[go: up one dir, main page]

JPS61242057A - Manufacturing method of polycrystalline silicon resistor - Google Patents

Manufacturing method of polycrystalline silicon resistor

Info

Publication number
JPS61242057A
JPS61242057A JP60083648A JP8364885A JPS61242057A JP S61242057 A JPS61242057 A JP S61242057A JP 60083648 A JP60083648 A JP 60083648A JP 8364885 A JP8364885 A JP 8364885A JP S61242057 A JPS61242057 A JP S61242057A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
wiring
resistor
manufacturing
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60083648A
Other languages
Japanese (ja)
Inventor
Noboru Kudo
昇 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP60083648A priority Critical patent/JPS61242057A/en
Publication of JPS61242057A publication Critical patent/JPS61242057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野j 本発明は、多結晶シリコン層中に電気抵抗体及び配線を
形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of forming electrical resistors and wiring in a polycrystalline silicon layer.

〔発明の概要」 本発明は、多結晶シリコン層中に電気抵抗体及び配線を
形成する方法において、配線抵抗体化のための不純物拡
散を配線パターン形成後に行うことにより、MOS)ラ
ンシスターのような能動素子の歩留を向上できるように
したものである。
[Summary of the Invention] The present invention provides a method for forming electrical resistors and wiring in a polycrystalline silicon layer, in which impurity diffusion for forming a wiring resistor is performed after wiring pattern formation. This makes it possible to improve the yield of active devices.

〔従来の技術〕[Conventional technology]

従来、配線低抵抗化のための不純物拡散全配線パターン
形成前に行う方法では、第2図に示すように、多結晶シ
リコン層4(第2図(a))に中ドーズイオン注入を行
い、高抵抗多結晶シリコン層5を形成する(第2図(b
))工程と、5iO11!i  でマスキングして高濃
度不純物を熱拡散で導入し、低抵抗多結晶シリコン層1
2を形成する(第2図(C))工程と、しかる後に、レ
ジスト15でマスキングし、ゲート16、配線17、抵
抗18′t−エツチング形成する(第2図(d))及び
第2図(θ)参照)工程とからなる製造方法が知られて
いる。
Conventionally, in the method of doping impurity diffusion before forming the entire wiring pattern for lowering wiring resistance, as shown in FIG. A high-resistance polycrystalline silicon layer 5 is formed (Fig. 2(b)
)) process and 5iO11! i, high concentration impurities are introduced by thermal diffusion, and low resistance polycrystalline silicon layer 1 is formed.
2 (FIG. 2(C)), and then masking with resist 15 and forming gate 16, wiring 17, and resistor 18't-etching (FIG. 2(d)); (see (θ)) step is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の多結晶シリコン抵抗の製造方法では、多
結晶シリコンのエツチング速度は高不純物濃度多結晶シ
リコンが低不純物濃度多結晶シリコンよりもはるかに大
きいため、抵抗18のエツチング終了時点で、配線17
とゲート16が1−バーエッチのため細り、ゲート酸化
膜3が薄くなる(第2図(e))。そのため、短チヤネ
ル効果や配線抵抗の増大のように素子特性が劣化すると
いう問題があつ九。
However, in the conventional manufacturing method of polycrystalline silicon resistors, since the etching speed of polycrystalline silicon with high impurity concentration is much higher than that of polycrystalline silicon with low impurity concentration, when etching of resistor 18 is completed, wiring 17
The gate 16 becomes thinner due to the 1-bar etch, and the gate oxide film 3 becomes thinner (FIG. 2(e)). As a result, there are problems such as deterioration of device characteristics such as short channel effects and increased wiring resistance.

〔作 用〕[For production]

上記のように、配線低抵抗化のための不純物拡散を配線
パターン形成後に行うことにより、素子特性の劣化を防
止し歩留向上に寄与する。
As described above, by performing impurity diffusion to lower the resistance of the wiring after forming the wiring pattern, deterioration of device characteristics is prevented and the yield is improved.

