JPS61242022A - light irradiation device - Google Patents
light irradiation deviceInfo
- Publication number
- JPS61242022A JPS61242022A JP60084168A JP8416885A JPS61242022A JP S61242022 A JPS61242022 A JP S61242022A JP 60084168 A JP60084168 A JP 60084168A JP 8416885 A JP8416885 A JP 8416885A JP S61242022 A JPS61242022 A JP S61242022A
- Authority
- JP
- Japan
- Prior art keywords
- reflector
- reflecting mirror
- slit
- light
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 238000003860 storage Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 238000011144 upstream manufacturing Methods 0.000 abstract description 3
- 238000005086 pumping Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001015 X-ray lithography Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70075—Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Manufacturing & Machinery (AREA)
- Atmospheric Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Toxicology (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、リソグラフィー等のように、大面積照射を必
要とする用途に適した光照射装置Cこ係わり、特に、ビ
ーム走査に用いる反射鏡用チャンバと被照射体用チャン
バ間の差動排気に好適な光学系を提供する反射鏡走査機
構を備えた光照射装置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a light irradiation device C suitable for applications requiring large-area irradiation such as lithography, and in particular to a light irradiation device C suitable for use in a reflecting mirror used for beam scanning. The present invention relates to a light irradiation device equipped with a reflecting mirror scanning mechanism that provides an optical system suitable for differential pumping between a chamber and a chamber for an irradiated object.
超LSI製造におけるリソグラフィ、あるいは光化学反
応を利用したCVD (光CVDと略記)の光源として
、最近、電子ストレージリングからのシンクロトロン放
射光(以下80Bと略記)が有望視されている( 19
83年発行の雑誌「ニ−クリア インスツルーメンツ
アンド メソッド(Nuclear Instrume
nts and M@thods )208巻」の第2
81頁〜第286頁における論文「平坦走査鏡を用いた
X線照射の検討(INtll!t8TIGATIONO
FX−R入Y II!1XPO8URE tJ8I
NG PLANFl SC入NNINGMI RRO
R8) J参照)0
しかし、これを実用化するにあたっては1次に述べるよ
うな2つの問題点がある。Synchrotron radiation light (hereinafter abbreviated as 80B) from an electronic storage ring has recently been seen as a promising light source for lithography in VLSI manufacturing or CVD (abbreviated as photoCVD) that utilizes photochemical reactions (19
Magazine published in 1983 "Ny-Clear Instruments"
and method (Nuclear Instrument
nts and M@thods) Volume 208” Volume 2
The paper “Study of X-ray irradiation using a flat scanning mirror (INtll!t8TIGATIONO)” on pages 81 to 286
FX-R entry Y II! 1XPO8URE tJ8I
NG PLANFl SC entry NNINGMI RRO
R8) See J) 0 However, in putting this into practical use, there are two problems as described in the first section.
第1には%現用の電子ストレージリングでは、軌道面に
垂直な方向のSORの角度発散は、高々l
γ (γ−B/mC’ : Eは電子の運動エネルギー
、mは電子の静止質量、Cは真空中の光速度)程度であ
り、また電子軌道のビームサイズも小さいため、このま
までは微小領域しか照射出来ない。一方、リングラフィ
や光CVDでは〜 100mX100iuの大面積照射
が必要である。First, in current electron storage rings, the angular divergence of the SOR in the direction perpendicular to the orbital plane is at most l γ (γ-B/mC', where E is the kinetic energy of the electron, m is the rest mass of the electron, Since C is approximately the speed of light in vacuum) and the beam size of the electron orbit is small, only a minute area can be irradiated as is. On the other hand, phosphorography and photo-CVD require large area irradiation of ~100 m x 100 iu.
第2には、光源である電子ストレージリングにおいて、
蓄積電子が十分長い寿命を得るためには超高真空でなけ
ればならないのに対して、これに結合される光照射装置
は、例えばX線リソグラフィーの場合は、レジストから
大量のガスが発生するし、また光CVDの場合は半導体
用原料ガスを数Torrのオーダーで充填する必要があ
るので。Second, in the electronic storage ring that is the light source,
In order for the stored electrons to have a sufficiently long lifetime, they must be placed in an ultra-high vacuum, whereas the light irradiation equipment coupled to this, for example in the case of X-ray lithography, generates a large amount of gas from the resist. In addition, in the case of photo-CVD, it is necessary to fill the material gas for semiconductors on the order of several Torr.
