[go: up one dir, main page]

JPS61247556A - Anti-skid control device - Google Patents

Anti-skid control device

Info

Publication number
JPS61247556A
JPS61247556A JP9155185A JP9155185A JPS61247556A JP S61247556 A JPS61247556 A JP S61247556A JP 9155185 A JP9155185 A JP 9155185A JP 9155185 A JP9155185 A JP 9155185A JP S61247556 A JPS61247556 A JP S61247556A
Authority
JP
Japan
Prior art keywords
speed
wheel
road surface
vehicle speed
pseudo vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9155185A
Other languages
Japanese (ja)
Other versions
JPH0370657B2 (en
Inventor
Akihiko Mori
昭彦 森
Yasuo Naito
靖雄 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9155185A priority Critical patent/JPS61247556A/en
Publication of JPS61247556A publication Critical patent/JPS61247556A/en
Publication of JPH0370657B2 publication Critical patent/JPH0370657B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To make it possible to control the anti-skid operation of a vehicle with a high degree of accuracy, by estimating the frictional coefficient (mu) of a road surface in accordance with the difference between the peak value of false speed of the vehicle body and the last time peak value, and the lapse time thereof so that the deceleration of the wheel speed and the detected level of slips are changed in accordance with the frictional coefficient. CONSTITUTION:A selecting means 6 detects the highest one among outputs from vehicle wheel detecting means 5a through 5c for detecting the speeds of wheels 1a through 1c. Further, a false vehicle body speed subtractor 7 subtracts a predetermined amount from a false vehicle speed one control period before, and a false vehicle speed determining means 8 compares the output of the subtractor 7 and the output of the selecting means 6 to determine the higher one as a false vehicle body speed. Then, a road surface frictional coefficient (mu) estimating means 9 detects the peak value of the false vehicle body speed to obtain the deceleration of the vehicle body in accordance with the difference between the present peak value and that of the last time and the lapse time thereof, the thus obtained value being determined as the frictional coefficient(mu) of the road surface. Further, the anti-skid control is changed to exhibit such a trend that the lower the frictional coefficient (mu) of the road surface, the lower the braking pressure becomes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は制動時に車輪がロックしそうになると制動圧を
7クチユエータの作動により減圧し、この減圧により車
輪の回転が復帰すると再び制動圧を復圧し、以下この作
動をくりかえすことにより車輪のロック状態を回避する
アンチスキッド制御装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention reduces the braking pressure by operating a 7-cut unit when the wheels are about to lock during braking, and when the wheel rotation returns due to this pressure reduction, the braking pressure is restored again. The present invention relates to an anti-skid control device that avoids a locked state of the wheels by repeatedly applying pressure and repeating this operation.

〔従来の技術〕[Conventional technology]

従来、アンチスキッド制御では、車輪速の加減速度、擬
似車体速とのスリラグ量で制動圧の加減速を行っている
。しかし、路面のμ(摩擦係数)の変化にもこれらの検
出レベルは独立で一定であり、的確な制御と言えるもの
ではない。又、車体の減速度を測定するため減速度セン
サを搭載し、路面μの推定に用いる装置もあつto 〔発明が解決しようとする問題点〕 上記のように従来装置では、路面μの変化によって制御
内容が適確でなく、また路面μを推定するのに特別なセ
ンサが必要でめった。
Conventionally, in anti-skid control, braking pressure is accelerated or decelerated based on the amount of lag between the acceleration/deceleration of wheel speed and the pseudo vehicle speed. However, these detection levels are independent and constant even when μ (friction coefficient) of the road surface changes, and this cannot be said to be accurate control. There is also a device equipped with a deceleration sensor to measure the deceleration of the vehicle body and used to estimate the road surface μ. The control details were not accurate, and a special sensor was required to estimate the road surface μ.

本発明は上記のような問題点を解決するために成された
ものであり、あらゆる路面においてアンチスキッド制御
をより的確に行うことができるアンチスキッド制御装置
を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain an anti-skid control device that can perform anti-skid control more accurately on all road surfaces.

