JPS61245511A - Dc and ac current transformer - Google Patents
Dc and ac current transformerInfo
- Publication number
- JPS61245511A JPS61245511A JP61022811A JP2281186A JPS61245511A JP S61245511 A JPS61245511 A JP S61245511A JP 61022811 A JP61022811 A JP 61022811A JP 2281186 A JP2281186 A JP 2281186A JP S61245511 A JPS61245511 A JP S61245511A
- Authority
- JP
- Japan
- Prior art keywords
- current transformer
- current
- air gap
- amplifier
- ferromagnetic core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/207—Constructional details independent of the type of device used
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase AC
- H01F38/28—Current transformers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Transformers For Measuring Instruments (AREA)
- Hybrid Cells (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 (産業上の利用分腎) 本発明は直流及び交流用の変流器に関する。[Detailed description of the invention] (Industrial use portion) The present invention relates to a current transformer for direct current and alternating current.
(従来の技術)
エアギャップを有しかつ2つの巻線を支持したコアと、
エアギャップを横切る磁場を感知してこの磁場に応じた
電気信号を与える素子と、この電気信号によって制御さ
れてこの電気信号を発生した磁場を消去しようとする方
向に2つの巻線の一方に給電する増幅器と、この増幅器
によって給電される巻線と直列に接続された電流測定装
置とから成る磁気回路で構成された直流及び交流用の変
流器はすでに周知である。(Prior art) A core having an air gap and supporting two windings,
An element that senses a magnetic field across the air gap and provides an electrical signal in response to this magnetic field, and is controlled by this electrical signal to feed one of the two windings in a direction that attempts to eliminate the magnetic field that generated this electrical signal. Current transformers for direct and alternating current are already known, which consist of a magnetic circuit consisting of an amplifier and a current measuring device connected in series with a winding supplied by this amplifier.
この種の変流器は、直流及び比較的低い周波数の交流の
測定については完全に満足できる結果を与える。しかし
、交流の周波数が高くなると、主に一方においてはエア
ギャップによる漏れ磁束のため、他方においては増幅器
の周波数応答の関数として、系の応答性が低下する。Current transformers of this type give completely satisfactory results for measurements of direct current and of relatively low frequency alternating current. However, as the frequency of the alternating current increases, the responsiveness of the system decreases, primarily on the one hand due to leakage flux due to the air gap and on the other hand as a function of the frequency response of the amplifier.
(発明の目的と構成)
この発明の目的は、上記のような変流器の動的性能を改
良することにある。この目的は、磁気回路がエアギャッ
プを持たない第2の強磁性コアを備え、この第2のコア
が上記の巻線によって第1コアへ磁気的に結合されるこ
とによって達成される。(Objective and Structure of the Invention) An object of the present invention is to improve the dynamic performance of the current transformer as described above. This object is achieved in that the magnetic circuit comprises a second ferromagnetic core without an air gap, which second core is magnetically coupled to the first core by the above-mentioned windings.
添付の図面は周知の装置と、発明の目的を達成する装置
の一実施例を示し、以下図面を参照して詳しく説明する
。BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate a known device and an embodiment of the device achieving the objects of the invention, and will be described in detail below with reference to the drawings.
(実施例)
第1図に示した周知の装置では、変流器が矩形の強磁性
コア1から成る。コア1はエアギャップ2を有し、ここ
にエアギャップを横切る磁場を感知する素子3が配置さ
れている。素子3は特にホール効果セルで構成できる。EXAMPLE In the known device shown in FIG. 1, the current transformer consists of a rectangular ferromagnetic core 1. The core 1 has an air gap 2 in which an element 3 is arranged to sense the magnetic field across the air gap. Element 3 can in particular be constituted by a Hall effect cell.
