JPS61242313A - Magnetoresistive thin film head - Google Patents
Magnetoresistive thin film headInfo
- Publication number
- JPS61242313A JPS61242313A JP8233085A JP8233085A JPS61242313A JP S61242313 A JPS61242313 A JP S61242313A JP 8233085 A JP8233085 A JP 8233085A JP 8233085 A JP8233085 A JP 8233085A JP S61242313 A JPS61242313 A JP S61242313A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetoresistive
- magnetoresistive element
- film head
- film body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 82
- 230000005291 magnetic effect Effects 0.000 claims abstract description 39
- 230000000694 effects Effects 0.000 claims abstract description 21
- 239000002470 thermal conductor Substances 0.000 claims abstract description 12
- 239000004020 conductor Substances 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000010408 film Substances 0.000 claims description 10
- 238000000206 photolithography Methods 0.000 abstract description 2
- 238000004544 sputter deposition Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 43
- 238000001514 detection method Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/313—Disposition of layers
- G11B5/3133—Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
- G11B5/3136—Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure for reducing the pole-tip-protrusion at the head transducing surface, e.g. caused by thermal expansion of dissimilar materials
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/40—Protective measures on heads, e.g. against excessive temperature
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は磁気抵抗効果型薄膜ヘッドに係り、特に該薄膜
ヘッドの信頼性の向上に好適な磁気抵抗効果型薄膜ヘッ
ドに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a magnetoresistive thin film head, and particularly to a magnetoresistive thin film head suitable for improving the reliability of the thin film head.
高密度磁気記録の再生専用ヘッドとして磁気抵抗効果型
薄膜ヘッドの開発が盛んになっている。2. Description of the Related Art Magnetoresistive thin film heads are being actively developed as read-only heads for high-density magnetic recording.
磁気抵抗効果型薄膜ヘッドについては、アイ・イー・イ
ー トランザクションズオンマグネティックス、マグ7
、150 (1971) (IEEE Trans
。For magnetoresistive thin film heads, see IE Transactions on Magnetics, Mag 7.
, 150 (1971) (IEEE Trans.
.
Magnetics、 MAG7 、150 (197
1) )におけるRoP、 Huntによる“マグネト
レジステイブ リードアウト トランスデユーサ−”(
A MagnatoregistiveReadout
Transducer)と題する文献において論じら
れている。この磁気抵抗効果型薄膜ヘッドは、磁気ディ
スクあるいは磁気テープなどの磁性媒体からの信号磁界
により薄膜ヘッドに用いられている磁気抵抗素子の抵抗
が変化し、その抵抗変化を磁気抵抗素子の両端に設けら
れた一対の導電体層より検出することにより、上記磁性
媒体に記録された情報を読み取ることができる。そして
一般には、上記磁気抵抗素子の抵抗変化は、上記導電体
層より磁気抵抗素子に検出電流を流して上記抵抗変化に
比例した電圧変化に変換した形で、すなわち再生出力電
圧として一対の導電体層間で検知される。したがって、
上記磁性媒体に記録された情報は、再生出力電圧が高い
ほど精度良く読み取ることが可能であり、また再生出力
電圧は上記検出電流の増加に比例して増加するので、記
録情報を精度良く読み取るには検出電流を増加すればよ
い。Magnetics, MAG7, 150 (197
1) RoP in ), "Magnetoresistive readout transducer" by Hunt (
A MagnatoregistiveReadout
Transducer). In this magnetoresistive thin film head, the resistance of the magnetoresistive element used in the thin film head changes due to a signal magnetic field from a magnetic medium such as a magnetic disk or magnetic tape, and the resistance change is applied to both ends of the magnetoresistive element. The information recorded on the magnetic medium can be read by detecting the information from the pair of conductive layers. In general, the resistance change of the magnetoresistive element is detected by passing a detection current through the magnetoresistive element from the conductor layer and converting it into a voltage change proportional to the resistance change. Detected between layers. therefore,
Information recorded on the magnetic medium can be read with higher accuracy as the reproduction output voltage is higher, and since the reproduction output voltage increases in proportion to the increase in the detection current, it is possible to read the recorded information with higher accuracy. The detection current can be increased.
高密度磁気記録においては、特に、高周波数帯域におい
て再生出力電圧の低下が大きいので、検出電流を増加す
る必要が生じる。ところが、検出電流の増加にともなっ
て、上記磁気抵抗素子のジュール熱による発熱も大きく
なり、そのため磁気抵抗素子の抵抗が変動し、熱ノイズ
が増加する、あるいは通電寿命が低下するなどの欠点が
ある。しかし、従来、このような欠点を改善するような
手段は特に取られていなかった。In high-density magnetic recording, the drop in reproduction output voltage is particularly large in high frequency bands, so it is necessary to increase the detection current. However, as the detection current increases, the heat generated by the Joule heat of the magnetoresistive element also increases, which causes the resistance of the magnetoresistive element to fluctuate, resulting in disadvantages such as increased thermal noise and shortened current-carrying life. . However, conventionally, no particular measures have been taken to improve such drawbacks.
