[go: up one dir, main page]

JPS6124208A - Amorphous magnetic material with good magnetic properties - Google Patents

Amorphous magnetic material with good magnetic properties

Info

Publication number
JPS6124208A
JPS6124208A JP59145054A JP14505484A JPS6124208A JP S6124208 A JPS6124208 A JP S6124208A JP 59145054 A JP59145054 A JP 59145054A JP 14505484 A JP14505484 A JP 14505484A JP S6124208 A JPS6124208 A JP S6124208A
Authority
JP
Japan
Prior art keywords
striped
waves
amorphous
magnetic
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59145054A
Other languages
Japanese (ja)
Inventor
Tsutomu Kaido
力 開道
Yasuo Okazaki
靖雄 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59145054A priority Critical patent/JPS6124208A/en
Publication of JPS6124208A publication Critical patent/JPS6124208A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として電磁機器用の鉄心として用いられる非
晶質磁性材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an amorphous magnetic material mainly used as an iron core for electromagnetic equipment.

(従来の技術) 変圧器や回転機などの電磁機器に使用される鉄心材料は
磁気特性として励磁特性が良く、鉄損の低いことが要求
され、励磁特性は特に磁束密度の高いことが必要である
(Prior technology) Iron core materials used in electromagnetic equipment such as transformers and rotating machines are required to have good magnetic excitation characteristics and low iron loss, and excitation characteristics particularly require high magnetic flux density. be.

この様な条件を満たす材料として、従来からけい素鋼の
薄帯が用いられて来たが、近年、液体から超急冷するこ
とにより、非晶質合金薄帯が製造される様になり、これ
が変圧器等の鉄心材料として注目を浴びている。かかる
非晶質合金薄帯は電気抵抗が高く、かつ板厚も薄いため
鉄損特性が優れておシ、従来のけい素鋼板にくらべて1
/2〜115に鉄損が低下する。しかし、非晶質合金薄
帯の鉄損は、理論的に求められる値に対して、なお高く
、更に鉄損を下げるべく、種々の努力が払われている。
Silicon steel ribbon has traditionally been used as a material that satisfies these conditions, but in recent years, amorphous alloy ribbon has been manufactured by ultra-quenching from a liquid. It is attracting attention as an iron core material for transformers, etc. Such amorphous alloy ribbon has high electrical resistance and thin plate thickness, so it has excellent iron loss characteristics, and is 1.
Iron loss decreases to /2~115. However, the iron loss of the amorphous alloy ribbon is still higher than the theoretically required value, and various efforts are being made to further reduce the iron loss.

いうまでもなく、非晶質合金薄帯の磁気特性は成分組成
によシ、飽和磁化が決まシ、且適当な熱処理を施すこと
により鉄損値も決まってくる。
Needless to say, the magnetic properties of an amorphous alloy ribbon depend on its composition, and the saturation magnetization is determined, and the iron loss value is also determined by appropriate heat treatment.

しかし、その一方、磁気特性は表面形状によって影響を
受け、表面の縞状波により、鉄損等が左右されることが
知られており、鉄損金ヒステリシス損と渦電流損に分離
して、磁性解析がなされている。たとえば、表面に人工
的にけがきなどで波を付与し、磁区細分化させ渦電流損
を低減させることで鉄損低下を実現させている。しかし
、この磁性改善法にも問題があシ、鉄損のうち渦電流損
は低下させることはできるものの、けがきなどによシ歪
が入いシやすくヒステリシス損が大きくなシ、全鉄損は
さほど改善されない。特開昭59−6319はその対策
として熱処理することによ広その歪を取り除き、ヒステ
リシス損の増加を防いでいるものの、このような歪は完
全には除くことはできない。このようにけがきなどの処
理は以上のような欠点に加えて、処理するための設備を
必要とし、コスト高につながる。したがってこqような
処理をせずに良好な磁気特性・が得られるならば非常に
好ましい。
However, on the other hand, it is known that magnetic properties are affected by the surface shape, and iron loss etc. are influenced by surface striped waves. Iron loss is separated into hysteresis loss and eddy current loss, and magnetic properties are An analysis has been made. For example, iron loss can be reduced by artificially scribing waves on the surface to subdivide the magnetic domains and reduce eddy current loss. However, there are problems with this method of improving magnetism.Although it is possible to reduce eddy current loss among iron losses, it is easily distorted by scribing, etc., resulting in large hysteresis loss, and total iron loss. is not much improved. As a countermeasure to this problem, Japanese Patent Application Laid-Open No. 59-6319 uses heat treatment to remove the distortion and prevent the increase in hysteresis loss, but such distortion cannot be completely eliminated. In addition to the above-mentioned disadvantages, such processing such as marking requires equipment for processing, leading to high costs. Therefore, it would be very preferable if good magnetic properties could be obtained without such treatment.

