[go: up one dir, main page]

JPS61247903A - Two-dimensional displacement and speed measuring instrument utilizing laser speckle - Google Patents

Two-dimensional displacement and speed measuring instrument utilizing laser speckle

Info

Publication number
JPS61247903A
JPS61247903A JP8864485A JP8864485A JPS61247903A JP S61247903 A JPS61247903 A JP S61247903A JP 8864485 A JP8864485 A JP 8864485A JP 8864485 A JP8864485 A JP 8864485A JP S61247903 A JPS61247903 A JP S61247903A
Authority
JP
Japan
Prior art keywords
speed
output
displacement
light
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8864485A
Other languages
Japanese (ja)
Inventor
Yumi Horii
堀井 由美
Akira Hirai
明 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8864485A priority Critical patent/JPS61247903A/en
Publication of JPS61247903A publication Critical patent/JPS61247903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the two-dimensional motion of a body by using two different photoelectric conversion systems which use a laser speckle and measuring fine perpendicular displacement and speed components of the body associatively with displacement and speed components in the moving direction. CONSTITUTION:A coherent parallel light beam 1 is moved slightly zigzag in a plane and scattered light obtained at this time is branched in two directions by a half-mirror 3; one scattered light beam forms a speckle pattern on an equal-interval slit array 4. Its image is formed through a lens and photodetected by a photoelectric detector 6, whose output variation with time is outputted as a frequency proportional to the speed vx of the body in an (x) direction. The low frequency component of the signal is removed through a high-pass filter 7 to obtain a frequency spectrum proportional to the speed vx of the body and this frequency spectrum is measured by a frequency measuring instrument 8 to obtain an output proportional to the speed vx of the body; and then the speed vx of the body is calculated by using a divider 9. Similarly, the speed in a (y) direction is calculated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、レーザスペックルを用いて被測定物体に非接
触に、運動物体の変位・速度を測定する装置に関し、特
にVTRテープのように進行方向と垂直な方向にも微小
な速度成分を持つ物体の、面内の二次元変位・速度の測
定を行なう測定装置に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a device that uses laser speckles to measure the displacement and velocity of a moving object without contacting the object to be measured, and in particular, the present invention relates to a device that uses laser speckles to measure the displacement and velocity of a moving object without contacting the object. The present invention relates to a measuring device that measures the in-plane two-dimensional displacement and velocity of an object that also has minute velocity components in the perpendicular direction.

〔発明の背景〕[Background of the invention]

運動光体に可干渉光を照射して得るレーザスペックルの
動的性質を用いて速度を測定するものと ゛しては、例
えば特公昭54−41421号公報に記載されている。
A technique for measuring speed using the dynamic properties of laser speckles obtained by irradiating a moving light body with coherent light is described, for example, in Japanese Patent Publication No. 54-41421.

この方法では、速度Vで運動する物体にレーザ光を照射
し、このとき生じるスペックルパターンを等間隔のスリ
ット列を通して光電検出器で受光する。スリット列上の
スペックルパターンは、物体の速度Vに比例してnvで
動く。光源検出器の出力周波数スペクトルは単位長さ当
りのスリット数をμ、とすると、nvμ、を中心周波数
とする狭帯域成分と、直流および低域成分の和で表わさ
れる。そこで、高域フィルタで中心周波数nvμ、の狭
帯域成分を取出してその周波数を測定すると、物体の速
度Vを得ることができる。
In this method, a laser beam is irradiated onto an object moving at a speed V, and the speckle pattern generated at this time is received by a photoelectric detector through a row of equally spaced slits. The speckle pattern on the slit row moves at nv in proportion to the velocity V of the object. The output frequency spectrum of the light source detector is expressed by the sum of a narrow band component having a center frequency nvμ, a direct current component, and a low frequency component, where μ is the number of slits per unit length. Therefore, by extracting the narrow band component of the center frequency nvμ using a high-pass filter and measuring the frequency, the velocity V of the object can be obtained.