また、磁気抵抗効果型薄膜ヘッドは、上記磁性媒体にほ
ぼ密着させた状態で摺動させるため、上記磁気抵抗素子
と該磁性媒体とが摩擦することにより磁気抵抗素子の抵
抗が摩擦熱で変動し、摺動ノイズが増加するという欠点
もある。しかし、この点に関しても、特に配慮はされて
いなかった。Furthermore, since the magnetoresistive thin film head slides in almost intimate contact with the magnetic medium, the friction between the magnetoresistive element and the magnetic medium causes the resistance of the magnetoresistive element to fluctuate due to frictional heat. , there is also the disadvantage that sliding noise increases. However, no particular consideration was given to this point.
本発明の目的は、磁気抵抗効果型薄膜ヘッドの磁気抵抗
素子に発生する熱を効果的に除去し、熱ノイズ、摺動ノ
イズ等の発生の少ない、通電寿命の長い、信頼性の高い
磁気抵抗効果型薄膜ヘッドを提供することにある。An object of the present invention is to effectively remove the heat generated in the magnetoresistive element of a magnetoresistive thin-film head, and to provide a highly reliable magnetoresistive element that generates little thermal noise, sliding noise, etc., and has a long current life. An object of the present invention is to provide an effective thin film head.
上述したように、磁気抵抗素子の発熱にともなう熱ノイ
ズの発生や通電寿命の低下を抑えるには、発生した熱を
効果的に磁気抵抗素子からすみやかに除去すればよいと
考えられる。そこで、まず、絶縁層などの保護膜のない
磁気抵抗素子に、その両端に設けられた導電体層から素
子電流を流して磁気抵抗素子における発熱の現象を調べ
た。その結果、素子電流の増加にともなって磁気抵抗素
子の中央部から酸化が始まり、徐々に両端の導電体層の
方向へ酸化が進行し最終的に素子の中央部が破断するが
、導電体層に近接した領域の素子は全く酸化されないこ
とがわかった。この現象は、磁気抵抗素子の発熱は素子
中央部で最も大きいことを示すとともに、素子の両端に
設けられた導電体層からの放熱が非常に大きいことをも
示すものである。したがって、この結果をもとに、上記
磁気抵抗素子に発生した熱を効果的に除去するには、上
記導電体層のような放熱体を素子上に設け、特に素子中
央部の熱を優先的に除去するような構造とすればよいと
考えた。以上の考えに基づいて、上述した該磁気抵抗効
果型薄膜ヘッドの欠点の解決策を案出した。As described above, in order to suppress the generation of thermal noise and the reduction in the energization life due to the heat generation of the magnetoresistive element, it is considered that the generated heat should be effectively and promptly removed from the magnetoresistive element. Therefore, first, the phenomenon of heat generation in the magnetoresistive element was investigated by passing an element current through the conductor layers provided at both ends of the magnetoresistive element without a protective film such as an insulating layer. As a result, as the element current increases, oxidation starts from the center of the magnetoresistive element, and oxidation gradually progresses toward the conductor layers at both ends, eventually breaking the center of the element. It was found that the device in the region close to was not oxidized at all. This phenomenon indicates that the heat generation of the magnetoresistive element is greatest at the center of the element, and also indicates that the heat dissipated from the conductor layers provided at both ends of the element is extremely large. Therefore, based on this result, in order to effectively remove the heat generated in the magnetoresistive element, a heat dissipation body such as the above-mentioned conductive layer is provided on the element, and in particular, the heat in the center of the element is preferentially removed. I thought that it would be good to have a structure that would remove it. Based on the above considerations, we devised a solution to the drawbacks of the magnetoresistive thin film head described above.
本発明は、さらに次の知見に基づくものである。The present invention is further based on the following findings.