〔問題点を解決するための手段〕[Means for solving problems]

アンチスキッド制御中、擬似車体速のピーク値と前回の
ピーク値との差とその間経過しt時間とで路面μを推定
し、車輪速の減速度およびスリップ量の検出レベルを路
面μの値により変化させて制御を行うようにした。
During anti-skid control, the road surface μ is estimated based on the difference between the peak value of the pseudo vehicle speed and the previous peak value and the elapsed time t, and the detection level of wheel speed deceleration and slip amount is determined based on the road surface μ value. I tried to control it by changing it.

〔作 用〕[For production]

路面μを推定することにより、この路面μに適し定的確
できめ細かい制御が可能となる。
By estimating the road surface μ, it is possible to perform precise and precise control appropriate to the road surface μ.

〔実施例〕〔Example〕

以下、本発明の実施例を図面とともに説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1aは右前輪、1bは左前輪、1cは
後輪、2はマイクロコンピュータを内蔵し文制御回路、
3a〜3Cは夫々制御回路2の駆動信号により各車輪1
a〜ICに対する制動圧を減圧、加圧するアクチュエー
タ、4&〜4Cは夫々車輪1a〜ICt−制動する制動
器である。制御回路2内には各車輪1a〜ICの軍輪速
含夫々検出する車輪速検出手段5a〜5C1各車輪速の
うち最も高速なものを選出するセレクトハイ選出手段6
、一制御周期前の擬似車体速から所定量を減算する擬似
車体速減算器7、該減算器7の出力とセレクトハイ選出
手段6の出力を比較し、高速の方を擬似車体速とする擬
似車体速決定手段8、擬似車体速のピーク値を検出し、
前回のピーク値との差とその間に経過した時間により単
体減速度を求め、これを路面μと推定する路面声推定手
段9、および各車輪速と擬似車体速と路面μによりいわ
ゆるアンチスキッド制御を判定し、路面μの値によp高
μ路よシ低μ路においてよ〕制動圧を減圧する傾向にな
るように制御を変更し、アクチュエータ3a〜3cの駆
動信号を出力するアンチスキッド制御判定手段10を設
ける。
In FIG. 1, 1a is the right front wheel, 1b is the left front wheel, 1c is the rear wheel, 2 is a sentence control circuit with a built-in microcomputer,
3a to 3C, each wheel 1 is controlled by a drive signal from the control circuit 2, respectively.
Actuators 4 and 4C are actuators that reduce and increase the braking pressure for a to IC, and brakes that brake the wheels 1a to ICt, respectively. In the control circuit 2, there are wheel speed detection means 5a to 5C for detecting the driving wheel speeds of the respective wheels 1a to IC, respectively, and select high selection means 6 for selecting the highest speed among the respective wheel speeds.
, a pseudo vehicle speed subtracter 7 that subtracts a predetermined amount from the pseudo vehicle speed one control cycle before, a pseudo vehicle speed subtracter 7 that compares the output of the subtracter 7 with the output of the select high selection means 6, and sets the higher speed as the pseudo vehicle speed. Vehicle speed determination means 8 detects the peak value of the pseudo vehicle speed;
A road surface noise estimating means 9 calculates the individual deceleration from the difference from the previous peak value and the time elapsed during that time and estimates this as the road surface μ, and performs so-called anti-skid control using each wheel speed, pseudo vehicle speed, and road surface μ. Anti-skid control judgment that changes the control so that the braking pressure tends to be reduced depending on the value of the road surface μ, and outputs drive signals for the actuators 3a to 3c. Means 10 are provided.

又、第2図は本実施例のより具体的構成を示し、後輪ブ
レーキは右後輪用4c、1と左後輪用4c2が設けられ
る。マイクロコンピュータを内蔵し友制御回路2は制御
プログラムに基づき各車輪速を演算し、擬似車体速を決
定し、車輪速による減速度制御あるいはスリップ量制御
あるいはその折衷した制御によって車両がロックしそう
になると各種アクチュエータに駆動信号を出力する。該
信号が減圧要求であれば右前輪用3ax、左前輪用3b
1、後輪用3c1の各減圧アクチュエータを作動させ、
逆に復圧要求であれば右前輪用3a2、左前輪用3b2
、後輪用3c2の各加圧アクチュエータを作動させる。
Further, FIG. 2 shows a more specific configuration of this embodiment, in which rear wheel brakes 4c, 1 for the right rear wheel and 4c2 for the left rear wheel are provided. The companion control circuit 2, which has a built-in microcomputer, calculates the speed of each wheel based on the control program, determines a pseudo vehicle speed, and detects when the vehicle is about to lock up through deceleration control based on wheel speed, slip amount control, or a combination thereof. Outputs drive signals to various actuators. If the signal is a pressure reduction request, 3ax for the right front wheel and 3b for the left front wheel.
1. Activate each pressure reducing actuator for rear wheel 3c1,
Conversely, if pressure recovery is required, 3a2 for the right front wheel and 3b2 for the left front wheel.
, actuate each pressure actuator for rear wheel 3c2.

