは、水中12時間放置した耐水性試験で
もゲルの変形は認められず、また室温(20℃)で20
日感放置した時のゲル重量減少率は2.4%であった。This gel pad did not show any deformation in the water resistance test when it was left in water for 12 hours.
The gel weight reduction rate when left in the sun was 2.4%.
〔実施例4〕
流動パラフィン(実施例3のものと同じ)60部、平均
分子量約2000で軟化魚釣/O7℃の低分子量ポリエ
チレン(三洋化成社製、サンワックス151−P)40
部およびスチレン−ブタジェン−スチレンテレブロック
エラストマー(m化成社製、ツルプレン−411)20
部の溶解物に、乳化剤(第一工業製薬社製、ノイゲンE
A−83)7部を加え、25%炭酸ナトリウム水溶液/
O0部を実施例1と同様にして乳化して、W/O型エマ
ルジョンを生成させる。つぎに、この乳化物を約90℃
の温度において、シリコーン樹脂処理の離型紙上に厚み
2鶴のシート状に塗布し、室温まで冷却することによっ
て含水ゲルシートを得た。[Example 4] 60 parts of liquid paraffin (same as that of Example 3), softened fish with an average molecular weight of about 2000/low molecular weight polyethylene (manufactured by Sanyo Kasei Co., Ltd., Sunwax 151-P) 40
and styrene-butadiene-styrene teleblock elastomer (manufactured by M Kasei Co., Ltd., Turprene-411) 20
Add an emulsifier (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Neugen E
A-83) Add 7 parts of 25% sodium carbonate aqueous solution/
Part O0 is emulsified in the same manner as in Example 1 to produce a W/O emulsion. Next, this emulsion was heated to about 90°C.
A water-containing gel sheet was obtained by coating the gel on a silicone resin-treated release paper in the form of a sheet with a thickness of 2 mm at a temperature of 100 mL, and cooling it to room temperature.
この含水ゲルシートは、ガラス、木質材料2紙質のもの
に強力に接着する粘着性を示した。例えば、クレープ紙
の表面をこの含水ゲルシートで直接被覆することができ
た。This water-containing gel sheet exhibited strong adhesion to glass, wood-based materials, and paper-based materials. For example, the surface of crepe paper could be directly coated with this hydrogel sheet.
〔実施例5〕
粘度400ボイズ(20℃)の流動パラフィン(共同石
油社製、共石流動パラフィン−350)/O0部に、ス
チレン−ブタジェン−スチレンテレブロックエラストマ
ー(シェル化学社製、カリフレックスTR−1/O7)
/O部を実施例1と同様にして加熱溶解した。この溶解
物に乳化剤(第一工業製薬社製、ソルゲン−50)5部
を加えた後、蒸溜水15部を実施例1と同様にして徐々
に加えて乳化した。得られたW/O型エマルジョンを約
80℃でモールド内に流し込んだ後冷却して、容積30
0X/O0X2mの含水ゲルシート得た。[Example 5] Styrene-butadiene-styrene teleblock elastomer (Shell Chemical Co., Ltd., Kaliflex TR) was added to 0 parts of liquid paraffin (Kyodo Oil Liquid Paraffin-350, manufactured by Kyodo Oil Co., Ltd.) with a viscosity of 400 boids (20°C). -1/O7)
/O part was heated and dissolved in the same manner as in Example 1. After adding 5 parts of an emulsifier (Solgen-50, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) to this solution, 15 parts of distilled water was gradually added in the same manner as in Example 1 to emulsify. The obtained W/O emulsion was poured into a mold at about 80°C and cooled to a volume of 30°C.
A hydrogel sheet of 0X/O0X2m was obtained.
〔比較例2.3〕
第1表に示す従来の塗料組成物(比較例2)およびこの
塗料組成物に防汚剤として、亜酸化銅を添加したもの(
比較例3)を、はけ塗りにてガラス繊維強化ポリエステ
ルパネル(300X/O0×5鶴)上に3鰭厚に塗設し
、7日間風乾しそれぞれ比較試料2.3とした。[Comparative Example 2.3] A conventional coating composition shown in Table 1 (Comparative Example 2) and a coating composition to which cuprous oxide was added as an antifouling agent (
Comparative Example 3) was applied with a brush to a thickness of 3 fins on a glass fiber reinforced polyester panel (300X/O0x5 Tsuru), and air-dried for 7 days to obtain Comparative Samples 2 and 3.
(以下余白)
(防汚性試験)
実施例1〜5および比較例1のゲルシートを固定したガ
ラス繊維強化ポリエステル板(300X/OX/O0X
5および比較例2.3の塗料を塗設したガラス繊維強化
ポリエステル板を兵庫県明石港に設置の試験筏から、水
面下1.5mに吊りさげ、2年間の海中生物による汚損
状態を観察した。(Left below) (Antifouling test) Glass fiber reinforced polyester board (300X/OX/O0X) to which the gel sheets of Examples 1 to 5 and Comparative Example 1 were fixed
Glass fiber-reinforced polyester plates coated with the paints of 5 and Comparative Example 2.3 were suspended 1.5 m below the water surface from a test raft installed at Akashi Port, Hyogo Prefecture, and the state of contamination by marine organisms was observed for 2 years. .
その結果は第2表のとおりであった。数値はポリエステ
ル板面積に対する海中生物付着面積の割合(%)である
。The results are shown in Table 2. The numerical value is the ratio (%) of the area covered by marine organisms to the area of the polyester board.