絶縁層で表面を被覆しである磁気シールド層のない該磁
気抵抗素子についてみると、該素子に発生したジュール
熱は該素子の両端に設けられた導電体層と、該素子の接
している基板面と、該素子の表面を覆っている絶縁層と
の3つの経路から伝達されることになる。したがって、
素子から伝達される熱量は、それら3つの経路の熱電導
率が高いほど大きくなると予想される。そこで、実際に
磁気抵抗素子を熱電導率の異なる基板上に作製して、そ
れらの素子の通電寿命時間を調べた結果、熱電導率の高
い基板上に作製した磁気抵抗素子の通電寿命時間が長く
なること、また、熱電導率の高い絶縁層で該素子を被覆
した場合も、素子の通電寿命時間は同様に長くなること
がわかった。さらに、磁気抵抗素子を挟むように磁気シ
ールド層なの熱良導体を設けである場合には、さらに素
子の通電寿命時間が大幅に伸びるという現象があること
もわかった。このような現象を考慮して、磁気抵抗効果
型薄膜ヘッドの上記欠点の解決策を案出した。When considering a magnetoresistive element whose surface is coated with an insulating layer but does not have a magnetic shield layer, the Joule heat generated in the element is transferred to the conductive layer provided at both ends of the element and the substrate in contact with the element. It is transmitted through three paths: the surface and the insulating layer covering the surface of the element. therefore,
The amount of heat transferred from the element is expected to increase as the thermal conductivity of these three paths increases. Therefore, as a result of actually fabricating magnetoresistive elements on substrates with different thermal conductivities and investigating the current-carrying lifespan of these elements, we found that the current-carrying lifespan of magnetoresistive elements fabricated on substrates with high thermal conductivity was It was also found that when the element was coated with an insulating layer having high thermal conductivity, the energized life time of the element also became longer. Furthermore, it has been found that when a good thermal conductor such as a magnetic shield layer is provided to sandwich the magnetoresistive element, there is a phenomenon in which the energized life time of the element is further extended significantly. Taking these phenomena into consideration, we have devised a solution to the above-mentioned drawbacks of magnetoresistive thin film heads.
以下に実施例によって本発明を詳細に述べる。 The present invention will be described in detail with reference to Examples below.
実施例1
第1図は本発明の一実施例による磁気抵抗効果型薄膜ヘ
ッドの磁気抵抗素子部分の平面図(第1図(a)とその
A−A’断面図(第1図(b))を示す。本発明による
磁気抵抗素子1は、その両端に導電体層2が設けられて
おり、さらに、磁性媒体対向面3と反対側の側端部上に
接するように、AQやCuなどの熱良導体よりなる金属
薄膜体4が設けられている。この金属薄膜体4はスパッ
タリングや蒸着などの方法とホトリソグラフィーの手法
により作製することができる。さらにまた、これらを挟
むように絶縁層6を介して一対の磁気シールド層5が設
けられた構成となっている。この他、実際の磁気抵抗効
果型薄膜ヘッドでは磁気抵抗素子1にバイアス磁界を印
加するためのバイアス印加手段が必要であるが、本図で
は省略しである。バイアス印加手段には色々あるが、本
発明は全てのバイアス印加手段に適用可能である。とこ
ろで、磁気抵抗素子1には、磁性媒体からの信号磁界H
を読み取るために素子電流工が通電されるが、上述した
ように該磁気抵抗素子は素子電流のジュール熱により発
熱し、それが熱ノイズの増加あるいは通電寿命の低下の
原因となる。しかし、本発明によれば、磁気抵抗素子に
発生した熱は第1図中に矢印で示されたように、素子の
側端部上に設けられた金属薄膜体4よりすみやかに除去
し得るので、磁気抵抗素子の温度上昇を効果的に抑制す
ることが可能である。第2図および第3図は本発明を磁
気抵抗効果型薄膜ヘッドに適用した時の効果を示した図
である。第2図は該薄膜ヘッドの通電寿命時間と素子電
流との関係に及ぼす本発明の効果、第3図は該薄膜ヘッ
ドの熱ノイズと素子電流との関係に及ぼす本発明の効果
を示す。第2図、第3図によれば曲線11として示した
従来型の磁気抵抗効果型薄膜ヘッドに比べて、本発明を
適用した薄膜ヘッド(曲線12)の通電寿命時間は同一
素子電流において大幅に増加し、熱ノイズも低下するこ
とがわかる。このように本発明は、磁気抵抗効果型薄膜
ヘッドの信頼性を向上する効果がある。Embodiment 1 FIG. 1 is a plan view (FIG. 1(a)) of a magnetoresistive element portion of a magnetoresistive thin film head according to an embodiment of the present invention and its AA' cross-sectional view (FIG. 1(b)). ).The magnetoresistive element 1 according to the present invention is provided with a conductive layer 2 at both ends thereof, and is further provided with a conductive layer 2 such as AQ or Cu so as to be in contact with the side end opposite to the magnetic medium facing surface 3. A metal thin film body 4 made of a good thermal conductor is provided.This metal thin film body 4 can be produced by a method such as sputtering or vapor deposition, or a photolithography method.Furthermore, an insulating layer 6 is provided to sandwich the metal thin film body 4. A pair of magnetic shield layers 5 are provided through the magnetoresistive element 1.In addition, in an actual magnetoresistive thin film head, a bias application means is required to apply a bias magnetic field to the magnetoresistive element 1. However, it is omitted in this figure. Although there are various bias application means, the present invention is applicable to all bias application means. Incidentally, the magnetoresistive element 1 is provided with a signal magnetic field H from a magnetic medium.