一方、制動圧は制動液を几くわえている貯蔵室11から
制動圧の低下を検出する装置と連動するモータ12等に
より常に加圧され、蓄圧器13に蓄積される。制動圧は
加圧状態の場合加圧アクチュエータ3a2,3b2,3
c2 t−通)各制動器4a〜4cK供給され、減圧状
態の場合には減圧アクチュエータ3’al〜3c1  
を通り貯蔵室11に帰還する。加減圧アクチュエータ3
a〜3cが両方弁作動していない場合は現制動圧保持状
態となる。
On the other hand, the braking pressure is constantly increased from a storage chamber 11 containing braking fluid by a motor 12 etc. that is connected to a device for detecting a decrease in braking pressure, and is stored in a pressure accumulator 13. When the braking pressure is in the pressurized state, the pressurizing actuators 3a2, 3b2, 3
c2 t-through) Each brake 4a to 4cK is supplied, and in the case of a reduced pressure state, pressure reducing actuators 3'al to 3c1 are supplied.
It passes through and returns to storage room 11. Pressure adjustment actuator 3
If both valves a to 3c are not operating, the current braking pressure is maintained.

14はブレーキペダルで6る。14 is 6 with the brake pedal.

次に、マイクロコンピュータを内蔵した制御回路2の動
作を第3図のフローチャートを用いて説明する。まず、
スタートしてステップS1でイニシャライズしたのちス
テップS2で右前輪の車輪速VFRを演算する。演算方
法としては、一定周期内に入力され友車輪速・9ルス数
をP、測定を始めて最初にノぐルスが入力された時刻t
Tt、最終ノクルスが入力され次時刻t−Tnとして、 の式で求める周期測定法などがある。ここで、Kは定数
でめる。ステップS3では左前輪の車輪速VFLを同様
に演算し、ステップS4では後輪の車輪速VRt−、演
算する。ステップS5では各車輪速のうち最も高速な車
輪速SH(セレクトハイ)を選出する。ステラfs6で
は一制御周期前の擬似車体速Vpsから所定量αを減じ
、新しい擬似車体速Vpat−演算する。ステップS7
では擬似車体速VPNとセレクトハイ5Ht−比較する
。もしVPN<SHであればステップS8で擬似車体速
VPHにSHの値を代入する。ステップS9ではこの擬
似車体速から路面μを演算する。ステップS10ではい
わゆるアンチスキッド制御の判定を右前輪について行う
。制御方法として畔阜輪速VFilの加減速度を演算し
、所定値1以上の減速度が検出されると減圧モードとし
、所定値す以上の加速度が検出されると加圧モードとす
る減速度制御がある。
Next, the operation of the control circuit 2 incorporating the microcomputer will be explained using the flowchart shown in FIG. first,
After starting and initializing in step S1, the wheel speed VFR of the right front wheel is calculated in step S2. The calculation method is as follows: P is the friend wheel speed/9rus number input within a certain period, and is the time t when the nogle is input for the first time after starting the measurement.
There is a period measurement method in which Tt, the final Noculus is input, and the next time t-Tn is determined by the following formula. Here, K is a constant. In step S3, the wheel speed VFL of the front left wheel is similarly calculated, and in step S4, the wheel speed VRt- of the rear wheel is calculated. In step S5, the highest wheel speed SH (select high) is selected from among the respective wheel speeds. In STELLA fs6, a predetermined amount α is subtracted from the pseudo vehicle speed Vps one control period before, and a new pseudo vehicle speed Vpat- is calculated. Step S7
Now let's compare the pseudo vehicle speed VPN and Select High 5Ht. If VPN<SH, the value of SH is substituted into the pseudo vehicle speed VPH in step S8. In step S9, road surface μ is calculated from this pseudo vehicle speed. In step S10, so-called anti-skid control is determined for the right front wheel. As a control method, the acceleration/deceleration of the wheel speed VFil is calculated, and when a deceleration of a predetermined value of 1 or more is detected, the decompression mode is set, and when the acceleration of a predetermined value or more is detected, the pressurization mode is set.Deceleration control There is.