低真空とならざるを得ない0
8ORを利用して、リングラフィや光CVDを実用化す
るためには、上記2つの問題点を同時に解決する必要が
ある。In order to put phosphorography and optical CVD into practical use using 08OR, which inevitably requires a low vacuum, it is necessary to solve the above two problems at the same time.
80Rを用いた従来装置では、例えば、Handboo
k on 5ynchrotron Radiatio
n vol、 IChapter 13. r8ync
hrotron Radiation X −Ray
Lithography J、 および前記のNuc
l@arInstrum@nts and Metho
ds 208(1983)281に示されているように
、光源と被照射体間に置かれた凸面反射鏡、あるいは回
転する平面反射鏡によって、ビームを拡大する方法が採
用されている。In the conventional device using 80R, for example, Handboo
k on 5ynchrotron Radio
n vol, IChapter 13. r8ync
hrotron Radiation X-Ray
Lithography J, and Nuc, supra.
l@arInstrum@nts and Metho
ds 208 (1983) 281, a method is adopted in which the beam is expanded using a convex reflector placed between the light source and the object to be irradiated, or a rotating plane reflector.
この方式によれば、上記第1の問題点は解決されるが、
ビームは反射鏡より下流側で拡大される一方であるため
、超高真空下にあるストレージリングおよび反射鏡用チ
ャンバ、光照射用チャンte間に微小スリットを介在さ
せ、その両側を差動排気して一方を超高真空に保ちなが
ら、他方を低真空にすることが難かしくなる。According to this method, the first problem mentioned above is solved, but
Since the beam is expanded downstream from the reflector, a microslit is interposed between the storage ring, the reflector chamber, and the light irradiation chamber under ultra-high vacuum, and both sides of the slit are differentially pumped. This makes it difficult to keep one side at ultra-high vacuum while the other at low vacuum.
すなわち、従来技術ではストレーシングおよび光照射用
チャンバは真空的にほぼ同程度になり、J上記第2の問
題点は解決出来ない。That is, in the prior art, the tracing and light irradiation chambers have almost the same degree of vacuum, and the second problem mentioned above cannot be solved.
この状態で、例えばリングラフィを行なおうとすれば、
被処理物が照射によってもガスを発生しないものに限ら
れるという、非常に制限を受けたものになりてしまう0
又光CVDへの適用は不可能である。For example, if you try to perform phosphorography in this state,
The object to be processed must be one that does not generate gas even when irradiated, which is a very restrictive process.
Furthermore, it is impossible to apply it to optical CVD.
一方、前記公知例では、この問題を解決するため、真空
隔壁によって反射鏡と照射チャンバ間を真空的に隔離す
る方式が考案されている。On the other hand, in the known example, in order to solve this problem, a method has been devised in which the reflecting mirror and the irradiation chamber are vacuum-isolated using a vacuum partition.
しかし、この場合でもなお、照射光として重要な軟X線
領域の光に対して、透過率が大きく、且つ信頼性の高い
窓材料が存在しないため、使用し得る波長に大きな制約
を受けざるを得ないという、大きな問題が残る。However, even in this case, there are no window materials that have high transmittance and high reliability for light in the soft X-ray region, which is important as irradiation light, so there are significant restrictions on the wavelengths that can be used. There remains the big problem of not being able to do so.
また仮に、ストレージリングの電子軌道の角度広がりや
、゛電子ビームサイズの大きい80Rが実用化されて前
記第1の問題が解決され、反射鏡を使用しない大面積の
直接照射が可能になったとしても、照射チャンバ部の低
真空とストレージリングの超高真空とを何らかの方法で
結合しなければならないため、前記第2の問題は依然と
して残ることになる。Also, suppose that the first problem is solved by widening the angle of the storage ring's electron orbit and by putting into practical use an 80R electron beam with a large electron beam size, and it becomes possible to directly irradiate a large area without using a reflector. However, since the low vacuum of the irradiation chamber and the ultra-high vacuum of the storage ring must be connected in some way, the second problem still remains.