In order to read the current, the element current is energized, but as described above, the magnetoresistive element generates heat due to the Joule heat of the element current, which causes an increase in thermal noise or a reduction in the energization life. However, according to the present invention, the heat generated in the magnetoresistive element can be quickly removed by the metal thin film body 4 provided on the side end of the element, as indicated by the arrow in FIG. , it is possible to effectively suppress the temperature rise of the magnetoresistive element. FIGS. 2 and 3 are diagrams showing the effects when the present invention is applied to a magnetoresistive thin film head. FIG. 2 shows the effect of the present invention on the relationship between the energization life time of the thin film head and the element current, and FIG. 3 shows the effect of the present invention on the relationship between the thermal noise of the thin film head and the element current. According to FIGS. 2 and 3, compared to the conventional magnetoresistive thin film head shown as curve 11, the current life time of the thin film head to which the present invention is applied (curve 12) is significantly longer at the same element current. It can be seen that the thermal noise increases and the thermal noise also decreases. As described above, the present invention has the effect of improving the reliability of the magnetoresistive thin film head.
実施例2
第4図は本発明の第2の実施例による磁気抵抗効果型薄
膜ヘッドの磁気抵抗素子部分の平面図を示す。本実施例
は、上記実施例1に示した金m薄膜体4の中央部を、磁
気抵抗素子1の少なくとも中央部を覆うように突出させ
た構成となっており、素子に発生した熱の除去は上記実
施例1の場合よりも効率的である。したがって、本実施
例の効果は第2図および第3図に示した曲線13のよう
に上記実施例(曲m12)の場合より大きく、通電寿命
時間より長い、熱ノイズのより低い磁気抵抗効果型薄膜
ヘッドの実現が可能である。Embodiment 2 FIG. 4 shows a plan view of a magnetoresistive element portion of a magnetoresistive thin film head according to a second embodiment of the present invention. In this example, the central part of the gold m thin film body 4 shown in Example 1 is made to protrude so as to cover at least the central part of the magnetoresistive element 1, and the heat generated in the element is removed. is more efficient than the case of Example 1 above. Therefore, the effect of this embodiment is larger than that of the above embodiment (curve m12) as shown by curve 13 shown in FIGS. It is possible to realize a thin film head.
実施例3
第5図および第6図に本発明の第3の実施例による磁気
抵抗効果型薄膜ヘッドの磁気抵抗素子部分の平面図を示
す。本実施例は上記実施例1および実施例2に示した熱
良導体よりなる金属薄膜体4の磁気抵抗素子と反対側の
一辺より、素子に近接するまで縦溝8を設けた構成とな
っている。本実施例では、素子に発生した熱の放熱の効
率をさほど低下することなく、金属薄膜体4を該素子に
接触させることによる出力電圧の低下を抑えることが可
能である。Embodiment 3 FIGS. 5 and 6 are plan views of a magnetoresistive element portion of a magnetoresistive thin film head according to a third embodiment of the present invention. This embodiment has a structure in which a vertical groove 8 is provided from one side of the metal thin film body 4 made of a good thermal conductor shown in Examples 1 and 2 above on the side opposite to the magnetoresistive element until it approaches the element. . In this embodiment, it is possible to suppress a decrease in the output voltage caused by bringing the thin metal film 4 into contact with the element without significantly reducing the efficiency of dissipating heat generated in the element.
実施例4
第7図に本発明の第4の実施例による磁気抵抗効果型薄
膜ヘッドの磁気抵抗素子部分の平面図を示す。本実施例
は、熱良導体である金属薄膜体4の中央部だけを、磁気
抵抗素子の少なくとも中央部を覆うように突出させた構
成となっている。したがって、本実施例では、実施例3
と同様に該素子に発生した熱の放熱の効率をさほど低下
することなく、金属薄膜体4を該素子に接触させること
による出力電圧の低下を抑えることができる。Embodiment 4 FIG. 7 shows a plan view of a magnetoresistive element portion of a magnetoresistive thin film head according to a fourth embodiment of the present invention. In this embodiment, only the central portion of the metal thin film body 4, which is a good thermal conductor, is made to protrude so as to cover at least the central portion of the magnetoresistive element. Therefore, in this example, Example 3
Similarly, it is possible to suppress a decrease in the output voltage caused by bringing the metal thin film body 4 into contact with the element without significantly reducing the efficiency of dissipating heat generated in the element.