(発明が解決すべき問題点) 本発明は非晶質材料の表面にけがきを付与せずに鉄損を
低減できる材料を提供するものである。
(Problems to be Solved by the Invention) The present invention provides a material that can reduce core loss without scribing the surface of an amorphous material.

即ち、非晶質材料の表面形状を限定することにより、良
好な磁気特性を得ることを特徴とする非晶質磁性材料に
関するものである。
That is, the present invention relates to an amorphous magnetic material characterized in that good magnetic properties are obtained by limiting the surface shape of the amorphous material.

(問題点を解決するための手段) 以下に、この発明の非晶質磁性材料について詳しく述べ
る。
(Means for Solving the Problems) The amorphous magnetic material of the present invention will be described in detail below.

本発明は、磁性鉄心に用いられる非晶質磁性材料に適用
される。磁性鉄心は、商用周波数で使用される変圧器、
回転機の鉄心または高周波数域で用いられる変圧器、回
転機の鉄心を含む。非晶質磁性材料は、一般に高温で溶
した合金をロールなどに吹きつけ急冷してつくられるが
、この急冷過程において製造される非晶質材料の表面形
状は決定され種々の表面粗度の材料が製造されたシ、あ
るいは縞状波が発生したりする。
The present invention is applied to an amorphous magnetic material used in a magnetic core. Magnetic iron cores are used in transformers used at commercial frequencies,
Includes the iron core of rotating machines, transformers used in high frequency ranges, and iron cores of rotating machines. Amorphous magnetic materials are generally made by spraying a high-temperature molten alloy onto a roll or the like and then rapidly cooling it. The surface shape of the amorphous material produced during this quenching process is determined, and materials with various surface roughness are produced. This may result in the formation of waves or striped waves.

ここで本発明の縞状波とは非晶質材料の表面に約0.5
−〜10mピッチで粗度の大きい部分と小さい部分が、
長さ方向に周期的に生じるものや、板厚の周期的な変化
あるいは材料表面のうねりを示すO なお縞状波の強さとは、上記の粗度の大きい部分と小さ
い部分の差の程度を表わし、縞状波の方向は、粗度など
の周期的な変化の方向で表現する。
Here, the striped waves of the present invention are about 0.5 cm on the surface of the amorphous material.
- Large and small roughness areas at ~10m pitch,
The strength of striped waves refers to the degree of the difference between the areas with large and small roughness as described above. The direction of the striped wave is expressed by the direction of periodic changes such as roughness.

この縞状波の生じた材料は一般に長さ方向に励磁した場
合低い鉄損金示し、特に鉄損を分離してみると、渦電流
損が縞状波の弱いものに比べかなり低減することが明ら
かとなった。これは縞状波が材料の磁区を細分化したた
めであり、この縞状波のビ、チや強さにより渦電流損を
さげることができ、鉄損低減につながる。縞状波の方向
が長さ方向に対し、ある角度で形成されていても、90
0に近い角度でなければ磁区細分化の効果はあるので本
発明の範囲内である。この縞状波による渦電流損の低減
は商用周波数だけで効果があるだけでなく、高周波数に
おいてもさらに鉄損低域に与える効果が大きいものであ
る。
Materials with striped waves generally exhibit low iron loss when excited in the longitudinal direction, and especially when iron loss is separated, it is clear that the eddy current loss is considerably reduced compared to materials with weak striped waves. It became. This is because the striped waves subdivide the magnetic domains of the material, and the strength of the striped waves can reduce eddy current loss, leading to a reduction in iron loss. Even if the direction of the striped waves is formed at a certain angle with respect to the length direction, 90
If the angle is not close to 0, the effect of magnetic domain refining will be achieved and it is within the scope of the present invention. The reduction of eddy current loss by this striped wave is effective not only at commercial frequencies, but also at high frequencies, it has an even greater effect on low iron loss.