本発明の目的は、平行な軟X線を含む光源、光走査反射
鏡を設置した反射鏡用チャンバ、及び照射チャンバで構
成される光照射装置において、前記真空上の問題点を解
消し、かつ大面積の光照射が可能な平面反射鏡走査機構
を備えた光照射装置を提供することにある。It is an object of the present invention to solve the above-mentioned vacuum problems in a light irradiation device consisting of a light source containing parallel soft X-rays, a reflector chamber equipped with a light scanning reflector, and an irradiation chamber. An object of the present invention is to provide a light irradiation device equipped with a plane reflecting mirror scanning mechanism capable of irradiating light over a large area.
本発明の特徴は、その鏡面への入射光路および反射光路
を含む平面に垂直な一直線の回りに予定角度だけ回転さ
れる反射鏡と、固定方向から入射し、前記反射鏡で反射
した反射光が通過する固定スリットを有し、その内部に
被照射体が収納される露光部チャンバとを有する光照射
装置において、前記反射鏡の回転中心位置、回転角度お
よび前記固定スリットの位置が、前記反射鏡の回転にか
かわらず、前記反射光が常に実質上前記固定スリットを
通過するように設定された点にある。The present invention is characterized by a reflecting mirror that is rotated by a predetermined angle around a straight line perpendicular to a plane that includes the incident optical path to the mirror surface and the reflected optical path, and a reflecting mirror that is incident from a fixed direction and reflected by the reflecting mirror. In a light irradiation device having a fixed slit to pass through and an exposure chamber in which an object to be irradiated is housed, the rotation center position and rotation angle of the reflecting mirror and the position of the fixed slit are determined by the reflecting mirror. Regardless of the rotation of the slit, the reflected light is always set to substantially pass through the fixed slit.
また、本発明の他の特徴は、入射光用光源および反射鏡
収納部と露光部チャンバとが差動排気されるように構成
した点にある。Another feature of the present invention is that the light source for incident light, the reflecting mirror storage section, and the exposure section chamber are configured to be differentially pumped.
第1図に従って、本発明における反射鏡走査機構の原理
を説明する。The principle of the mirror scanning mechanism in the present invention will be explained with reference to FIG.
反射鏡1によって、入射光2は光路3で示される方向に
反射されるOX軸を入射光2に一致する方向にとり1反
射*1の回転中心4を反射鏡1の延長上でX軸よりVo
だけ離れた点にとる0また、反射鏡の回転中心4を通り
、X軸に垂直な直線をy軸にとる。By the reflecting mirror 1, the incident light 2 is reflected in the direction shown by the optical path 3.The OX axis is set in the direction that coincides with the incident light 2, and the rotation center 4 of 1 reflection*1 is set from the X axis on the extension of the reflecting mirror 1.
Also, take a straight line passing through the center of rotation 4 of the reflecting mirror and perpendicular to the X-axis as the y-axis.
この時、反射鏡回転中心4の座標は(o+ yo )に
なり、平面鏡上での光線の反射点の座標は(yo ta
nθ、0)になる。At this time, the coordinates of the mirror rotation center 4 are (o+yo), and the coordinates of the reflection point of the light beam on the plane mirror are (yota
nθ, 0).
令弟1図において、X−ξ。なる直線5を仮定すると、
この直線5と反射光路3との交点Sの座標(ξ。、V)
は、入射角θ(反射鏡lの反射面の法線と入射光2
とのなす角)、回転中心4のyされる。In the younger brother 1 diagram, X-ξ. Assuming straight line 5,
Coordinates (ξ., V) of the intersection S of this straight line 5 and the reflected optical path 3
is the incident angle θ (the normal to the reflecting surface of the reflecting mirror l and the incident light 2
), the center of rotation 4 is y.
(ξo、v)=(ξ0.tan2θ(ξ6−76tan
θ))・・・・・・(1)ここで、反射鏡1がθ−θ。(ξo, v) = (ξ0.tan2θ(ξ6-76tan
θ))...(1) Here, the reflector 1 is θ-θ.