実施例5
第8図は本発明の第5の実施例による磁気抵抗効果型薄
膜ヘッドの断面図を示す。本発明による磁気抵抗効果型
薄膜ヘッドは、基板11上に下部シールド層12を積層
し、その上に絶縁層13を介して熱良導体であるAnあ
るいはCuなどの非磁性体からなる金属薄膜体14を絶
縁層13と交互に積層し、さらに金属薄膜体14上に絶
縁層13を介して磁気抵抗素子15を設け、さらにその
上に絶縁層13を介して上部シールド層16を積層した
構成となっている。また1本図では省略しであるが、実
際の磁気抵抗効果型薄膜ヘッドでは磁気抵抗素子15の
両端に検出電流を流すための導電体層が設けられ、さら
に、磁気抵抗素子15にバイアス磁界を印加するためバ
イアス印加手段が設けられる。Embodiment 5 FIG. 8 shows a sectional view of a magnetoresistive thin film head according to a fifth embodiment of the present invention. In the magnetoresistive thin film head according to the present invention, a lower shield layer 12 is laminated on a substrate 11, and a metal thin film body 14 made of a non-magnetic material such as An or Cu, which is a good thermal conductor, is placed on top of the lower shield layer 12 via an insulating layer 13. are alternately laminated with insulating layers 13, further a magnetoresistive element 15 is provided on the metal thin film body 14 with an insulating layer 13 interposed therebetween, and an upper shield layer 16 is further laminated thereon with an insulating layer 13 interposed therebetween. ing. Although not shown in this figure, in an actual magnetoresistive thin film head, a conductive layer is provided at both ends of the magnetoresistive element 15 to allow a detection current to flow, and a bias magnetic field is applied to the magnetoresistive element 15. A bias applying means is provided for applying the bias.
バイアス印加手段には色々あるが、本発明は全てのバイ
アス印加手段に適用可能である。また、本実施例では該
金属薄膜体14を2層としであるが、金属薄膜体14は
単層としても、さらに下部シールド層12と磁気抵抗素
子15との間の距離内であれば何層としてもよい、この
場合、磁気抵抗素子15と金属薄膜体14との間の絶縁
層13が薄いほど効果が大きくなる。また、基板基板1
1上に積層した下部シールド層12と上部シールド層1
6はパーマロイ膜や非晶質磁性膜などの軟磁性体膜で作
成されているが、基板11および下部シールド層12の
両者をフェライトなどの軟磁化体で兼ねた構成としても
さしつかえない。このような構成の磁気抵抗効果型薄膜
ヘッドは、磁気抵抗素子15に導電体層より検出電流を
流し、磁性媒体17からの信号磁界Hによる磁気抵抗素
子の抵抗変化に対応した出力電圧を検出することにより
、磁性媒体17内に記録された情報を読み取ることがで
きる。しかし、上述したように磁気抵抗素子15では、
検出電流のジュール熱による発熱や磁性媒体との摺動時
の摩擦熱により素子温度が上昇し、それかもとで熱ノイ
ズが増加するあるいは通電寿命が低下するという問題が
ある。しかし、本発明によれば、磁気抵抗素子15と下
部シールド層12との間に設けた金属薄膜体14の多層
膜の熱電導性が極めて良好なので、磁気抵抗素子15に
発生した熱は、金属薄膜体14の多層膜からすみやかに
除去し得ることになり、磁気抵抗素子15の温度上昇を
効果的に抑制することが可能である。第9図および第1
0図は第8図に示す実施例による磁気抵抗効果型薄膜ヘ
ッドの効果を示す図である。第9図は薄膜ヘッドの通電
寿命時間と検出電流との関係に及ぼす効果、第10図は
薄膜ヘッドの熱ノイズと素子電流との関係に及ぼす効果
を示す、第9図、第10図によれば、曲線18として示
した従来型の磁気抵抗効果型薄膜ヘッドに比べて、本実
施例を適用した該薄膜ヘッド(曲線19)の通電寿命時
間は同一検出電流において大幅に増加し、熱ノイズも大
きく低下することがわかる。このように本実施例は、磁
気抵抗効果型薄膜ヘッドの信頼性を向上する効果がある
。Although there are various bias application means, the present invention is applicable to all of them. Further, in this embodiment, the metal thin film body 14 is made of two layers, but the metal thin film body 14 may be made of a single layer or may have any number of layers as long as it is within the distance between the lower shield layer 12 and the magnetoresistive element 15. In this case, the thinner the insulating layer 13 between the magnetoresistive element 15 and the metal thin film body 14, the greater the effect. In addition, the substrate substrate 1
A lower shield layer 12 and an upper shield layer 1 laminated on 1
6 is made of a soft magnetic film such as a permalloy film or an amorphous magnetic film, but it is also possible to have a structure in which both the substrate 11 and the lower shield layer 12 are made of a soft magnetic material such as ferrite. The magnetoresistive thin film head having such a configuration passes a detection current through the conductive layer to the magnetoresistive element 15 and detects an output voltage corresponding to a change in resistance of the magnetoresistive element due to a signal magnetic field H from the magnetic medium 17. By doing so, the information recorded in the magnetic medium 17 can be read. However, as mentioned above, in the magnetoresistive element 15,
There is a problem in that the element temperature rises due to heat generated by Joule heat of the detection current and frictional heat during sliding with the magnetic medium, which in turn increases thermal noise or shortens the energization life. However, according to the present invention, since the multilayer film of the metal thin film body 14 provided between the magnetoresistive element 15 and the lower shield layer 12 has extremely good thermal conductivity, the heat generated in the magnetoresistive element 15 is transferred to the metal thin film body 14. Since it can be quickly removed from the multilayer film of the thin film body 14, it is possible to effectively suppress the temperature rise of the magnetoresistive element 15. Figure 9 and 1
FIG. 0 is a diagram showing the effect of the magnetoresistive thin film head according to the embodiment shown in FIG. Figure 9 shows the effect on the relationship between the energization life time of the thin film head and the detected current, and Figure 10 shows the effect on the relationship between the thermal noise of the thin film head and the element current. For example, compared to the conventional magnetoresistive thin film head shown as curve 18, the current life time of the thin film head to which this embodiment is applied (curve 19) is significantly increased at the same detection current, and thermal noise is also reduced. It can be seen that this decreases significantly. As described above, this embodiment has the effect of improving the reliability of the magnetoresistive thin film head.