又、擬似車体速VPNと車輪速との差つまりスリップ量
を演算し、所定値C以上のスリップ量が検出されると減
圧モードとし、所定値d以下のスリップ量となると加圧
モードとするスリップ量制御がある。さらに、減速度制
御とスリップ量制御全折衷しt方式のものもある。又、
路面μの値によって検出レベルである所定値a、b、c
、d@変更し、制御音きめ細かくする。路面μはOくμ
く1の範囲にあり、高μ路ではa、b、c、dの値を低
μ路の時と比較して大きな値とする。そして、減圧モー
ドと判定されるとステラ:7’S11で減圧アクチュエ
ータ3a1〜3clを駆動する信号を出力する。又、加
圧モードと判定されるとステップS12で加圧アクチュ
エータ3a2〜3c2を駆動する信号を出力する。現制
動圧保持状態であるか又はアンチスキッド状態でない即
ち通常制動状態であるならばステラ7’S13で両アク
チュエータ3a〜3cを非作動とするように信号を止め
る。
In addition, the difference between the pseudo vehicle speed VPN and the wheel speed, that is, the amount of slip, is calculated, and when a slip amount greater than a predetermined value C is detected, the pressure reduction mode is selected, and when the slip amount is less than a predetermined value d, the pressure mode is selected. There is quantity control. Furthermore, there is also a type that combines deceleration control and slip amount control. or,
Predetermined values a, b, c which are detection levels depending on the value of road surface μ
, d@ change to make the control sound more detailed. Road surface μ is Oku μ
The values of a, b, c, and d are set to be larger in the high μ road than in the low μ road. Then, when it is determined that the mode is the pressure reduction mode, a signal for driving the pressure reduction actuators 3a1 to 3cl is outputted in Stella 7'S11. Further, if it is determined that the pressurization mode is selected, a signal for driving the pressurization actuators 3a2 to 3c2 is outputted in step S12. If the current braking pressure is maintained or the anti-skid state is not present, that is, the normal braking state is present, the signal is stopped at Stella 7'S13 so as to deactivate both actuators 3a to 3c.

このステラfs10〜813で行われたことと同様なこ
と金ステップ814では左前輪について行い、ステラ7
’S15では後輪について実行する。
The same thing that was done for this Stella fs10-813 was done for the left front wheel in gold step 814, and Stella 7
'S15 is executed for the rear wheels.

ステップS15が終了すると再びステップS2に戻り、
以下の各ステップが実行される。
When step S15 ends, the process returns to step S2 again.
The following steps are executed.