以上述べたような縞状波の生じている非晶質磁性材料は
低鉄損を示すが、磁性材料として使用するためには、こ
れに加えて磁束密度が高いことが好ましく、そのために
は非晶質材料の表面粗度が小さいことが必要である。
The above-mentioned amorphous magnetic material with striped waves exhibits low core loss, but in order to be used as a magnetic material, in addition to this, it is preferable to have a high magnetic flux density, and for that purpose, a non-crystalline magnetic material is required. It is necessary that the surface roughness of the crystalline material is small.

本発明の非晶質磁性材料は良い磁気特性を得るためには
、完全に非晶質構造であることが好ましいが、一部結晶
化していても磁気特性が良く、変圧器などの鉄心材とし
て使用できるならばかまわない。
In order to obtain good magnetic properties, the amorphous magnetic material of the present invention preferably has a completely amorphous structure, but even if it is partially crystallized, it has good magnetic properties and can be used as an iron core material for transformers. It doesn't matter if you can use it.

本発明において表面形状を測定する必要がある。In the present invention, it is necessary to measure the surface shape.

本発明では第4図に示すように材料に光をあてその正反
射光を検出しその表面形状を測定する方法で縞状波の強
さR4、そのピッチP1表面粗度Rtを定義する。すな
わち、回転中のロール5に材料2を長さ方向が円周方向
になるようにはりつけておき、光7をその材料にあてそ
の正反射光8を受光器3で検出し、検出回路4の出力の
変化により縞状波および表面粗度を測定した。検出回路
の出力波形は縞状波の発生している材料の場合第5図の
ようになる。同図に示されるように直流成分、交流成分
をそれぞれI、 、 I、、とし、さらに反射光すべて
受光した場合の出力を工。とじて、縞状波の強さ町を”
pp/Ia 、表面粗度R4を4フ−と定義した。縞状
波のピッチは交流成分の周期を測定することで測定でき
る。測定[6たって光源としては、連続的に一定の光を
発するものであれば種類を問わないが、材料への入射光
が平行光線にできるだけ近いもの、およびスポットサイ
ズが、測定する縞状波のピッチの1/2以下である必要
があり、さらに材料へ歪等が入いらなく、また材料を変
質させないものが好ましい。入射角は測定に悪い影響を
与えなければいくらでも良いが、出来るだけ材料の表面
に垂直に近い方が好ましい。正反射光を受光するしぼり
は1.6X10  スアフジアンで行なった。
In the present invention, as shown in FIG. 4, the strength R4 of the striped wave and its pitch P1 and surface roughness Rt are defined by a method in which the material is irradiated with light and its specularly reflected light is detected to measure its surface shape. That is, a material 2 is attached to a rotating roll 5 so that its length direction is in the circumferential direction, light 7 is applied to the material, and the specularly reflected light 8 is detected by a light receiver 3. Striped waves and surface roughness were measured by changing the power. The output waveform of the detection circuit is as shown in FIG. 5 in the case of a material in which striped waves are generated. As shown in the figure, let the DC and AC components be I, , I, , respectively, and calculate the output when all the reflected light is received. The strength of the striped waves
pp/Ia and surface roughness R4 were defined as 4F. The pitch of the striped wave can be measured by measuring the period of the alternating current component. Measurement [6] The light source can be of any type as long as it continuously emits constant light, but the light source that is incident on the material should be as close to parallel light as possible, and the spot size should be the same as the striped wave to be measured. It is necessary that the pitch is 1/2 or less of the pitch, and it is preferable that the pitch does not cause distortion or the like to the material and does not change the quality of the material. The incident angle may be any value as long as it does not adversely affect the measurement, but it is preferable that it be as close to perpendicular to the surface of the material as possible. Squeezing to receive specularly reflected light was performed using a 1.6×10 Sufjian.

このような表面形状の測定にあたっては、前述の方法と
対応がとれるならば他の方法で行なってもかまわない。
In measuring such a surface shape, other methods may be used as long as they are compatible with the method described above.

例えばJIS BO601に示されるように、中心線平
均粗さRaでカットオフ値0.8 exで測定すれば0
.8 tttn以上のピッチの縞状波の強さが測定でき
る。
For example, as shown in JIS BO601, if the center line average roughness Ra is measured with a cutoff value of 0.8 ex, it will be 0.
.. The strength of striped waves with a pitch of 8 tttn or more can be measured.