なお、絶縁層13はSin、などで構成されているが、
Afi、O,などの熱電導性のよい絶縁層を使用すれば
、本発明の効果はさらに大きくなる。Note that the insulating layer 13 is made of Sin, etc.
If an insulating layer with good thermal conductivity such as Afi, O, etc. is used, the effects of the present invention will be even greater.
実施例6
第11図は本発明の第6の実施例による磁気抵抗効果型
薄膜ヘッドの断面図を示す。本実施例は、第8図に示し
た実施例5の磁気抵抗効果型薄膜ヘッドにおける磁気抵
抗素子15と上部シールド層との間の絶縁層13をも熱
良導体である非磁性体からなる金属薄膜体21と絶縁層
13との多層膜構造とした構成となっている。本実施例
による磁気抵抗効果型薄膜ヘッドの動作は実施例5と全
く同様であるが、その効果は、該磁気抵抗素子15の両
側面に該金属薄膜体14.21の多層膜が設けられてい
るので、第9図および第10図の曲線20に示したよう
にさらに大きくなる。したがつて、本実施例によれば、
さらに信頼性の高い磁気抵抗効果型薄膜ヘッドの実現が
可能である。Embodiment 6 FIG. 11 shows a sectional view of a magnetoresistive thin film head according to a sixth embodiment of the present invention. In this embodiment, the insulating layer 13 between the magnetoresistive element 15 and the upper shield layer in the magnetoresistive thin film head of the fifth embodiment shown in FIG. It has a multilayer structure including a body 21 and an insulating layer 13. The operation of the magnetoresistive thin film head according to this embodiment is exactly the same as that of embodiment 5, but the effect is that the multilayer film of the metal thin film body 14 and 21 is provided on both sides of the magnetoresistive element 15. Therefore, it becomes even larger as shown by curve 20 in FIGS. 9 and 10. Therefore, according to this embodiment,
Furthermore, it is possible to realize a highly reliable magnetoresistive thin film head.
本発明によれば、磁気抵抗効果型薄膜ヘッドに使用する
磁気抵抗素子に発生するジュール熱や磁性媒体との摺動
時に発生する摩擦熱を、磁気抵抗素子の側端部あるいは
中央部に設けた熱良導体である金属薄膜体よりすみやか
に除去できるので、磁気抵抗素子部の温度上昇にともな
う素子の抵抗の変動を抑制することが可能である。これ
により、磁気抵抗素子の抵抗変動に起因する熱ノイズや
摺動ノイズを低減する効果がある。また、磁気抵抗素子
の温度上昇にともなって素子の通電寿命も低下するが、
上述のように本発明によれば素子の温度上昇を抑えるこ
とができるので、素子の通電寿命を増加する効果もある
。すなわち、本発明によれば信頼性の高い磁気抵抗効果
型薄膜ヘッドの実現が可能である。According to the present invention, Joule heat generated in a magnetoresistive element used in a magnetoresistive thin-film head and frictional heat generated when sliding with a magnetic medium can be absorbed by providing the magnetoresistive element at the side ends or in the center. Since it can be removed more quickly than a metal thin film, which is a good thermal conductor, it is possible to suppress fluctuations in the resistance of the magnetoresistive element due to an increase in temperature of the element. This has the effect of reducing thermal noise and sliding noise caused by resistance fluctuations of the magnetoresistive element. Additionally, as the temperature of the magnetoresistive element increases, the current life of the element also decreases.
As described above, according to the present invention, it is possible to suppress the temperature rise of the element, and therefore, there is also the effect of increasing the energized life of the element. That is, according to the present invention, it is possible to realize a highly reliable magnetoresistive thin film head.