次に、路面μの演算の方法について第4図に基づいて説
明する。破Iw20はセレクトハイSHの車輪速データ
で、図示のように変化している。このセレクトハイSH
に基づき擬似車体速VPNは実1!21のように変化す
る。そこで、擬似車体速VPNがセレクトハイSHと同
一値(トラック中)であるか否かを調べると、トラック
信号22が得られる。又、擬似車体速が一制御周期前と
比較して減少したか否か即ち微分の符号を調べると信号
23が得られる。ここで、信号22.23が両万共出力
している最初の値を擬似車体速のピーク値とし、teこ
の時の時刻も記憶する。尚、A点はアンチスキッド制御
に初めて入ったときの擬似車体速である。そして、 の式で車体の減速度が求まる。この単体の減速度は路面
μとほぼ同一と考えられ、るので定数Nを考慮して の式で路面μが求まる。次の路面μ演算は路面μの変化
にすばやく対応できるように、A点と0点を用いるので
はなく、B点と0点を利用して演算する。
Next, a method of calculating the road surface μ will be explained based on FIG. 4. Break Iw20 is the wheel speed data of the select high SH, and it changes as shown. This select high SH
Based on this, the pseudo vehicle speed VPN changes as shown in the actual 1!21. Therefore, when it is checked whether the pseudo vehicle body speed VPN is the same value as the select high SH (during tracking), a track signal 22 is obtained. Further, a signal 23 is obtained by checking whether the pseudo vehicle speed has decreased compared to one control cycle ago, that is, by checking the sign of the differential. Here, the first value at which both signals 22 and 23 are outputted is set as the peak value of the pseudo vehicle speed, and the time at this time is also stored. Note that point A is the pseudo vehicle speed when anti-skid control is entered for the first time. Then, the deceleration of the vehicle body can be found using the formula. This single deceleration is considered to be almost the same as the road surface μ, so the road surface μ can be found using a formula that takes into account the constant N. The next calculation of road surface μ is performed using point B and point 0 instead of point A and point 0 in order to quickly respond to changes in road surface μ.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、擬似車体速から路面の摩
擦係数を推定し、この値が低い路面では制動圧が小さく
なるように制御するようにしており、あらゆる路面にお
いて的確できめ細かいアンチスキッド制御を簡単に行う
ことができる。
As described above, according to the present invention, the coefficient of friction of the road surface is estimated from the simulated vehicle speed, and the braking pressure is controlled to be small on the road surface where this value is low. Easy to control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は夫々本発明装置のブロック構成図
および具体的構成図、第3図は本発明装置の制御動作を
示すフローチャート、第4図は本発明において擬似車体
速から路面摩擦係数を演算する説明グラフでおる。 1a〜IC・・・車輪、3a〜3C・・・加減圧アクチ
ュエータ、4a〜4C・・・制動器、5a〜5C・・・
車輪速、6・・・セレクトハイ選出手段、7・・・擬似
車体速減算器、8・・・擬似車体速決定手段、9・・・
路面μ推定手段、10・・・アンチスキッド制御判定手
段。 尚、図中同一符号は同−又は相当部分を示す。
1 and 2 are a block diagram and a specific configuration diagram of the device of the present invention, FIG. 3 is a flowchart showing the control operation of the device of the present invention, and FIG. Here is an explanatory graph that calculates . 1a-IC...wheel, 3a-3C...pressure adjustment actuator, 4a-4C...brake device, 5a-5C...
Wheel speed, 6... Select high selection means, 7... Pseudo vehicle speed subtractor, 8... Pseudo vehicle speed determining means, 9...
Road surface μ estimating means, 10...Anti-skid control determining means. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)制動時に車輪がロックしそうになると制動圧をア
クチュエータの作動により減圧し、この減圧により車輪
の回転が復帰すると再び制動圧を復圧し、この作動をく
り返すことにより車輪のロック状態を回避して車両を安
全に制動させるアンチスキッド制御装置において、2つ
以上の車輪と、各車輪の制動圧を夫々減圧または加圧す
るアクチュエータと、各車輪を夫々制動する制動器と、
各車輪速を夫々検出する車輪速検出手段と、各車輪速の
うち最も高速を選出するセレクトハイ選出手段と、一制
御周期前の擬似車体速を所定量で減算する擬似車体速減
算器と、擬似車体速減算器の出力とセレクトハイ選出手
段の出力を比較し高速の方を最終の擬似車体速とする擬
似車体速決定手段と、この擬似車体速のピーク値を検出
し前回のピーク値との差とその間の経過時間とから路面
摩擦係数を推定する路面摩擦係数推定手段と、各車輪速
と擬似車体速と路面摩擦係数によりアンチスキッド制御
を判定し、路面摩擦係数の値が低い路面ほど制動圧を緩
和するようにアクチュエータに駆動信号を出力するアン
チスキッド制御判定手段を備えたことを特徴とするアン
チスキッド制御装置。
(1) When the wheels are about to lock up during braking, the brake pressure is reduced by actuating the actuator, and when the wheels return to rotation due to this pressure reduction, the braking pressure is restored again, and this operation is repeated to avoid the wheel lock condition. An anti-skid control device for safely braking a vehicle, comprising two or more wheels, an actuator for reducing or increasing the braking pressure of each wheel, and a brake for braking each wheel, respectively;
A wheel speed detection means for detecting each wheel speed, a select high selection means for selecting the highest speed among each wheel speed, and a pseudo vehicle speed subtractor for subtracting the pseudo vehicle speed one control period before by a predetermined amount; A pseudo vehicle speed determining means compares the output of the pseudo vehicle speed subtracter and the output of the select high selection means and sets the higher speed as the final pseudo vehicle speed, and detects the peak value of this pseudo vehicle speed and compares it with the previous peak value. and a road surface friction coefficient estimating means that estimates the road surface friction coefficient from the difference between and the elapsed time, and determines anti-skid control based on each wheel speed, pseudo vehicle speed, and road surface friction coefficient. An anti-skid control device comprising anti-skid control determining means for outputting a drive signal to an actuator so as to reduce braking pressure.
JP9155185A 1985-04-25 1985-04-25 Anti-skid control device Granted JPS61247556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9155185A JPS61247556A (en) 1985-04-25 1985-04-25 Anti-skid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9155185A JPS61247556A (en) 1985-04-25 1985-04-25 Anti-skid control device