を中心とし、Δθなる微小角で、その両側へ回転すると
すれば、lは、θに関してθ0 の近傍でテーラ−展開
することにより、次の(2)式で表わされる〇η(θo
)=tan2θ。×(ξ。−3’o tanθ。)曲・
・(3)−y。sin 2θ0) 藺・・(5)今ξO
書yo I 0を ξo−76sin 2θ0 なる関
係が満たされるようIこ選べば、(4)式から。If it is centered at , and rotates to both sides by a small angle of Δθ, then by Taylor expansion in the vicinity of θ0 with respect to θ, l becomes 〇η(θo
)=tan2θ. ×(ξ.-3'o tanθ.) Song・
・(3)-y. sin 2θ0) 藺...(5) now ξO
If we select I 0 so that the relationship ξo-76sin 2θ0 is satisfied, then from equation (4).
は次の(6)式で表わされる。is expressed by the following equation (6).
l(θ。+Δθ) = 276 sin”θ。l(θ.+Δθ) = 276 sin”θ.
上式から明らかなように、反射鏡1を(osyo)なる
点4を中心として、θ−θ。のまゎりで±Δθなる微小
量だけ回転させて、反射光を走査、回転した場合、反射
光路3は、近似的に、一点S(ξ。、η(θ。))すな
わち
(y0sin2θo v 2y6ainθ。) ・・
・・・・・・・(7)を常に通過すると見なせる0
本発明においては、上記の証明によりその存在が示され
た反射光路の近似的な定点に、差動排気用のスリットを
置くことにより、反射鏡部と露光部間における差動排気
を行なうようにしているO前記差動排気用スリットを通
過した反射光は、反射鏡が、第1図の符号4の点を回転
中心として。As is clear from the above equation, θ-θ with the reflecting mirror 1 as the center (osyo) point 4. When the reflected light is scanned and rotated by rotating it by a minute amount of ±Δθ, the reflected optical path 3 is approximately one point S(ξ., η(θ.)), that is, (y0sin2θo v 2y6ainθ). )...
・・・・・・・・・(7) can be considered to always pass through 0 In the present invention, by placing a slit for differential pumping at an approximate fixed point of the reflected optical path whose existence was shown by the above proof, The reflected light passing through the differential pumping slit performs differential pumping between the reflecting mirror section and the exposure section.The reflecting mirror rotates about the point 4 in FIG. 1.
θ。の両側で±Δθずつ回転することにより、±2・Δ
θ撮られ、露光部において必要な面積全体を照射するこ
とが可能となる0
上記証明においては、入射角θ0および回転中心(O+
yo)が既知なものとして、定点(ξ0゜l(θ。)
)を求める手順を示しているが、当然のように、これら
の3つの中の任意の2つを先に決定してから、残りの1
つの量を定めることが可能であることは明らかであろう
0
WIJ2図は、本発明の原理を軟X線リングラフィ装置
に適用した場合の、−実施例を示す概略構成図である。θ. By rotating ±Δθ on both sides, ±2・Δ
In the above proof, the angle of incidence θ0 and the center of rotation (O+
Assuming that yo) is known, a fixed point (ξ0゜l(θ.)
), but it goes without saying that any two of these three must be determined first, and then the remaining one must be determined.
It will be clear that it is possible to define two quantities. FIG. 2 is a schematic block diagram showing an example of applying the principles of the present invention to a soft X-ray phosphorography apparatus.
図において、第1図と同一の符号は。In the figure, the same reference numerals as in FIG. 1 are used.
同一または同等部分をあられしている。The same or equivalent parts are hailed.
この実施例では、具体的数値例として、第1図における
反射角θを、85°から87°の範囲に設定したーすな
わち、(86°±10 >で入射光2を反射走査させた
。また第1図におけるyoを20Uに設定した。In this example, as a concrete numerical example, the reflection angle θ in FIG. yo in FIG. 1 was set to 20U.
そして、差動排気用スリット8を、前記(7)式の座標
点−すなわち、反射(走査)鏡1の回転中心4より上流
側に2.8+u、下方に19.806藺だけ離れた地点
に設置した。Then, the differential pumping slit 8 is placed at the coordinate point of equation (7) - that is, at a point 2.8+u upstream and 19.806mm away from the rotation center 4 of the reflecting (scanning) mirror 1. installed.