本発明における縞状波は、縞状波の強度およびピッチを
Ytf 、ピッチP (wn) 、材料の板厚をt (
w++)として下記の式によって与えられる条件をそな
えることが必要でおる。
The striped wave in the present invention has the intensity and pitch of the striped wave as Ytf, the pitch P (wn), and the thickness of the material as t (
It is necessary to satisfy the condition given by the following formula for w++).

響度を表わすものであり、板厚は重量法によりて測定し
たものである。
It represents the soundness, and the plate thickness is measured by the gravimetric method.

第1図は縦軸に磁束密度1.3T、周波数50出におけ
る渦電流損(以下We 13/りOk記す)を、横軸に
縞状波の影響度をとったものであり、We 1.515
0は縞状波の一影響度にほぼ比例していることが明白で
ある。
In FIG. 1, the vertical axis shows the eddy current loss (hereinafter referred to as We 13/Ok) at a magnetic flux density of 1.3 T and a frequency of 50, and the horizontal axis shows the degree of influence of striped waves. 515
It is clear that 0 is approximately proportional to the degree of influence of the striped wave.

従って縞状波の影響度は渦電流損を低くするためには小
さい方が良い。しかしいままでに製造されているものは
縞状波の影響度が1.6 X 10’以上のものが多い
ことより従来品より低い渦電流損にするには、縞状波の
影響度が1.6 X 10−3以下である必要がある。
Therefore, the degree of influence of the striped waves is preferably small in order to reduce eddy current loss. However, many of the products manufactured so far have a degree of influence of striped waves of 1.6 x 10' or more, so in order to achieve lower eddy current loss than conventional products, it is necessary to reduce the degree of influence of striped waves to 1. .6 x 10-3 or less.

一方、縞状波の影響度が小さい場合(は、同図ではWe
ls、Aoも小さくなっているが、ピッチが小さすぎる
場合には、表面全体の粗さと縞状波が区別できなくなり
、磁区細分化しなくなると考えられる。このような理由
よりPt2//(0,5+Rf)はlX10−4以上で
ある必要がある。さらに磁束密度の高いものを必要とす
るならば縞状波の生じている表面の粗度と板厚の関係で
R1/lが2×10以下になることが必要である。これ
は第2図のごとく非晶質磁性材料の磁界80A/mでの
磁束密度(以下flo、aと記す)がR1/lに比例し
て劣化していることが明らかであ夛、高い磁束密度BO
08を得るためには、Rz/lが2×102でなければ
ならない。
On the other hand, when the degree of influence of the striped wave is small (in the figure, We
Although ls and Ao are also small, if the pitch is too small, the roughness of the entire surface and the striped waves cannot be distinguished, and it is considered that magnetic domain refinement will not occur. For this reason, Pt2//(0,5+Rf) needs to be equal to or greater than lX10-4. Furthermore, if a material with a higher magnetic flux density is required, it is necessary that R1/l be 2×10 or less depending on the roughness of the surface where the striped waves occur and the plate thickness. This is because, as shown in Figure 2, it is clear that the magnetic flux density (hereinafter referred to as flo, a) of an amorphous magnetic material under a magnetic field of 80 A/m deteriorates in proportion to R1/l. Density BO
To obtain 08, Rz/l must be 2×102.

このように本発明によって特定された非晶質磁性材料表
面の綿状波は渦電流損を少なくし鉄損を低減させる。こ
のような縞状波を生じさせるためには、製造法において
適当な制御方法が必要となるが、単ロール法においては
、ノズルとロールの間隔、吹き出し圧力、ロール周速、
注湯温度を制御することにより可能である。例えば注湯
温度を変化させると第3財のようになり注湯温度を低く
すると、Rfが大きくなり縞状波が強くなる。しかしな
がら、注湯温度をあ壕゛り低くすると縞状波は強くなる
ものの、R7が大きくなり表面が粗くなるため13o、
aが低下するので、低鉄損でしかも高い磁束密度を得る
ためには、第5図のととく注湯温度全豹1270℃〜j
300℃の温度範囲にすることによシRfを大きくし、
しかもR4′!il−小さくすることが可能である。こ
のように注湯温度によって最適のRf + R6が選定
でき、低鉄損、高磁束密度の製品全実現できる。
As described above, the cotton-like waves on the surface of the amorphous magnetic material specified by the present invention reduce eddy current loss and iron loss. In order to generate such striped waves, an appropriate control method is required in the manufacturing method, but in the single roll method, the distance between the nozzle and the roll, the blowing pressure, the peripheral speed of the roll,
This is possible by controlling the pouring temperature. For example, if the pouring temperature is changed, a phenomenon similar to the third condition will occur, and if the pouring temperature is lowered, Rf will increase and the striped waves will become stronger. However, if the pouring temperature is lowered, the striped waves become stronger, but R7 becomes larger and the surface becomes rougher.
Since a decreases, in order to obtain low iron loss and high magnetic flux density, the pouring temperature should be set at 1270℃~j as shown in Figure 5.
By increasing the temperature range to 300°C, Rf is increased,
And R4′! il - It is possible to make it smaller. In this way, the optimal Rf + R6 can be selected depending on the pouring temperature, and products with low iron loss and high magnetic flux density can be realized.