第1図は本発明による第1の実施例の平面図およびA−
A’断面図、第2図および第3図は本発明の効果を示す
図、第4図、第5図、第6図、第7図、第8図および第
11図は本発明による他の実施例の平面図、第9図およ
び第10図は第8図に示す実施例の効果を説明するため
の図である。
1・・・磁気抵抗素子、2・・・導電体層、3・・・磁
性媒体対向面、4・・・金属薄膜体、5・・・磁気シー
ルド層、6・・・絶縁層、7・・・基板、8・・・縦溝
、11・・・従来型の薄膜ヘッドの特性曲線、12・・
・実施例1による薄膜ヘッドの特性曲線、13・・・実
施例2による薄膜ヘッドの特性曲線。
尊2侶 1f−3目
V4目FIG. 1 is a plan view of a first embodiment according to the present invention and A-
A' sectional view, FIGS. 2 and 3 are views showing the effects of the present invention, and FIGS. 4, 5, 6, 7, 8 and 11 are views showing other effects of the present invention. The plan view of the embodiment, FIGS. 9 and 10, are diagrams for explaining the effects of the embodiment shown in FIG. 8. DESCRIPTION OF SYMBOLS 1... Magnetoresistive element, 2... Conductor layer, 3... Magnetic medium opposing surface, 4... Metal thin film body, 5... Magnetic shield layer, 6... Insulating layer, 7... ... Substrate, 8... Vertical groove, 11... Characteristic curve of conventional thin film head, 12...
Characteristic curve of the thin film head according to Example 1, 13 Characteristic curve of the thin film head according to Example 2. Venerable 2nd Companion 1f-3rd V4th
Claims (1)
設けられた一対のシールド膜とを有する磁気抵抗効果型
薄膜ヘッドに於いて、該磁気抵抗効果素子の媒体対向面
と反対の側端部上に接するように熱良導体である金属薄
膜体を設けたことを特徴とする磁気抵抗効果型薄膜ヘッ
ド。 2、前記磁気抵抗効果素子の媒体対向面と反対の側端部
上に接するように設けられた熱良導体である金属薄膜体
の中央部を、前記素子の少なくとも中央部を覆うように
突出させたことを特徴とする特許請求の範囲第1項記載
の磁気抵抗効果型薄膜ヘッド。 3、前記磁気抵抗効果素子の媒体対向面と反対の側端部
上に接するように設けられた熱良導体である金属薄膜体
の前記素子との反対側の一辺より、前記素子に近接する
程度まで縦溝を設けたことを特徴とする特許請求の範囲
第1項または第2項記載の磁気抵抗効果型薄膜ヘッド。 4、前記磁気抵抗効果素子の媒体対向面と反対側に、前
記素子の側辺に近接するように熱良導体である金属薄膜
体を設け、前記金属薄膜体の中央部だけを、前記素子の
少なくとも中央部を覆うように突出させたことを特徴と
する磁気抵抗効果型薄膜ヘッド。 5、磁気抵抗効果素子と、その両側面に絶縁層を介して
設けられた一対の磁気シールド層と、前記磁気抵抗効果
素子に電流を流すための一対の導電体層より成る磁気抵
抗効果型薄膜ヘッドに於いて、前記磁気抵抗効果素子と
前記磁気シールド層との間の少なくとも一方の絶縁層を
熱良導体である非磁性体の金属薄膜体と絶縁層との多層
にしたことを特徴とする磁気抵抗効果型薄膜ヘッド。[Claims] 1. In a magnetoresistive thin film head having a magnetoresistive element and a pair of shield films provided on both sides of the magnetoresistive element with an insulating layer interposed therebetween, a medium of the magnetoresistive element is provided. A magnetoresistive thin film head, characterized in that a metal thin film body, which is a good thermal conductor, is provided in contact with the opposite side end of the opposing surface. 2. A central portion of a metal thin film body which is a good thermal conductor and is provided in contact with the end portion of the side opposite to the medium facing surface of the magnetoresistive element is made to protrude so as to cover at least the central portion of the element. A magnetoresistive thin film head according to claim 1, characterized in that: 3. From one side of the metal thin film body, which is a good thermal conductor, provided so as to be in contact with the end of the side opposite to the medium facing surface of the magnetoresistive element, on the side opposite to the element, to the extent that it is close to the element. A magnetoresistive thin film head according to claim 1 or 2, characterized in that a vertical groove is provided. 4. A metal thin film body that is a good thermal conductor is provided on the side opposite to the medium facing surface of the magnetoresistive element so as to be close to the sides of the element, and only the center portion of the metal thin film body is connected to at least one of the elements. A magnetoresistive thin film head characterized by a protruding part that covers the central part. 5. A magnetoresistive thin film consisting of a magnetoresistive element, a pair of magnetic shield layers provided on both sides of the magnetoresistive element via an insulating layer, and a pair of conductor layers for flowing current through the magnetoresistive element. In the magnetic head, at least one of the insulating layers between the magnetoresistive element and the magnetic shield layer is made of a multilayer consisting of a thin non-magnetic metal film that is a good thermal conductor and an insulating layer. Resistance effect thin film head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8233085A JPS61242313A (en) | 1985-04-19 | 1985-04-19 | Magnetoresistive thin film head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8233085A JPS61242313A (en) | 1985-04-19 | 1985-04-19 | Magnetoresistive thin film head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61242313A true JPS61242313A (en) | 1986-10-28 |