前記数値例の場合は±1°の回転走査に対して反射光の
スリット上における位置の変動は14μm以下となるし
たがって、約14μm幅のスリットを差動排気用スリッ
ト8として用いることが可能となる。この数値は、トス
レージングおよび反射鏡チャンバ6に必要な超高真空と
、露光部チャンバ9に必要な低真空とを保持するのに十
分な値であるO
また、回転中心4から(走査)反射鏡l上の反射点まで
の距離は229IIx〜382Nxの範囲内で変化する
。このことは、(走査)反射鏡1の最少長さとして15
3 m (= 382−229 )が必要なことを意味
するが、これも十分実用化できる寸法である。In the case of the above numerical example, the variation in the position of the reflected light on the slit for rotational scanning of ±1° is less than 14 μm. Therefore, it is possible to use a slit with a width of about 14 μm as the differential pumping slit 8. . This value is sufficient to maintain the ultra-high vacuum required in the toslasing and reflector chamber 6 and the low vacuum required in the exposure chamber 9. The distance to the reflection point on mirror l varies within the range 229IIx to 382Nx. This means that the minimum length of the (scanning) reflector 1 is 15
This means that 3 m (=382-229) is required, which is also a size that can be put to practical use.
第2図において、入射光2は、反射鏡チャンバ6の内部
に置かれた反射鏡1によって反射され、ビームダクト7
およびスリット8を通して反射光路3にそって進み、露
光部チャンバ9内に置かれた照射材料11の表面を照射
する。In FIG. 2, incident light 2 is reflected by a reflector 1 placed inside a reflector chamber 6, and is reflected by a beam duct 7.
The light beam passes through the slit 8 along the reflected light path 3 and irradiates the surface of the irradiation material 11 placed in the exposure chamber 9 .
本実施例においては、入射光ビーム断面の大きさを10
0 w X 10μmに設定し、差動排気用スリット8
の開口部の大きさを100wX24μmに設定した。ま
た、反射鏡面の大きさは160wX100關に設定した
。In this example, the size of the incident light beam cross section is 10
Set to 0 w x 10 μm, and slit 8 for differential pumping.
The size of the opening was set to 100w x 24μm. Further, the size of the reflecting mirror surface was set to 160w x 100mm.
これによって、反射光はスリットによりてさえぎられる
ことなく、すべて、露光部ζこ到達することができた0
また、本実施例において、スリット8から照射材料11
までの距離を1500mに設定したときの、照射面積は
100iwX 107mであった。As a result, all of the reflected light was able to reach the exposed portion ζ without being blocked by the slit.
When the distance was set to 1500 m, the irradiation area was 100 iw x 107 m.
さらに、反射鏡チャンバ6と露光部チャンバ9は、それ
ぞれ別個の真空ポンプ10人、10Bで排気する。真空
ポンプの排気速度は4004/!I である。Further, the reflector chamber 6 and the exposure chamber 9 are evacuated by separate vacuum pumps 10B and 10B, respectively. The pumping speed of the vacuum pump is 4004/! It is I.
これにより、露光部チャンバ9の真空度が1.4×10
−’Torrの場合、差動排気の効果で、反射鏡チャン
バ6内の真空度はlXl0 Torrに保持できた0
本実施例によれば、従来方法と比較して1反射鏡チャン
バ6の真空度が2けた以上向上している〇このことは、
反射鏡の寿命が実質上100倍以上に延びることを意味
する。As a result, the degree of vacuum in the exposure chamber 9 is 1.4×10
-'Torr, the vacuum level inside the reflector chamber 6 could be maintained at lXl0 Torr due to the effect of differential pumping.
According to this embodiment, the degree of vacuum in one reflecting mirror chamber 6 is improved by more than two orders of magnitude compared to the conventional method.
This means that the life of the reflector is substantially extended by more than 100 times.
本発明はリングラフィだけではなく、他の照射装置にも
適用可能であるo soa 光源を用いた光CVD に
適用した例を第3図に示す。The present invention is applicable not only to phosphorography but also to other irradiation devices, and an example in which the present invention is applied to optical CVD using an o soa light source is shown in FIG.