この方法では、等間隔のスリット列を用いて空□間的周
期構造を作り、スリットに垂直な方向の速度を測定する
ため、物体がスリットと平行な方向に速度成分を持って
いても、これを測定することができない。この測定系を
互いに直交する方向に二つ用いて二次元の変位、速度を
測定することが可能であるが、X方向に進行する物体が
X方向にも微小な速度成分を持つ場合、X方向の微小な
変位成分は、X方向の大きな運動の中に埋もれてしまい
、スペックル上で検出することができない。
In this method, a spatial periodic structure is created using a row of equally spaced slits, and the velocity in the direction perpendicular to the slits is measured, so even if the object has a velocity component in the direction parallel to the slits, this cannot be measured. It is possible to measure two-dimensional displacement and velocity by using two of these measurement systems in mutually orthogonal directions, but if an object traveling in the X direction also has a minute velocity component in the X direction, The minute displacement component of is buried in the large movement in the X direction and cannot be detected on the speckle.

他の例として、レーザドツプラを利用した二次元流速計
がある。これは、レーザドツプラのフリンジモードを使
ったもので、その原理を簡単に説明する。
Another example is a two-dimensional current meter that uses laser Doppler. This uses the fringe mode of laser Doppler, and we will briefly explain its principle.

2本のコヒーレントな光を交叉させると、ビームの交叉
部に干渉によるフリンジが生じる。被測定物(散乱粒子
)がフリンジの中を通過する際、フリンジの明部に粒子
があるときの散乱光は強く、フリンジの暗部に粒子があ
るときの散乱光は弱くなる。いま、粒子の速度Vで、フ
リンジに垂直な方向の成分をv、、フリンジの間隔をD
fとすると、散乱光の強さ単位時間当りの変化f、は。
When two coherent beams of light intersect, fringes occur at the intersection of the beams due to interference. When an object to be measured (scattered particles) passes through a fringe, the scattered light is strong when the particles are in the bright part of the fringe, and weak when the particles are in the dark part of the fringe. Now, at the particle velocity V, the component in the direction perpendicular to the fringe is v, and the distance between the fringes is D.
If f is the change in intensity of scattered light per unit time, f, is.

!、=V、101           −(1)であ
る、2本のレーザビームの交叉角をθ、レーザの波長を
λとすると、フリンジ間隔は、θ D、=λ/ (2sin  )         ・’
(2)であるから、■、は。
! , = V, 101 - (1). If the intersection angle of the two laser beams is θ and the wavelength of the laser is λ, then the fringe interval is θ D, = λ/ (2sin ) ・'
Since (2), ■, ha.

V、=f、・D。V,=f,・D.

θ =f、−λ/ (25in−)      −(3)で
表わされる。すなわち、レーザドツプラ流速計では、散
乱粒子がフリンジ内を通過する際の散乱光量をレンズで
集光した後に光電検出し、検出された信号の周波数から
測定対象物の速度を求める。
θ = f, -λ/ (25in-) - (3). That is, in a laser Doppler current meter, the amount of scattered light when scattered particles pass through a fringe is collected by a lens and then photoelectrically detected, and the speed of the object to be measured is determined from the frequency of the detected signal.

この測定系を使って、偏光面の異なる二組のレーザビー
ムをそれぞれ生じるフリンジの方向が互にに直交するよ
うに測定対象物に入射し、特定の偏光面をもつ光だけを
受光するように光学系を配した光電検出器で1粒子から
の散乱光を受光する。
Using this measurement system, two sets of laser beams with different planes of polarization are incident on the object to be measured so that the directions of the fringes are orthogonal to each other, and only the light with a specific plane of polarization is received. A photoelectric detector equipped with an optical system receives scattered light from a single particle.

これによって測定対象物の二次元の速度成分を分離して
測定できる。
This allows the two-dimensional velocity components of the object to be measured to be separated and measured.