このセルは、直列に配されその接続点がアースされた2
つの電池4.5から供給される電流によって給電される
。セル3は、その面を横切る磁場内に置かれると、流れ
る電流に対して直角に配置された2つの電極6と7間に
電圧を生じる。この電圧が利得の非常に高い増幅器8に
与えられ、増幅器8の出力がコア1を取り巻く二次巻線
9に供給される。図面では見やすくするため、巻線9が
セル3を含む枝路と別の枝路に巻き付けて示しであるが
、通常この二次巻線はセル3と同じ枝路に配置される。This cell consists of two cells arranged in series and whose connection point is grounded.
It is powered by current supplied by two batteries 4.5. When the cell 3 is placed in a magnetic field across its face, it produces a voltage between the two electrodes 6 and 7 placed at right angles to the flowing current. This voltage is applied to a very high gain amplifier 8 whose output is fed to a secondary winding 9 surrounding the core 1. In the drawing, for clarity, the winding 9 is shown wrapped around a branch separate from the branch containing the cell 3, but normally this secondary winding would be arranged in the same branch as the cell 3.
磁場がセル3に作用すると、増幅器は直ちに、巻線9内
にこの磁場を消去せしめる電流を生じる。As soon as a magnetic field acts on the cell 3, the amplifier produces a current in the winding 9 which cancels out this magnetic field.
この磁場は、1本の直線状導体から成ることが多い一次
巻線10に電流が流れることによって生し上記の電圧を
発生する。二次巻線9を流れる電流は電流計Aで測定さ
れ、電流計Aが一次巻線10を流れる電流に比例した表
示を与える。This magnetic field is generated by the passage of current through a primary winding 10, which often consists of a single straight conductor, producing the voltages mentioned above. The current flowing through the secondary winding 9 is measured by an ammeter A which gives an indication proportional to the current flowing through the primary winding 10.
3つの動作状態が認められる。これらの状態を第3図に
概略的に示す。Three operating states are recognized. These conditions are schematically shown in FIG.
a)静狗またほやも1的な状態、fo”’L:この状態
では、増幅器が直流にも適用可能な、1対1変流器の基
本関係を必要とする。つまり、磁気コア内の磁束はゼロ
で、二次巻線のアンペア回数が一次巻線のアンペア回数
と等しい。a) The Shizugu Matahoyamo one state, fo”'L: In this state, the amplifier requires the basic relationship of a one-to-one current transformer, which is also applicable to direct current. The magnetic flux is zero and the amperage of the secondary winding is equal to the amperage of the primary winding.
b)過渡状態、極点P1とP2で限定されたf、〜f3
:区間1)〜flIは増幅器の周波数利得過渡特性によ
る。区間f2〜f3は、エアギャップの存在による、低
周波数における二次信号のレベル低下によって特徴付け
られる。b) Transient state, f, ~f3 limited by poles P1 and P2
: The interval 1) to flI depends on the frequency gain transient characteristics of the amplifier. The interval f2-f3 is characterized by a reduction in the level of the secondary signal at low frequencies due to the presence of an air gap.
C)動的状態、fs〜fX+ : 装置が変流器として機能する。C) Dynamic state, fs~fX+: The device acts as a current transformer.
第2図は、動的性能を大幅に改善可能な変流器の一実施
例を概略的に示している。この改善のため、本変流器は
並置された2つのリング状磁気コア1).12を備えて
いる。コア1)はエアギャップ13を有し、ここに第1
図の素子3と同様のホール効果セルが配置されている。FIG. 2 schematically depicts one embodiment of a current transformer that can significantly improve dynamic performance. For this improvement, the present current transformer has two ring-shaped magnetic cores arranged side by side 1). It is equipped with 12. The core 1) has an air gap 13 in which the first
A Hall effect cell similar to element 3 in the figure is arranged.
このセルは電池4.5によって給電され、その出力が高
利得の増幅器8を駆動する。コア12は、エアギヤツブ
13内の磁場を磁気的に短絡するのを充分に防げる距離
だけコア1)から離れている。This cell is powered by a battery 4.5, the output of which drives a high gain amplifier 8. The core 12 is spaced from the core 1) by a distance sufficient to prevent magnetic shorting of the magnetic field in the air gear 13.