本発明で示される非晶質磁性材料は、変圧器や回転機の
鉄心として使用する場合、励磁方向が縞状波の方向とあ
る角度をもつと鉄損の低減が小さくなるので、できるだ
け同じ方向で使用することが好ましい。また本発明の非
晶質磁性材料の特徴をできるだけ発揮させるには、縞状
波の方向と同じ方向に磁界中焼鈍を行なうことが好まし
い。
When the amorphous magnetic material shown in the present invention is used as the iron core of a transformer or rotating machine, the reduction in iron loss will be reduced if the excitation direction is at a certain angle with the direction of the striped waves. It is preferable to use it in Further, in order to maximize the characteristics of the amorphous magnetic material of the present invention, it is preferable to perform annealing in a magnetic field in the same direction as the direction of the striped waves.

(実施例) Feao、s B12 Si7.5 (数字は原子百分
率を示す。)の組成をもつ合金全単ロール法で超急冷し
た場合の実施例を示す。非晶質磁性材料の製造にあたっ
ては注−湯温度を1340℃、1280℃、1260℃
の3通すについて行ない、他2の条件はノズル・ロール
間隔0.13m、吹き出し圧0.2h/cm’、ノズル
スリット間隔0.6 tPyR、ロール周速23m/優
である。
(Example) An example will be shown in which an alloy having a composition of Feao, s B12 Si7.5 (numbers indicate atomic percentages) was ultra-quenched by an all-single roll method. When manufacturing amorphous magnetic materials, the pouring temperature is 1340°C, 1280°C, and 1260°C.
The other two conditions were: nozzle-roll interval 0.13 m, blowing pressure 0.2 h/cm', nozzle slit interval 0.6 tPyR, and roll circumferential speed 23 m/cm.

非晶質磁性材料の表面形状の測定においては、He−N
eレーザを光源とし、反射光は試料よシ15mの位置に
セットされたフォト・トランジスタによシ検出した。レ
ーザ光のスポットサイズは約0.3mであり、フォト・
トランジスタの受光面の面積はo、36Jである。試料
は1秒あたシ10回転している100■φのロールには
りつ−けて測定した。
In measuring the surface shape of amorphous magnetic materials, He-N
An e-laser was used as the light source, and the reflected light was detected by a phototransistor set at a distance of 15 m from the sample. The spot size of the laser beam is approximately 0.3 m, and the photo
The area of the light receiving surface of the transistor is o, 36J. The sample was mounted on a 100 mm diameter roll rotating at 10 revolutions per second.