ところで、レーザドツプラ流速計の以上の原理は、2本
のレーザビームが交叉してフリンジをつくっている部分
(測定体積)に常に1個の散乱粒子が存在する。または
、散乱粒子が複数個あり。
By the way, the principle of the laser Doppler current meter described above is that one scattering particle always exists in the area (measurement volume) where two laser beams intersect to create a fringe. Or, there are multiple scattering particles.

各粒子からの散乱光の位相が常に揃っている場合” 成
り立つものである。しかし、一般には、測定体積中の散
乱粒子の数が変化したり、複数個ある散 。
This is true if the phase of the scattered light from each particle is always aligned. However, in general, the number of scattered particles in the measurement volume changes or if there are multiple particles.

乱粒子からの散乱光の位相差がπの奇数倍となり信号が
打ち消される場合には、信号周波数に広がりを持ったり
、検出される信号がなくなるという問題が生じる0本発
明で測定対象とする磁気テープ等は面全体に散乱粒子が
あると考えられる。すると、散乱光の位相差がランダム
であるから、散乱光どうしの干渉が起こり、検出面では
スペックルが生じる。検出器で検出する光量は、検出面
全体のスペックルの光量の和となる。散乱粒子の数が少
ない場合、レーザドツプラ流速計の光電検出器の出力信
号は、高周波成分のドツプラ周波数と低周波成分のペデ
スタル(粒子が測定点を通過したことを意味する信号)
が合成されたものであるから、ドツプラ周波数を取り出
すためにはバイパスフィルタで低周波成分を除去する。
If the phase difference of the scattered light from the random particles becomes an odd multiple of π and the signal is canceled, problems such as a spread in the signal frequency or no signal to be detected occur. It is thought that there are scattering particles on the entire surface of a tape or the like. Then, since the phase difference of the scattered lights is random, interference between the scattered lights occurs, causing speckles on the detection surface. The amount of light detected by the detector is the sum of the amount of speckle light on the entire detection surface. When the number of scattered particles is small, the output signal of the photoelectric detector of the laser Doppler current meter has a high frequency component Doppler frequency and a low frequency component pedestal (a signal that means that a particle has passed the measurement point).
are synthesized, so in order to extract the Doppler frequency, a bypass filter is used to remove the low frequency components.

散乱粒子の数が多い場合、光電検出器ではスペックルの
光量の和を検出するため、粒子の測定点での位置に依存
するペデスタルは小さくなるが、代わって粒子の面内変
位が信号に影響してくる。ここで問題とする蛇行量測定
では、X方向の速度検出の際には、X方向の微小変位の
影響は小さいが、X方向の微小速度検出の際は、X方向
の粒子の移動の影響が大きく影響し、ときにX方向の移
動による信号周波数が、X方向の速度信号の周波数より
高くなることが十分考えられる。そのため、この信号に
バイパスフィルタを掛けた出力には、蛇行程度の微小速
度の信号は、現われない。
When there are many scattered particles, the photoelectric detector detects the sum of the speckle light intensity, so the pedestal, which depends on the particle position at the measurement point, becomes smaller, but the in-plane displacement of the particles affects the signal instead. I'll come. In the meandering amount measurement in question here, when detecting velocity in the X direction, the influence of small displacements in the X direction is small, but when detecting minute speeds in the X direction, the influence of particle movement in the It is quite conceivable that the signal frequency due to movement in the X direction may be higher than the frequency of the velocity signal in the X direction. Therefore, in the output obtained by applying a bypass filter to this signal, a signal with a minute velocity such as meandering does not appear.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点を改良し、レーザスペックルを用い
た二つの異なる光電変換システムを用い、物体の進行方
向の変位・速度成分と連動して、これと垂直方向の微小
な変位・速度成分を測定し、物体の二次元の運動を測定
できるようにしたものである。
The present invention improves the above-mentioned drawbacks and uses two different photoelectric conversion systems using laser speckles. This allows the two-dimensional movement of objects to be measured.

〔発明の概要〕[Summary of the invention]

この目的のため、従来のレーザスペックルの方法で測定
した物体の一次元の速度情報を、割算器。
For this purpose, divide the one-dimensional velocity information of the object measured by the conventional laser speckle method.