強磁性コア12はエアギャップを持たず、flより低い
周波数から周波数fx2までの範囲で正確な応答を与え
るように寸法法めしである。The ferromagnetic core 12 has no air gap and is dimensioned to provide accurate response in the range from frequencies below fl to frequencies fx2.
要するに、強磁性コア12と巻線によって形成される変
流器自体の低い方の遮断周波数に対応する極点P2は、
増幅器の遮断周波数に対応する極点P1より低い周波数
に位置する。従って、装置の遮断周波数は、foから周
知装置の周波数より高いfX2までリニアとなる。In short, the pole point P2 corresponding to the lower cutoff frequency of the current transformer itself formed by the ferromagnetic core 12 and the winding is
It is located at a frequency lower than the pole point P1 corresponding to the cut-off frequency of the amplifier. Therefore, the cutoff frequency of the device is linear from fo to fX2, which is higher than the frequency of the known device.
もちろん、数多くの変形実施例が可能である。Of course, many alternative embodiments are possible.
例えば実施上、強磁性コアは必ずしも矩形状でなくても
よく、また並置されなくともよい。−変形例では、一方
のコアを他方のコアの内側に置き、コンパクトな設計と
し得る。また、磁気回路12を、同軸状に配置され且つ
エアギャップを持ったコア1)の両側に設けた2つの強
磁性コアで構成することもできる。For example, in practice, the ferromagnetic cores do not necessarily have to be rectangular or juxtaposed. - In a variant, one core can be placed inside the other, resulting in a compact design. The magnetic circuit 12 can also be constructed of two ferromagnetic cores arranged coaxially and provided on both sides of the core 1) with an air gap.
第1図は周知の装置を示す。
第2図は本発明の一実施例を示す。
第3図は第1図の変流器の応答曲線図である。
第4図は第1図の変流器の応答曲線図である。
3・・・感知素子、8・・・増幅器、1)・・・第1の
強磁性コア、12・・・第2の強磁性コア、13・・・
エアギャップ、A・・・電流測定装置。FIG. 1 shows a known device. FIG. 2 shows an embodiment of the invention. FIG. 3 is a response curve diagram of the current transformer of FIG. FIG. 4 is a response curve diagram of the current transformer of FIG. 3... Sensing element, 8... Amplifier, 1)... First ferromagnetic core, 12... Second ferromagnetic core, 13...
Air gap, A... Current measuring device.
Claims (3)
磁性コアと、エアギャップを横切る磁場を感知してこの
磁場に応じた電気信号を与える素子と、この電気信号に
よって制御されてこの電気信号を発生した磁場を消去し
ようとする方向に2つの巻線の一方に給電する増幅器と
、この増幅器によって給電される巻線と直列に接続され
た電流測定装置とから成る磁気回路で構成された直流及
び交流用の変流器において、磁気回路がエアギャップを
持たない第2の強磁性コアを備え、該第2の強磁性コア
が上記巻線によって第1の強磁性コアへ磁気的に結合さ
れたことを特徴とする変流器。(1) A ferromagnetic core that has an air gap and supports two windings, an element that senses the magnetic field that crosses the air gap and provides an electric signal in response to this magnetic field, and a device that is controlled by this electric signal and that It consists of a magnetic circuit consisting of an amplifier that feeds one of the two windings in a direction that seeks to eliminate the magnetic field that generated the electrical signal, and a current measuring device connected in series with the winding that is fed by this amplifier. In a current transformer for direct current and alternating current, the magnetic circuit includes a second ferromagnetic core having no air gap, and the second ferromagnetic core is magnetically connected to the first ferromagnetic core by the winding. A current transformer characterized in that:
置された特許請求の範囲第(1)項記載の変流器。(2) The current transformer according to claim (1), wherein the two ferromagnetic cores are ring-shaped and coaxially arranged.