Family
ID=13771544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8233085A Pending JPS61242313A (en) | 1985-04-19 | 1985-04-19 | Magnetoresistive thin film head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61242313A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018442A1 (en) * | 1993-12-30 | 1995-07-06 | Seagate Technology, Inc. | Amorphous diamond-like carbon gaps in magnetoresistive heads |
US5640292A (en) * | 1996-01-17 | 1997-06-17 | Seagate Technology, Inc. | Diamond-like carbon encapsulation of magnetic heads |
US5644455A (en) * | 1993-12-30 | 1997-07-01 | Seagate Technology, Inc. | Amorphous diamond-like carbon gaps in magnetoresistive heads |
US5658470A (en) * | 1995-12-13 | 1997-08-19 | Seagate Technology, Inc. | Diamond-like carbon for ion milling magnetic material |
US6215630B1 (en) | 1995-12-13 | 2001-04-10 | Seagate Technology Llc | Diamond-like carbon and oxide bilayer insulator for magnetoresistive transducers |
KR100563376B1 (en) * | 1997-04-25 | 2006-05-25 | 교세라 가부시키가이샤 | Substrate for thin film magnetic head and thin film magnetic head using it |
US7088560B2 (en) | 2002-04-10 | 2006-08-08 | Tdk Corporation | Thin film magnetic head including a heat dissipation layer, method of manufacturing the same and magnetic disk drive |
-
1985
- 1985-04-19 JP JP8233085A patent/JPS61242313A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018442A1 (en) * | 1993-12-30 | 1995-07-06 | Seagate Technology, Inc. | Amorphous diamond-like carbon gaps in magnetoresistive heads |
US5644455A (en) * | 1993-12-30 | 1997-07-01 | Seagate Technology, Inc. | Amorphous diamond-like carbon gaps in magnetoresistive heads |
US5658470A (en) * | 1995-12-13 | 1997-08-19 | Seagate Technology, Inc. | Diamond-like carbon for ion milling magnetic material |
US6215630B1 (en) | 1995-12-13 | 2001-04-10 | Seagate Technology Llc | Diamond-like carbon and oxide bilayer insulator for magnetoresistive transducers |
US5640292A (en) * | 1996-01-17 | 1997-06-17 | Seagate Technology, Inc. | Diamond-like carbon encapsulation of magnetic heads |
US5718949A (en) * | 1996-01-17 | 1998-02-17 | Seagate Technology, Inc. | Diamond-like carbon encapsulation of magnetic heads |
KR100563376B1 (en) * | 1997-04-25 | 2006-05-25 | 교세라 가부시키가이샤 | Substrate for thin film magnetic head and thin film magnetic head using it |
US7088560B2 (en) | 2002-04-10 | 2006-08-08 | Tdk Corporation | Thin film magnetic head including a heat dissipation layer, method of manufacturing the same and magnetic disk drive |
US7126794B2 (en) | 2002-04-10 | 2006-10-24 | Tdk Corporation | Thin film magnetic head including heat dissipation, method of manufacturing the same, and magnetic disk drive |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100623812B1 (en) | Sensor temperature reduction in magnetoresistive recording head | |
JPH04351706A (en) | Composite thin film magnetic head | |
JPS61242313A (en) | Magnetoresistive thin film head | |
US4700252A (en) | Magnetic thin film head | |
GB2391104A (en) | Thin film magnetic head | |
JPH05205224A (en) | Magnetic head | |
JPH0375929B2 (en) | ||
JPH03286413A (en) | Magneto-resistance effect type head | |
JPS61222012A (en) | Thin film magnetic head | |
JPH06195647A (en) | Magneto-resistance effect type thin film magnetic head | |
JPH06150260A (en) | Composite-type magnetic head | |
JPH07320236A (en) | Magnetic head | |
JP3160947B2 (en) | Magnetoresistive magnetic head | |
JPH0845026A (en) | Magneto-resistive magnetic head | |
JPH07210829A (en) | Magnetoresistive thin film magnetic head | |
JPH07307010A (en) | Magnetoresistive head | |
JPS61242315A (en) | Magnetoresistive thin film head | |
JPS59210521A (en) | Magneto-resistance effect type reproducing head | |
JPH05217128A (en) | Magnetoresistance effect type magnetic head | |
JPH05225530A (en) | Magnetoresistive head | |
JP2000132815A (en) | Magnetoresistive head and magnetic recording / reproducing device | |
JP2007305215A (en) | Magnetoresistance effect type magnetic head | |
JPH0234081B2 (en) | JIKIHETSUDO | |
JPH06150258A (en) | Magnetoresistive thin film head | |
JPH05101342A (en) | Magneto-resistance effect type head |