乗算器を用いて変位量に変換し、つぎにこれと垂直な方
向の速度成分を検出するアレイ形の二つの光電検出器の
計測位置を前出の変位量で制御する微動台によって決定
し、さらにこの二つの位置での光電検出器の出力の相関
から物体の微小変位を検出して速度を求めることで、蛇
行のように物体の進行方向と垂直方向に微小な運動をし
ている物体の二次元の運動測定を可能とした。
A multiplier is used to convert the displacement into a displacement amount, and then the measurement position of two array-type photoelectric detectors that detect velocity components in a direction perpendicular to this is determined by a fine movement table that is controlled by the aforementioned displacement amount. Furthermore, by detecting the minute displacement of the object and determining its velocity from the correlation between the outputs of the photoelectric detector at these two positions, we can detect the minute movement of the object in the direction perpendicular to the direction of movement of the object, such as meandering. This enabled two-dimensional motion measurement.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の具体例を図により詳しく説明する。第1
図は、この発明の実施例を示す測定系のブロック線図で
ある。
Hereinafter, specific examples of the present invention will be explained in detail with reference to the drawings. 1st
The figure is a block diagram of a measurement system showing an embodiment of the present invention.

第1図に示すように、可干渉な平行光線1を平面内をわ
ずかに蛇行しながら移動する。即ちX。
As shown in FIG. 1, coherent parallel light beams 1 are moved in a plane while slightly meandering. That is, X.

1両方向に速度成分(v、、vy)をもつ運動物体の表
面2に照射する。このとき得られる散乱光を、ハーフミ
ラ−3で二方向に分岐し、うち一方の散乱光は等間隔ス
リット列4の上にスペックルパターンを構成する。スリ
ット列4上のスペックルパターンは物体の速度に比例し
て移動し、これをレンズ5で結像して光電検出器6で受
光すると、出力の時間変化が、物体X方向の速度v8に
比例した周波数として出力される。このときの出力を第
2図(a)に示す、この光電検出器6の出力に高域フィ
ルタ7を介して、信号の低周波成分を除去すると、物体
の速度V、に比例した周波数スペクトルを得る。このと
きの出力を第2図(b)に示す。この周波数スペクトル
を周波数測定器8で測定し、物体の速度V、に比例した
出力を得る。このときの出力を第2図(c)に示す。つ
ぎに、割算器9を用いて、光学系で決まる比例定数でこ
の出力値を割ると、物体の速度V、を求めることができ
る。さらに、v8に一定時間t8で積分し、物体のt8
時間におけるX方向の変位量ΔXを求める。
A surface 2 of a moving object having velocity components (v, vy) in both directions is irradiated. The scattered light obtained at this time is split into two directions by the half mirror 3, and one of the scattered lights forms a speckle pattern on the equally spaced slit row 4. The speckle pattern on the slit row 4 moves in proportion to the speed of the object, and when it is imaged by the lens 5 and received by the photoelectric detector 6, the time change in output is proportional to the speed v8 of the object in the X direction. output as a frequency. The output at this time is shown in FIG. 2(a). When the output of this photoelectric detector 6 is passed through a high-pass filter 7 to remove the low frequency component of the signal, a frequency spectrum proportional to the velocity V of the object is obtained. obtain. The output at this time is shown in FIG. 2(b). This frequency spectrum is measured by a frequency measuring device 8 to obtain an output proportional to the velocity V of the object. The output at this time is shown in FIG. 2(c). Next, by using a divider 9 to divide this output value by a proportionality constant determined by the optical system, the velocity V of the object can be obtained. Furthermore, by integrating v8 over a fixed time t8, the object's t8
Find the amount of displacement ΔX in the X direction over time.