有し且つ並置されており、増幅器によって給電される巻
線が、各強磁性コアの少なくとも一部が内部を通過する
コイルを形成する特許請求の範囲第(2)項記載の変流
器。(3) the two ferromagnetic cores have substantially the same inner and outer diameters and are juxtaposed, and the winding fed by the amplifier forms a coil through which at least a portion of each ferromagnetic core passes. A current transformer according to claim (2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH499/85A CH662000A5 (en) | 1985-02-05 | 1985-02-05 | CURRENT TRANSFORMER FOR DIRECT AND ALTERNATING CURRENT. |
CH00499/85-2 | 1985-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61245511A true JPS61245511A (en) | 1986-10-31 |
Family
ID=4188404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61022811A Pending JPS61245511A (en) | 1985-02-05 | 1986-02-04 | Dc and ac current transformer |
Country Status (5)
Country | Link |
---|---|
US (1) | US4682101A (en) |
EP (1) | EP0194225B1 (en) |
JP (1) | JPS61245511A (en) |
CH (1) | CH662000A5 (en) |
DE (1) | DE3665957D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018072220A (en) * | 2016-10-31 | 2018-05-10 | 横河電機株式会社 | Current measurement device |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4862040A (en) * | 1987-03-18 | 1989-08-29 | Nilssen Ole K | Frequency-modulated inverter-type ballast |
US4851739A (en) * | 1987-06-09 | 1989-07-25 | Nilssen Ole K | Controlled-frequency series-resonant ballast |
FR2619925B1 (en) * | 1987-08-26 | 1989-12-22 | Bruni Olivier | STRONG CURRENT MEASURING DEVICE |
US4823075A (en) * | 1987-10-13 | 1989-04-18 | General Electric Company | Current sensor using hall-effect device with feedback |
FR2624617B1 (en) * | 1987-12-11 | 1990-05-11 | Europ Agence Spatiale | MAGNETICALLY COUPLED ELECTRIC CURRENT MEASURING APPARATUS |
FR2635224B1 (en) * | 1988-08-05 | 1990-11-02 | Petercem Sa | INTENSITY TRANSFORMER FOR DIRECT, ALTERNATIVE OR PULSED CURRENTS |
FR2645650B1 (en) * | 1989-04-06 | 1991-09-27 | Merlin Gerin | SYSTEM FOR CONTROLLING THE ISOLATION OF A DIRECT CURRENT NETWORK |
CH679527A5 (en) * | 1989-04-13 | 1992-02-28 | Lem Liaisons Electron Mec | |
DE3929452A1 (en) * | 1989-09-05 | 1991-03-07 | Asea Brown Boveri | Potential-less current measurer suitable for monitoring and protection - comprises magnetic field ring sensor with substrate having central opening for current conductor |
US5103163A (en) * | 1990-10-17 | 1992-04-07 | California Institute Of Technology | Current transducer |
US5180970A (en) * | 1992-02-10 | 1993-01-19 | Honeywell Inc. | Mechanically adjustable current sensor and method for making same |
FR2693831B1 (en) * | 1992-07-15 | 1994-10-14 | Abb Control Sa | Current-controlled transformer for direct, alternating or pulsed currents. |
US5493211A (en) * | 1993-07-15 | 1996-02-20 | Tektronix, Inc. | Current probe |
US5450000A (en) * | 1994-02-14 | 1995-09-12 | Unity Power Corporation | Using hall device for controlling current in a switchmode circuit |
US5479095A (en) * | 1994-06-30 | 1995-12-26 | Power Corporation Of America | Method and apparatus for measurement of AC and DC electrical current |
US5517154A (en) * | 1995-01-13 | 1996-05-14 | Tektronix, Inc. | Split-path linear isolation circuit apparatus and method |
CH690464A5 (en) * | 1995-02-23 | 2000-09-15 | Lem Liaisons Electron Mec | inductive measurement device for measurement of AC components superimposed on a high DC current. |
JPH08273952A (en) * | 1995-03-31 | 1996-10-18 | Ikuro Moriwaki | Plane current detector |