〔実施例〕〔Example〕

以下に本発明の実施例を図面にもとづいて説明する。第
1図(a)〜(d)は1本発明の多結晶シリコン抵抗の
製造方法を説明するための工程順の断面図である。第1
図(a)は、81基板1上にフィールド酸化膜1及びゲ
ート酸化膜Sf形成した後、厚さ5000〜6000文
のノンドープpo1781層4を化学気相成長法(OV
D法)により形成する工程を示す。次に、イオン注入法
により、ドーズ量txtoliべ1X10”♂1のリン
イオンを注入した後、900〜1100℃の熱処理を行
うことにより、n型の高抵抗polysi層5を形成す
る(第1図(’b) )。
Embodiments of the present invention will be described below based on the drawings. FIGS. 1(a) to 1(d) are cross-sectional views in order of steps for explaining a method of manufacturing a polycrystalline silicon resistor according to the present invention. 1st
Figure (a) shows that after forming a field oxide film 1 and a gate oxide film Sf on an 81 substrate 1, a non-doped PO1781 layer 4 with a thickness of 5000 to 6000 mm is deposited using chemical vapor deposition (OV).
The process of forming the film by method D) is shown below. Next, by ion implantation, phosphorus ions are implanted at a dose of 1×10”♂1, and then heat treatment is performed at 900 to 1100° C. to form an n-type high-resistance polysilicon layer 5 (see FIG. 1). 'b)).

次にレジストをマスクして高抵抗po1781層5をエ
ツチングする。高抵抗po1781層の面内不純物濃度
均一性は〜5%以内と良好なため、各エツチングパター
ンのエツチングは同時に終了するためレジストマスクに
忠実なパターニングができ、オーバーエッチによるゲー
)si□、3の膜ぺりも生じない(第1図(C))。次
に、抵抗7のみレジストでマキシングした後、イオン注
入法により、ドース量I X IQ−11〜I X 1
0’″” cm−” (D リフ イオ7を注入し、ゲ
ート6、配線8を低抵抗にする。同時に、’NMO8の
ソース10、ドレイン11が形成できる(第1図(d)
)。
Next, the high resistance PO1781 layer 5 is etched using a resist mask. Since the in-plane impurity concentration uniformity of the high-resistance PO1781 layer is within ~5%, etching for each etching pattern is completed at the same time, making it possible to pattern faithfully to the resist mask. No membrane peeling occurred (Fig. 1(C)). Next, after masking only the resistor 7 with a resist, the dose amount I
0'''"cm-" (D) Ion 7 is implanted to make the gate 6 and wiring 8 have low resistance. At the same time, the source 10 and drain 11 of 'NMO8 can be formed (Fig. 1(d)
).

以上のような実施例において示したように、本発明によ
れば、ポリS1工ツチング時におけるゲートや配線の細
りがなく、ゲート酸化膜の民べりがないため、短チヤネ
ル効果や配線抵抗の増大の゛ような素子特性の劣化を防
止できる。
As shown in the above embodiments, according to the present invention, there is no thinning of the gate or wiring during poly S1 processing, and there is no cracking of the gate oxide film, so there is no short channel effect or increase in wiring resistance. It is possible to prevent the deterioration of device characteristics as described in the following.

〔発明の効果」 この発明は以上説明し念ように、素子特性の劣化を防止
し歩留向上の効果がある。また、配線の低抵抗化のため
の不純物拡散とソース番ドレイン形成のための不純物拡
散音同時にできるため、工程数削減という効果もある。
[Effects of the Invention] As explained above, the present invention has the effect of preventing deterioration of device characteristics and improving yield. In addition, impurity diffusion for lowering the resistance of wiring and impurity diffusion sound for forming source and drain can be performed simultaneously, which has the effect of reducing the number of steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜第1図(d)は本発明の多結晶シリコン
抵抗の製造方法にかかる工程順の断面図、第2図(a)
〜第2図(e)は従来の多結晶シリコン抵抗の製造方法
にかかる工程順の断面図である。 1・・・81基板、 2・・・フィールド酸化膜、 5・・・ゲート酸化膜、 4・・・ノンドープ多結晶シリコン層、5.14・・・
高抵抗多結晶シリコン層、6.16・・・ゲート、 7.17・・・抵抗、 8.18・・・配線、 9.15・・・レジスト、 10・・・ソース、 11・・・ドレイン、 12・−・低抵抗多結晶シリコン層、 13・・・810z0 以   上
FIGS. 1(a) to 1(d) are cross-sectional views of the steps in the method of manufacturing a polycrystalline silicon resistor of the present invention, and FIG. 2(a) is
-FIG. 2(e) are cross-sectional views showing the steps of a conventional method for manufacturing a polycrystalline silicon resistor. DESCRIPTION OF SYMBOLS 1... 81 substrate, 2... Field oxide film, 5... Gate oxide film, 4... Non-doped polycrystalline silicon layer, 5.14...
High resistance polycrystalline silicon layer, 6.16...gate, 7.17...resistance, 8.18...wiring, 9.15...resist, 10...source, 11...drain , 12...Low resistance polycrystalline silicon layer, 13...810z0 or more