一方、ハーフミラ−3を透過した散乱光は、レンズの結
像位置に微小量だけ距離をあけて置がれた二つの光電検
出器14で受光する。光電検出器14は、第3図に示す
ように、y軸方向にアレイ状の受光部をもつ。いま、二
つの光電検出器14のA、Bの距離AQを、サンプリン
グの時間間隔taの間に物体の結像面上の像位置X方向
に移動する距離と等しくなるように設定すると、時刻t
=Oに14Aで受光するスペックルパターンと、t=t
aに14Bで受光するスペックルパターンとは、X方向
に関して等しくなるこのような位置設定をした上で、1
4A、14Bの受光信号(第4図(a)(b))のアレ
イ間の相互相関をとると、物体のX方向の運動に比例し
たスペックルの移動量を検出することができる。
On the other hand, the scattered light transmitted through the half mirror 3 is received by two photoelectric detectors 14 placed at the imaging position of the lens with a slight distance between them. As shown in FIG. 3, the photoelectric detector 14 has an array of light receiving sections in the y-axis direction. Now, if the distance AQ between A and B of the two photoelectric detectors 14 is set to be equal to the distance that the image position on the image plane of the object moves in the X direction during the sampling time interval ta, then at time t
= speckle pattern that receives light at 14A at O, and t = t
The speckle pattern received by 14B at a is the same position in the X direction, and 1
By taking the cross-correlation between the arrays of the received light signals 4A and 14B (FIGS. 4(a) and 4(b)), it is possible to detect the amount of speckle movement that is proportional to the movement of the object in the X direction.

これを実現するため、先に得た1B時間におけるX方向
の変位量ΔXの出力を、増巾器11で増巾して光電検出
器14Bの′位置を制御する微動台の制御装置に入力し
、微動台に接続した光電検出器14Bの位置を移動させ
、二つの光電検出器間の距離が結像面の物体の移動量と
等しくなるようにする。光電検出器14のサンプリング
時間t6は、制御装置15によって制御され光電検出器
14と、前出の乗算器に入力する。二つの光電検出器1
4のアレイ間の出力を相関計によって相互相関をとると
、スペックルのy成分の変位量Δyが求まる。X方向の
速度は割算器17によって求められる。
To achieve this, the previously obtained output of the displacement ΔX in the X direction during 1B time is amplified by the amplifier 11 and input to the control device of the fine movement table that controls the position of the photoelectric detector 14B. , the position of the photoelectric detector 14B connected to the fine movement table is moved so that the distance between the two photoelectric detectors becomes equal to the amount of movement of the object on the imaging plane. The sampling time t6 of the photoelectric detector 14 is controlled by the control device 15 and is input to the photoelectric detector 14 and the aforementioned multiplier. Two photoelectric detectors 1
When the outputs between the four arrays are cross-correlated using a correlator, the displacement amount Δy of the y component of the speckle can be found. The speed in the X direction is determined by the divider 17.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、面内でわずかに蛇行しながら移動する
物体の速度を、進行方向の速度成分と同時に、これに直
交する微小な速度成分とを、二つの光電変換システムを
用いて同時測定が可能となる。
According to the present invention, two photoelectric conversion systems are used to simultaneously measure the velocity of an object moving slightly meandering in a plane, simultaneously with a velocity component in the direction of movement and a minute velocity component perpendicular to this velocity component. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す測定系のブロック線図、
第2図(a)(b)(c)は物体の進行方向(X方向)
の速度を検出する過程での各構成要素における出力波形
を示す図で、第2図(a)は光電検出器の出力波形図、
第2図(b)は高域・ フィルタの出力波形図、第2図
(c)は周波数測定器の出力波形図、第3図はy方向の
変位を測定する光電検出器の正面図、第4図(a)(b
)は光電検出器からの出力波形を示す図である。 1・・・レーザ光束、2・・・被測定物の粗面、3・・
・ハーフミラ−14・・・等間隔スリット、5・・・凸
レンズ、6・・・光電検出器、7・・・高域フィルタ、
8・・・周波数測定器、9・・・割算器、10・・・乗
算器、11・・・増巾器、12・・・微動台制御装置、
13・・・微動台、14・・・アレイ形光電検出器、1
5・・・サンプリング時間制御装置、16・・・相関計
。 Yll(21 第 2 図 α2 (b) (c) 力 υ) (ト)
FIG. 1 is a block diagram of a measurement system showing an embodiment of the present invention;
Figure 2 (a), (b), and (c) are the direction of movement of the object (X direction)
Fig. 2(a) is a diagram showing the output waveform of each component in the process of detecting the speed of the photoelectric detector;
Figure 2 (b) is an output waveform diagram of the high-pass filter, Figure 2 (c) is an output waveform diagram of the frequency measuring device, Figure 3 is a front view of the photoelectric detector that measures displacement in the y direction, and Figure 3 is a front view of the photoelectric detector that measures displacement in the y direction. Figure 4 (a) (b)
) is a diagram showing the output waveform from the photoelectric detector. 1... Laser beam, 2... Rough surface of the object to be measured, 3...
・Half mirror 14... Equally spaced slits, 5... Convex lens, 6... Photoelectric detector, 7... High pass filter,
8... Frequency measuring device, 9... Divider, 10... Multiplier, 11... Amplifier, 12... Fine movement table control device,
13... Fine movement table, 14... Array type photoelectric detector, 1
5... Sampling time control device, 16... Correlation meter. Yll (21 Fig. 2 α2 (b) (c) Force υ) (g)