しかる後375℃、30分間の焼鈍k 150sの磁界
中で行ない周波数50 Hz 、磁束密度163Tでの
鉄損(以下W15.AOと記す)およびBo、a k測
定するとともに直流での鉄損全測定し、渦電流損We 
1い0を求めたO その結果を表1に示す。A、B、Cは注湯温度1340
℃の場合で、縞状波が弱く、ピッチが大きく、本発明の
範囲外の材料、D、E、Fは1260℃の場合で、縞状
波が強く、ピッチが小さく、本発明の請求範囲(1)の
材料、およびG、H,Iは1280℃の場合で、縞状波
が強くピッチの小さいもので、さらに表面粗度が小さい
もので、本発明のM求範囲(2)に相当する材料である
。A、B、Cの材料は、縞状波が弱く、ピッチが大きく
、鉄損W1Vf3aが100m歳動以上であり、そのう
ち、渦電流損We13/45nが46〜69 m−Aと
なっているのに対し、D、E、Fの材料は縞状波が強く
、ピッチも小5さく、鉄損W13/’i0が65〜80
mWA9、渦電流損We 15/sOが22〜37mv
IAgである。しかしり。
After that, annealing was carried out at 375°C for 30 minutes in a magnetic field of 150 seconds at a frequency of 50 Hz and a magnetic flux density of 163T to measure the iron loss (hereinafter referred to as W15.AO), Bo, and k, as well as the total iron loss measurement with direct current. And the eddy current loss We
The results are shown in Table 1. A, B, and C are pouring temperature 1340
℃, the striped waves are weak, the pitch is large, and the material is outside the scope of the present invention; D, E, and F are for the case of 1260℃, the striped waves are strong, the pitch is small, and the material is outside the scope of the present invention. The material of (1), G, H, and I are at 1280°C, have strong striped waves and small pitch, and have small surface roughness, which corresponds to the M range (2) of the present invention. It is a material that Materials A, B, and C have weak striped waves, large pitches, iron loss W1Vf3a of 100 m or more, and among them, eddy current loss We13/45n is 46 to 69 m-A. On the other hand, materials D, E, and F have strong striped waves, small pitches, and iron loss W13/'i0 of 65 to 80.
mWA9, eddy current loss We 15/sO is 22-37mv
It is IAg. However.

E、Fの材料はRL/lが2xlOLa上を示している
ので、B O,Bが1.5T以下である。これに対しG
、)(、Iの材料はP t2/(0,5+ ROが1.
6810−’以下を示すとともにRJtが2×10 以
下を示しているので13o、aが1.53T以上、W1
3/!joが80 m WAIの高磁束密度と低鉄損を
示している。
Since the materials E and F have RL/l above 2xlOLa, B O and B are 1.5T or less. On the other hand, G
, )(,I material is P t2/(0,5+ RO is 1.
6810-' or less and RJt is 2x10 or less, so 13o, a is 1.53T or more, W1
3/! jo shows a high magnetic flux density of 80 m WAI and low iron loss.

(発明の効果) 以上のように本発明の非晶質磁性材料は低鉄損あるいは
低鉄損高磁束密度を示すものであり、磁性鉄心材として
すぐれたものである。また本発明は表面形状より得られ
るものであるのでけがきなどの場合のように熱処理によ
ってそこなわれることはない。さらにけがきなどの処理
のように処理するための設備を別に必要としないもので
あり、本発明の非晶質磁性材料はきわめて実用価値の高
いものである。
(Effects of the Invention) As described above, the amorphous magnetic material of the present invention exhibits low core loss or low core loss and high magnetic flux density, and is excellent as a magnetic core material. Further, since the present invention is obtained from the surface shape, it will not be damaged by heat treatment unlike in the case of marking. Further, the amorphous magnetic material of the present invention has extremely high practical value since it does not require any separate equipment for processing such as marking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は縞状波の影響度と渦電流損の関係を示す図、第
2図は非晶質磁性材料の表面粗度R/および板厚tと、
磁界強さ80A/mにおける磁束密度BO,11の関係
を示す図、第3図は製造の注湯温度と縞状波の強さおよ
び表面粗度の関係を示す図、第4図は非晶質磁性材料の
表面の縞状波や表面粗度を測定するための装置の説明図
で、1はHe−Neレーザ、2は表面形状を測定する試
料、7は装M1より出て試料2に入射するレーザ光、8
は試料2の表面より反射した反射光、3はその反射光を
受光する受光器、4は受光された反射光を電気信号に変
換し電圧として出力する検出回路であり、5は試料をセ
ットするロール、6はそのロールを一定の回転数で回転
させる電動機を示す、第5図は検出回路4より出力され
る電圧波形を示す図である。
Figure 1 shows the relationship between the influence of striped waves and eddy current loss, and Figure 2 shows the relationship between the surface roughness R/ and the plate thickness t of the amorphous magnetic material.
A diagram showing the relationship between the magnetic flux density BO,11 at a magnetic field strength of 80 A/m, Figure 3 is a diagram showing the relationship between the manufacturing melt pouring temperature, the strength of striped waves, and the surface roughness, and Figure 4 is a diagram showing the relationship between the manufacturing melting temperature and the strength of striped waves and surface roughness. This is an explanatory diagram of a device for measuring striped waves and surface roughness on the surface of a highly magnetic material, in which 1 is a He-Ne laser, 2 is a sample whose surface shape is to be measured, and 7 is a device that comes out of the mount M1 and goes to sample 2. Incident laser light, 8
is the reflected light reflected from the surface of the sample 2, 3 is a light receiver that receives the reflected light, 4 is a detection circuit that converts the received reflected light into an electrical signal and outputs it as a voltage, and 5 is the one that sets the sample. 5 is a diagram showing the voltage waveform output from the detection circuit 4. The roll 6 is a motor that rotates the roll at a constant rotation speed.