Claims (1)

【特許請求の範囲】[Claims] 多結晶シリコン層中に抵抗を形成するための中ドーズイ
オン注入を行なつた後、多結晶シリコン抵抗及び多結晶
シリコン配線のパターンを形成し、前記抵抗パターンを
マスキングして、前記配線パターンを低抵抗化するため
の高ドーズイオン注入を行うことを特徴とする多結晶シ
リコン抵抗の製造方法。
After performing medium-dose ion implantation to form a resistor in the polycrystalline silicon layer, a pattern of a polycrystalline silicon resistor and a polycrystalline silicon wiring is formed, the resistor pattern is masked, and the wiring pattern is A method for manufacturing a polycrystalline silicon resistor, characterized by performing high-dose ion implantation to make it resistive.
JP60083648A 1985-04-19 1985-04-19 Manufacturing method of polycrystalline silicon resistor Pending JPS61242057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083648A JPS61242057A (en) 1985-04-19 1985-04-19 Manufacturing method of polycrystalline silicon resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083648A JPS61242057A (en) 1985-04-19 1985-04-19 Manufacturing method of polycrystalline silicon resistor

Publications (1)

Publication Number Publication Date
JPS61242057A true JPS61242057A (en) 1986-10-28

Family

ID=13808267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083648A Pending JPS61242057A (en) 1985-04-19 1985-04-19 Manufacturing method of polycrystalline silicon resistor

Country Status (1)

Country Link
JP (1) JPS61242057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190911B1 (en) * 1993-03-17 2001-02-20 Canon Kabushiki Kaisha Semiconductor device and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190911B1 (en) * 1993-03-17 2001-02-20 Canon Kabushiki Kaisha Semiconductor device and fabrication method thereof

Similar Documents

Publication Publication Date Title
JPS6255930A (en) Manufacturing method of semiconductor device
JPS58115859A (en) Manufacture of semiconductor device
JPS61242057A (en) Manufacturing method of polycrystalline silicon resistor
JP3257317B2 (en) Method for manufacturing semiconductor device
JP2002043324A (en) High frequency semiconductor device and manufacturing method therefor
RU2244985C1 (en) Method for manufacturing complementary vertical bipolar transistors as parts of integrated circuits
JPS61242058A (en) Manufacture of polycrystalline silicon resistor
JPH02250315A (en) Manufacturing method of semiconductor device
JPS6097662A (en) Manufacture of semiconductor device
JPS6197974A (en) Manufacturing method of semiconductor device
JPH02186625A (en) Manufacturing method of semiconductor device
JPS60133755A (en) Manufacturing method of semiconductor device
JPS62244163A (en) semiconductor equipment
KR100461791B1 (en) Method of fabricating semiconductor devices
JPS58122769A (en) Manufacturing method of semiconductor device
JPS6025272A (en) Insulated gate field effect transistor
JPS63308385A (en) Manufacturing method of buried gate field effect transistor
JPS60134469A (en) Manufacturing method of semiconductor device
JPH01266765A (en) Manufacture of mis type field effect semiconductor device
JPH0444250A (en) Manufacture of semiconductor device
JPS61158174A (en) Semiconductor device and its manufacturing method
JPS607181A (en) Manufacturing method of semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPS6089940A (en) Manufacture of semiconductor device
JPH03280548A (en) Manufacture of npn transistor