Claims (1)

【特許請求の範囲】[Claims] 平面内をわずかに蛇行しながら移動する物体の二次元の
変位・速度の測定を、可干渉光を投光するレーザ発振器
、可干渉光を被測定物表面に照射して得るスペックルパ
ターンを二方向に分岐するビームスプリッタ、分岐した
一方の散乱光を空間的周期構造を有する格子を通した後
にレンズで集光し受光する第1の光電検出器、分岐した
もう一方の散乱光をレンズで集光した後に時間的に遅延
させて受光する被測定物の進行方向と垂直にアレイ状の
受光部を持つ一対の第2の光電検出器、前記第1の光電
検出器の出力の時間的な変動周波数から格子方向の速度
を検出する速度検出回路、この速度検出回路の出力を積
分し一定時間t_a後の変位を求める積分回路、この積
分回路の出力と前記一対の第2の光電検出器の間の距離
が等しくなるように制御する微動装置、さらにこの一対
の第2の光電源出器のうち一方の出力ともう一方の一定
時間t_a後の出力との相関関係から物体のアレイ方向
の微小な変位量と検出する相関計によつて構成されたこ
とを特徴とするレーザスペックルを利用した二次元変位
、速度測定装置。
The two-dimensional displacement and velocity of an object that moves while slightly meandering within a plane can be measured using a laser oscillator that emits coherent light, and a speckle pattern that is obtained by irradiating the coherent light onto the surface of the measured object. A beam splitter that splits the scattered light into two directions, a first photoelectric detector that collects and receives the scattered light from one side of the branch after passing through a grating with a spatial periodic structure, and a lens that collects the other scattered light. a pair of second photoelectric detectors having light receiving sections arranged in an array perpendicular to the traveling direction of the object to be measured, which receive light with a time delay after emitting light, and temporal fluctuations in the output of the first photoelectric detector; a speed detection circuit that detects the speed in the grid direction from the frequency; an integration circuit that integrates the output of this speed detection circuit to determine the displacement after a certain time t_a; and between the output of this integration circuit and the pair of second photoelectric detectors. A fine movement device controls the distance so that the distances between the two are equal, and furthermore, from the correlation between the output of one of the pair of second optical power outputs and the output of the other after a certain period of time t_a, it is possible to control the fine movement in the array direction of the object. A two-dimensional displacement and velocity measuring device using laser speckle, characterized by comprising a correlation meter for detecting displacement amount.
JP8864485A 1985-04-26 1985-04-26 Two-dimensional displacement and speed measuring instrument utilizing laser speckle Pending JPS61247903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8864485A JPS61247903A (en) 1985-04-26 1985-04-26 Two-dimensional displacement and speed measuring instrument utilizing laser speckle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8864485A JPS61247903A (en) 1985-04-26 1985-04-26 Two-dimensional displacement and speed measuring instrument utilizing laser speckle