ES2113808B1 (en) * | 1995-09-29 | 1999-01-16 | Univ Valencia | CURRENT SENSOR OF VERY LOW IMPEDANCE AND HIGH STABILITY. |
US5850114A (en) * | 1996-12-23 | 1998-12-15 | Froidevaux; Jean-Claude | Device for improving the quality of audio and/or video signals |
US5995347A (en) * | 1997-05-09 | 1999-11-30 | Texas Instruments Incorporated | Method and apparatus for multi-function electronic motor protection |
EP1058278B1 (en) | 1999-06-04 | 2012-02-29 | Liaisons Electroniques-Mecaniques Lem S.A. | Wound magnetic circuit |
US6445171B2 (en) * | 1999-10-29 | 2002-09-03 | Honeywell Inc. | Closed-loop magnetoresistive current sensor system having active offset nulling |
US6459349B1 (en) | 2000-03-06 | 2002-10-01 | General Electric Company | Circuit breaker comprising a current transformer with a partial air gap |
DE10145415A1 (en) | 2001-09-14 | 2003-04-03 | Aloys Wobben | Instrument transformer, in particular for an inverter of a wind energy plant |
EP1450176A1 (en) * | 2003-02-21 | 2004-08-25 | Liaisons Electroniques-Mecaniques Lem S.A. | Magnetic field sensor and electrical current sensor therewith |
USD549172S1 (en) * | 2004-08-18 | 2007-08-21 | Sun Automobile Co., Ltd | Direct current stabilization power source device |
USD543503S1 (en) * | 2004-08-18 | 2007-05-29 | Sun Automobile Co., Ltd. | Direct current stabilization power source device |
JP4628987B2 (en) * | 2006-04-10 | 2011-02-09 | 矢崎総業株式会社 | Current sensor with temperature detection function |
US7309980B2 (en) * | 2006-05-08 | 2007-12-18 | Tektronix, Inc. | Current sensing circuit for use in a current measurement probe |
DE202007019127U1 (en) | 2007-03-19 | 2010-11-04 | Balfour Beatty Plc | Device for measuring a direct current component of a current flowing in conductors of alternating current paths superimposed by an alternating current component |
DE102008036582A1 (en) * | 2008-08-06 | 2010-02-11 | Reo Inductive Components Ag | Kompensationsstromumwandler |
CN102116786A (en) * | 2010-12-31 | 2011-07-06 | 广东电网公司电力科学研究院 | Neutral point direct current online measurement device for transformer |
CN102495321B (en) * | 2011-12-21 | 2014-04-16 | 中国科学院上海微系统与信息技术研究所 | Method for generating and identifying non-linear signal in semiconductor non-linear oscillation system |
EP2682762A1 (en) * | 2012-07-06 | 2014-01-08 | Senis AG | Current transducer for measuring an electrical current, magnetic transducer and current leakage detection system and method |
EP2690450B1 (en) | 2012-07-27 | 2014-07-09 | ABB Technology AG | A device for measuring the direct component of alternating current |
DE102012216554B4 (en) | 2012-09-17 | 2017-02-23 | Siemens Aktiengesellschaft | DC measurement |
RU2644574C1 (en) * | 2016-10-18 | 2018-02-13 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Device for measuring variable currents of high-voltage electric transmission line |
DE102018201359B4 (en) | 2018-01-30 | 2025-02-13 | Hsp Hochspannungsgeräte Gmbh | Current transformer and method of measuring with this |
EP3907511B1 (en) | 2020-05-08 | 2024-09-04 | Hamilton Sundstrand Corporation | Radiation hardened magnetic current sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48104034A (en) * | 1972-03-09 | 1973-12-26 | ||
JPS5922367A (en) * | 1982-07-29 | 1984-02-04 | Nec Corp | Semiconductor device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3525041A (en) * | 1966-08-08 | 1970-08-18 | Tektronix Inc | Magnetic field measuring method and device effective over a wide frequency range |