Publications (2)

Publication Number Publication Date
JPS61247556A true JPS61247556A (en) 1986-11-04
JPH0370657B2 JPH0370657B2 (en) 1991-11-08

Family

ID=14029632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9155185A Granted JPS61247556A (en) 1985-04-25 1985-04-25 Anti-skid control device

Country Status (1)

Country Link
JP (1) JPS61247556A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305065A (en) * 1987-06-04 1988-12-13 Sumitomo Electric Ind Ltd wheel speed control device
JPH01218958A (en) * 1988-02-29 1989-09-01 Nissan Motor Co Ltd Antiskid control device
JPH01218957A (en) * 1988-02-29 1989-09-01 Nissan Motor Co Ltd Antiskid control device
JPH01233148A (en) * 1988-03-14 1989-09-18 Nissan Motor Co Ltd Antiskid control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305065A (en) * 1987-06-04 1988-12-13 Sumitomo Electric Ind Ltd wheel speed control device
JPH01218958A (en) * 1988-02-29 1989-09-01 Nissan Motor Co Ltd Antiskid control device
JPH01218957A (en) * 1988-02-29 1989-09-01 Nissan Motor Co Ltd Antiskid control device
JPH01233148A (en) * 1988-03-14 1989-09-18 Nissan Motor Co Ltd Antiskid control device

Also Published As

Publication number Publication date
JPH0370657B2 (en) 1991-11-08

Similar Documents

Publication Publication Date Title
JP2715281B2 (en) How to determine the actuation threshold for automatic braking
US5458404A (en) Redundant wheel sensor signal processing in both controller and monitoring circuits
EP2187223B1 (en) System and method for compensating vehicle sensor signals
JP6767984B2 (en) Methods for monitoring brakes for automobiles, braking systems for implementing this method, as well as automobiles with such braking systems.
JPH06156242A (en) Detection of vehicle condition and method for generating identifying signal for said condition
JP2620998B2 (en) Vehicle body speed estimation method in antilock control device for vehicle
JP2009023466A (en) Brake hydraulic pressure control device for vehicles
JPH0550903A (en) Anti-lock control device
JPS61247556A (en) Anti-skid control device
JPH0316863A (en) Antilock control method for vehicle
US20030111900A1 (en) System for estimating brake-fluid pressure
JPH0367770A (en) Anti-lock control method for vehicle
US5221127A (en) Circuit configuration for monitoring an anti-lock brake system
JPH11503387A (en) Differential brake control device for road vehicles
US5185703A (en) Anti-lock control method for automotive vehicles
JP4440459B2 (en) Method and apparatus for controlling or adjusting braking force distribution
JP3318942B2 (en) Calculation device for estimated vehicle speed
US5803557A (en) Anti-lock brake control system for vehicle
JPS61229655A (en) Antiskid controller
JPS62155161A (en) Anti skid control method
JP2782365B2 (en) Anti-lock control method for four-wheel drive vehicle
JPH06286590A (en) Brake liquid pressure control device
JP4507397B2 (en) Lock state detection device
JP2707318B2 (en) Anti-lock control method for four-wheel drive vehicle
JPH11190741A (en) Method for converting output value of g sensor into acceleration/deceleration of vehicle and method for detecting abnormality of g sensor