Publications (1)

Publication Number Publication Date
JPS61247903A true JPS61247903A (en) 1986-11-05

Family

ID=13948526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8864485A Pending JPS61247903A (en) 1985-04-26 1985-04-26 Two-dimensional displacement and speed measuring instrument utilizing laser speckle

Country Status (1)

Country Link
JP (1) JPS61247903A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287468A (en) * 1988-05-16 1989-11-20 Fuji Xerox Co Ltd Moving information detecting method for random space pattern
JPH03502008A (en) * 1988-09-02 1991-05-09 ブリティッシュ・テクノロジー・グループ・リミテッド interferometry
JP2004506919A (en) * 2000-08-25 2004-03-04 アムニス コーポレイション Velocity measurement of small moving objects such as cells
JP2017088321A (en) * 2015-11-10 2017-05-25 Jfeスチール株式会社 Transportation state detection device
CN117348266A (en) * 2023-12-06 2024-01-05 中国航空工业集团公司沈阳空气动力研究所 Laser speckle generating device and method for PIV system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287468A (en) * 1988-05-16 1989-11-20 Fuji Xerox Co Ltd Moving information detecting method for random space pattern
JPH03502008A (en) * 1988-09-02 1991-05-09 ブリティッシュ・テクノロジー・グループ・リミテッド interferometry
JP2004506919A (en) * 2000-08-25 2004-03-04 アムニス コーポレイション Velocity measurement of small moving objects such as cells
JP2017088321A (en) * 2015-11-10 2017-05-25 Jfeスチール株式会社 Transportation state detection device
CN117348266A (en) * 2023-12-06 2024-01-05 中国航空工业集团公司沈阳空气动力研究所 Laser speckle generating device and method for PIV system
CN117348266B (en) * 2023-12-06 2024-01-30 中国航空工业集团公司沈阳空气动力研究所 Laser speckle generating device and method for PIV system

Similar Documents

Publication Publication Date Title
US4470696A (en) Laser doppler velocimeter
US4540283A (en) Apparatus and method for determining the size and velocity of particles, droplets, bubbles or the like using laser light scattering
US9995761B2 (en) Method for simultaneous observation of three degrees of vibrational freedom using single heterodyne beam
US4311383A (en) Method for determination of velocity and direction of motion of moving object by speckle patterns and apparatus therefor
US5745226A (en) Passive optical velocity measurement device and method
JP2504544B2 (en) Multidimensional laser Doppler velocimeter
EP1308732A1 (en) Optical device and method for measuring velocity
US4466067A (en) Multi-detector intensity interferometer and method for processing incoherent radiation signals
Meier et al. Imaging laser Doppler velocimetry
US10386171B1 (en) Apparatus for a dynamic multi-axis heterodyne interferometric vibrometer
US5526109A (en) Multi-velocity component LDV
US4397550A (en) Laser doppler velocimeter
US4725136A (en) Method for measuring particle velocity using differential photodiode arrays
JPS61247903A (en) Two-dimensional displacement and speed measuring instrument utilizing laser speckle
US8195421B2 (en) Velocity detector
EP0426341A2 (en) Particle size and velocity determination
EP0157227A2 (en) Interferometer
Komatsu et al. Velocity measurement of diffuse objects by using speckle dynamics
GB2289814A (en) Laser doppler velocimeter
JP3235368B2 (en) Laser Doppler velocity measuring device
EP0050144B1 (en) Process for measuring motion- and surface characterizing physical parameters of a moving body
JP2763271B2 (en) Transmitted light measurement device
JP2779497B2 (en) Interferometer
US12078584B2 (en) Device for measuring three-dimensional velocity, size, and/or shape of particles
Darmawan Multiplexed grating velocimetry for biomedical applications