US4482862A (en) * | 1982-06-10 | 1984-11-13 | The Charles Stark Draper Laboratory, Inc. | Current sensor |
-
1985
- 1985-02-05 CH CH499/85A patent/CH662000A5/en not_active IP Right Cessation
-
1986
- 1986-01-17 DE DE8686810018T patent/DE3665957D1/en not_active Expired
- 1986-01-17 EP EP86810018A patent/EP0194225B1/en not_active Expired
- 1986-01-24 US US06/821,976 patent/US4682101A/en not_active Expired - Lifetime
- 1986-02-04 JP JP61022811A patent/JPS61245511A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48104034A (en) * | 1972-03-09 | 1973-12-26 | ||
JPS5922367A (en) * | 1982-07-29 | 1984-02-04 | Nec Corp | Semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018072220A (en) * | 2016-10-31 | 2018-05-10 | 横河電機株式会社 | Current measurement device |
KR20180048337A (en) * | 2016-10-31 | 2018-05-10 | 요코가와 덴키 가부시키가이샤 | Apparatus for measuring current |
CN108020702A (en) * | 2016-10-31 | 2018-05-11 | 横河电机株式会社 | Current-flow test set |
US10613120B2 (en) | 2016-10-31 | 2020-04-07 | Yokogawa Electric Corporation | Current measurement device |
CN108020702B (en) * | 2016-10-31 | 2021-08-06 | 横河电机株式会社 | Current measuring device |
Also Published As
Publication number | Publication date |
---|---|
US4682101A (en) | 1987-07-21 |
DE3665957D1 (en) | 1989-11-02 |
CH662000A5 (en) | 1987-08-31 |
EP0194225B1 (en) | 1989-09-27 |
EP0194225A1 (en) | 1986-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61245511A (en) | Dc and ac current transformer | |
US4278940A (en) | Means for automatically compensating DC magnetization in a transformer | |
KR0135219B1 (en) | Direct current sensor | |
EP0550403A3 (en) | Apparatus for assessing insulation conditions | |
ES2104374T3 (en) | ELECTRICAL CURRENT MEASURING DEVICE INCLUDING A MAGNETIC FLOW SENSITIVE COLLECTOR AND SPECIFICALLY INTENDED FOR ELECTRIC TRACTION VEHICLES. | |
JPH01206267A (en) | Current detector | |
JPH0829456A (en) | Current sensor based on compensation principle | |
EP0335511A1 (en) | Active current transformer | |
US7193408B2 (en) | Open-loop electric current sensor and a power supply circuit provided with such sensors | |
US5587651A (en) | Alternating current sensor based on parallel-plate geometry and having a conductor for providing separate self-powering | |
US6137284A (en) | Method and apparatus for detecting supply voltage | |
US3054952A (en) | System for measuring or indicating the three-phase power | |
CN117289008A (en) | 150kV tunneling giant magneto-resistance direct current sensor | |
JPH09210610A (en) | High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc. | |
JP3326737B2 (en) | DC current sensor | |
EP0309254B1 (en) | Apparatus and process for deriving an AC voltage from a DC voltage including detecting direct current magnetic flux deflections of an electrical transformer | |
GB1475162A (en) | Meidensha kk device for and method of detecting short circuit in a transfor mer winding | |
JPH0355905Y2 (en) | ||
JPH06194388A (en) | Current detector | |
JPH0222529B2 (en) | ||
SU1339674A1 (en) | Apparatus for determining magnetic characteristics of transformer | |
JPS59965U (en) | current probe | |
SU911356A1 (en) | Galvano-magnetic measuring converter of power | |
SU1190303A2 (en) | Apparatus for measuring electric conductance | |
JP2673010B2 (en) | Supporting insulator with optical CT |