Claims (2)

【特許請求の範囲】[Claims] (1)非晶質磁性材料の表面の縞状波が下記の式によっ
て与えられる条件をそなえることを特徴とする良好な磁
気特性を有する非晶質磁性材料。 1×10^−^4<[P_t^2/(0.5+R_f)
]<1.6×10^−^3ここでPは縞状波のピッチ(
mm)、tは板厚(mm)、R_fは縞状波の強さを示
す。
(1) An amorphous magnetic material having good magnetic properties, characterized in that the striped waves on the surface of the amorphous magnetic material satisfy the conditions given by the following equation. 1×10^-^4<[P_t^2/(0.5+R_f)
]<1.6×10^-^3 where P is the pitch of the striped wave (
mm), t is the plate thickness (mm), and R_f is the strength of the striped wave.
(2)非晶質磁性材料の表面の縞状波および粗度が下記
の式によって与えられる条件をそなえることを特徴とす
る良好な磁気特性を有する非晶質磁性材料。 1×10^−^4<[P_t^2/(0.5+R_f)
]<1.6×10^−^3、R_l/t<2×10^2
ここでP、t、R_fは前記の意味を有し、R_lは表
面粗度を示す。
(2) An amorphous magnetic material having good magnetic properties, characterized in that the striped waves and roughness of the surface of the amorphous magnetic material satisfy the conditions given by the following formula. 1×10^-^4<[P_t^2/(0.5+R_f)
]<1.6×10^-^3, R_l/t<2×10^2
Here, P, t, and R_f have the above-mentioned meanings, and R_l indicates surface roughness.
JP59145054A 1984-07-12 1984-07-12 Amorphous magnetic material with good magnetic properties Pending JPS6124208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145054A JPS6124208A (en) 1984-07-12 1984-07-12 Amorphous magnetic material with good magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145054A JPS6124208A (en) 1984-07-12 1984-07-12 Amorphous magnetic material with good magnetic properties

Publications (1)

Publication Number Publication Date
JPS6124208A true JPS6124208A (en) 1986-02-01

Family

ID=15376311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145054A Pending JPS6124208A (en) 1984-07-12 1984-07-12 Amorphous magnetic material with good magnetic properties

Country Status (1)