第2表の結果から、油性ゲルを用いた比較例1では12
力月経過時点において水中生物の付着が見られ、24力
月経過時点においてその付着状態は75%に及んでいる
。また、単なる塗膜を形成した比較例2では、6力月経
過時点においてすでに水中生物の付着が見られ、18力
月経過時点ではその付着状態が/O0%に及んでいる。From the results in Table 2, in Comparative Example 1 using oil-based gel, 12
Adhesion of aquatic organisms was observed after 24 months had passed, and the adhesion state had reached 75% after 24 months had passed. Further, in Comparative Example 2 in which a simple coating film was formed, adhesion of aquatic organisms was already observed after 6 months had passed, and the adhesion state had reached /O0% after 18 months had passed.
また、これに防汚剤を添加した比較例2のものにおいて
も18力月経過時点で水中生物の付着が見られ、24力
月では50%までに及んでいる。これに対して実施例1
〜4では、24力月経過した時点において僅かに実施例
2のものに5%、実施例5のものに2%の付着が見られ
るのみであって、その他の実施例については水中生物の
付着が見られず、極めて優れた付着防止効果が得られる
ことがわかる。Also, in Comparative Example 2, in which an antifouling agent was added, adhesion of aquatic organisms was observed after 18 months, and the amount had increased to 50% after 24 months. In contrast, Example 1
- 4, after 24 months had passed, only 5% of the adhesion was observed in Example 2 and 2% in Example 5, and the other Examples showed no adhesion of aquatic organisms. It can be seen that an extremely excellent adhesion prevention effect can be obtained.
図面は防汚性ゲル状組成物の応力分散特性を測定する装
置の説明図である。 −
A・・・鋼鉄製金属球 B・・・棒 C・・・ゲル第1
図The drawing is an explanatory diagram of an apparatus for measuring stress dispersion properties of an antifouling gel composition. - A... Steel metal ball B... Rod C... Gel 1st
figure
Claims (1)
ーおよび油成分からなる分散媒と、乳化剤により水を細
粒化してなる水分散相とを備え、分散媒と水分散相との
相互の割合(水分散相)/(分散媒)が重量基準で85
/15〜5/95に設定されているW/O型エマルジョ
ンの冷却ゲル化によつて構成され、ゲル構造において、
上記水分散相が粒子状に分散された状態で保持されてい
ることを特徴とする防汚性ゲル状組成物。(1) Equipped with a dispersion medium consisting of an A-B-A type teleblock copolymer elastomer and an oil component, and an aqueous dispersed phase formed by finely distributing water with an emulsifier. Ratio (water dispersed phase)/(dispersion medium) is 85 on a weight basis
Constructed by cooling gelation of W/O type emulsion set at /15 to 5/95, in the gel structure,
An antifouling gel composition characterized in that the aqueous dispersed phase is maintained in a dispersed state in the form of particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9157185A JPS61250049A (en) | 1985-04-27 | 1985-04-27 | Antifouling gelatinous composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9157185A JPS61250049A (en) | 1985-04-27 | 1985-04-27 | Antifouling gelatinous composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61250049A true JPS61250049A (en) | 1986-11-07 |
Family
ID=14030213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9157185A Pending JPS61250049A (en) | 1985-04-27 | 1985-04-27 | Antifouling gelatinous composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61250049A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003067990A1 (en) * | 2002-02-18 | 2003-08-21 | Hokkaido Technology Licensing Office Co., Ltd. | Marine growth preventive agent |
CN110903730A (en) * | 2019-10-15 | 2020-03-24 | 中山大学 | Self-healing anticorrosion and antifouling integrated coating material and preparation method and application thereof |
-
1985
- 1985-04-27 JP JP9157185A patent/JPS61250049A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003067990A1 (en) * | 2002-02-18 | 2003-08-21 | Hokkaido Technology Licensing Office Co., Ltd. | Marine growth preventive agent |
CN110903730A (en) * | 2019-10-15 | 2020-03-24 | 中山大学 | Self-healing anticorrosion and antifouling integrated coating material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5116407A (en) | Antifouling coatings | |
ES2232115T3 (en) | ANTI-INCRUSTATION PROCEDURES AND COMPOSITIONS FOR A MARINE SURFACE. | |
US5266105A (en) | Antifouling coating composition | |
US5049382A (en) | Coating and composition containing lipid microstructure toxin dispensers | |
US5514731A (en) | Antifouling paint | |
JP2503986B2 (en) | Non-toxic antifouling paint composition | |
US4631302A (en) | Underwater biocidal wax composition and preparation thereof | |
Kio et al. | Advances in emerging hydrogel fouling-release coatings for marine applications | |
US5236493A (en) | Antifouling coating | |
US4354873A (en) | Underwater antifoulant composition | |
JPS58108265A (en) | Antifoulant paint for ships and boats | |
JPS61250049A (en) | Antifouling gelatinous composition | |
JPS60258271A (en) | Paint for preventing adhesion of marine life | |
JP2003013038A (en) | Coating antifogging agent and agricultural film | |
JP4043540B2 (en) | Non-eluting antifouling method and non-eluting antifouling coating composition | |
JPS638462A (en) | Surface treatment for preventing attachment of organism living in water | |
JPH10330687A (en) | Underwater antifouling agent | |
JP4884107B2 (en) | Water-based antifouling paint | |
JPH0582865B2 (en) | ||
JPS61241368A (en) | Antifouling gelatinous composition | |
JP2833493B2 (en) | Antifouling coating material | |
JP2015038161A (en) | Antifouling paint and paint | |
JPH08188682A (en) | Aqueous dispersion and its use | |
JPS58201862A (en) | Antistaining material | |
JPS60215076A (en) | Antifouling paint composition |