Country Link
JP (1) JPS6124208A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473782A1 (en) * 1990-03-27 1992-03-11 Kabushiki Kaisha Toshiba Magnetic core
US5338373A (en) * 1991-08-20 1994-08-16 Vonhoene Robert M Method of encoding and decoding a glassy alloy strip to be used as an identification marker
US5622768A (en) * 1992-01-13 1997-04-22 Kabushiki Kaishi Toshiba Magnetic core
JP2012174824A (en) * 2011-02-21 2012-09-10 Hitachi Metals Ltd MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE
JP2013537933A (en) * 2010-08-31 2013-10-07 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons with reduced surface defects and their applications
CN103348420A (en) * 2011-01-28 2013-10-09 日立金属株式会社 Rapidly quenched fe-based soft magnetic alloy ribbon, method of manufacturing the alloy ribbon, and iron core
JP2013540894A (en) * 2010-08-31 2013-11-07 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons and their manufacture
US8968490B2 (en) 2010-09-09 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
WO2017090402A1 (en) * 2015-11-26 2017-06-01 日立金属株式会社 Iron-based amorphous alloy ribbon
JP2018123424A (en) * 2017-01-31 2018-08-09 新日鐵住金株式会社 Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
CN114942038A (en) * 2021-02-16 2022-08-26 株式会社三丰 Scale and method for manufacturing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473782A1 (en) * 1990-03-27 1992-03-11 Kabushiki Kaisha Toshiba Magnetic core
US5338373A (en) * 1991-08-20 1994-08-16 Vonhoene Robert M Method of encoding and decoding a glassy alloy strip to be used as an identification marker
US5622768A (en) * 1992-01-13 1997-04-22 Kabushiki Kaishi Toshiba Magnetic core
US5804282A (en) * 1992-01-13 1998-09-08 Kabushiki Kaisha Toshiba Magnetic core
US8968489B2 (en) 2010-08-31 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof
JP2013537933A (en) * 2010-08-31 2013-10-07 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons with reduced surface defects and their applications
US8974609B2 (en) 2010-08-31 2015-03-10 Metglas, Inc. Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP2013540894A (en) * 2010-08-31 2013-11-07 メトグラス・インコーポレーテッド Ferromagnetic amorphous alloy ribbons and their manufacture
US8968490B2 (en) 2010-09-09 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
CN103348420B (en) * 2011-01-28 2016-06-15 日立金属株式会社 Chilling Fe based soft magnetic alloy thin band and manufacture method thereof and iron core
DE112012000399T5 (en) 2011-01-28 2013-10-10 Hitachi Metals, Ltd. Quenched soft magnetic Fe-based alloy ribbon and its manufacturing process and core
CN103348420A (en) * 2011-01-28 2013-10-09 日立金属株式会社 Rapidly quenched fe-based soft magnetic alloy ribbon, method of manufacturing the alloy ribbon, and iron core
US10468182B2 (en) 2011-01-28 2019-11-05 Hitachi Metals, Ltd. Rapidly quenched Fe-based soft-magnetic alloy ribbon and its production method and core
JP2012174824A (en) * 2011-02-21 2012-09-10 Hitachi Metals Ltd MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE
WO2017090402A1 (en) * 2015-11-26 2017-06-01 日立金属株式会社 Iron-based amorphous alloy ribbon
JPWO2017090402A1 (en) * 2015-11-26 2018-09-13 日立金属株式会社 Fe-based amorphous alloy ribbon
JP2018123424A (en) * 2017-01-31 2018-08-09 新日鐵住金株式会社 Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
CN114942038A (en) * 2021-02-16 2022-08-26 株式会社三丰 Scale and method for manufacturing same

Similar Documents

Publication Publication Date Title
CN104011246A (en) Grain-oriented electrical steel sheet
US6666929B1 (en) Process for the improvement of the magnetic characteristics in grain oriented electrical silicon steel sheets by laser treatment
JPS6124208A (en) Amorphous magnetic material with good magnetic properties
JP5613972B2 (en) Unidirectional electrical steel sheet with excellent iron loss characteristics
KR20080010454A (en) Low iron loss oriented electrical steel sheet and manufacturing method thereof
JPS5935893A (en) Laser treating apparatus of material
EP0024707B1 (en) Electromagnetic ultrasonic apparatus
KR102608758B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH01281708A (en) Method of fractionalize magnetic domain in electrical steel to reduce core loss
JPH08269562A (en) Low-magnetostrictive grain-oriented silicon steel sheet and method for producing the same
JP3500103B2 (en) Unidirectional electrical steel sheet for transformers
Nakase et al. Measuring system for magnetostriction of silicon steel sheet under AC excitation using optical methods
Brix Measurements of the rotational power loss in 3% silicon-iron at various frequencies using a torque magnetometer
CN117083407A (en) Grain-oriented electrical steel sheet and method for producing same
JP2522732Y2 (en) Iron loss value measuring device
JP2707841B2 (en) Method for controlling plastic strain ratio of continuously heat-treated thin steel sheet
CN118647742A (en) Grain-oriented electrical steel sheet and method for producing the same
EP0782013A2 (en) Magnetic marker
Chen et al. Study on magnetic properties of oriented silicon steel scribed by ultrafast laser
JP2710165B2 (en) Torque sensor and magnetic anisotropy control method
KR860000965B1 (en) Method of measuring magnetic characteristics by measuring the Barkhausen noise
SU748232A1 (en) Method of determining deviation of ferromagnetic web crystallographic texture from ideal structure
Allia et al. A study of the fast permeability relaxation in amorphous ferromagnets
Aboalkaz et al. The effect of annealing and surface roughness on the flux harmonic content (domain wall motion) of amorphous ribbons
Whang et al. Measurement of Young’s modulus on small samples of amorphous metals using the impulse induced resonance technique