この場合は、照射材料13を入れた露光部チャンバ9に
CVDの原料ガスを導入し、反射光3Lで原料ガスを分
解する。In this case, the source gas for CVD is introduced into the exposure chamber 9 containing the irradiation material 13, and the source gas is decomposed by the reflected light 3L.
露光部チャンバ9内の圧力は、通常10 Torr根度
に遅するため、反射鏡チャンバ6と露光部チャンバ9の
間に、断面が楕円の一部をなす筒状凹面鏡12A、12
Bとスリット8A、8Bとを組み合わせた、複数個(本
実施例では2段)の差動排気を採用した。Since the pressure inside the exposure chamber 9 is normally reduced to 10 Torr, cylindrical concave mirrors 12A, 12 whose cross section is a part of an ellipse are provided between the reflector chamber 6 and the exposure chamber 9.
A plurality of (two stages in this example) differential pumping is employed, which is a combination of B and slits 8A and 8B.
すなわち、第3因において、筒状凹面鏡12人。That is, in the third cause, there are 12 cylindrical concave mirrors.
12Bの反射凹面は楕円の一部であり、当該楕円の2つ
の焦点位置が、その前後のスリット8,8人または8人
、8Bにそれぞれ一致させられているO第1.2図に関
して前述したように、(走査)反射鏡1で偏向・反射さ
れた光3Lは、実効的にはスリット8から放射された発
散光とみなせるので、筒状凹面反射鏡12人で下流のス
リット8人上に結像させることが可能である。The reflective concave surface 12B is part of an ellipse, and the two focal points of the ellipse are made to coincide with the front and rear slits 8, 8 or 8B, respectively. As shown, the light 3L deflected and reflected by the (scanning) reflector 1 can be effectively regarded as diverging light emitted from the slit 8, so 12 cylindrical concave reflectors are used to transmit 8 lights above the downstream slit. It is possible to form an image.
また、筒状凹面反射鏡12Bに関しても同様であり、上
流のスリット8人からの発散光は、下流のスリン)8B
上に集束される0
第3図の実施例、では、筒状凹面反射鏡12人。The same applies to the cylindrical concave reflecting mirror 12B, and the diverging light from the 8 slits on the upstream side is reflected from the 8B slits on the downstream side.
In the embodiment of FIG. 3, 12 cylindrical concave reflectors are focused on.
12Bとして、曲率半径1mの円筒形凹面鏡を使用し、
スリット8,8人、8Bと前記凹面鏡中心までの距離を
139uとした0この凹面鏡としては、前述のように、
断面が楕円形の筒状凹面反射鏡を使用するのが望ましい
が、実用上は、断面2次曲線のもので代替してもよい0
この実施例においては、第一の実施例と同様に、入射光
ビーム断面の大きさを100mX10μmとし、入射角
θを87°から85°の間で走査し、スリット8の開口
部の大きさを100wX25μmに設定した0この場合
の照射面積は、100wX107關である。As 12B, a cylindrical concave mirror with a radius of curvature of 1 m is used,
As mentioned above, this concave mirror has 8 slits, 8 people, and a distance of 139u between 8B and the center of the concave mirror.
It is desirable to use a cylindrical concave reflector with an elliptical cross section, but in practice, a concave mirror with a quadratic cross section may be used instead. In this embodiment, as in the first embodiment, The size of the incident light beam cross section is 100 m x 10 μm, the incident angle θ is scanned between 87° and 85°, and the opening size of slit 8 is set to 100 w x 25 μm. In this case, the irradiation area is 100 w x 107 be.
また、3段の差動排気を、各々400t/s の排気
速度の真空ポンプで排気することにより、露光部チャン
バ9の圧力が10 Torr のときに、(走査)反射
鏡部チャンバ6の圧力はI X 10−8Torrにな
る。Furthermore, by evacuating three stages of differential pumping with vacuum pumps each having an evacuation speed of 400 t/s, when the pressure in the exposure section chamber 9 is 10 Torr, the pressure in the (scanning) reflector section chamber 6 is I x 10-8 Torr.
本実施例においては、光CVDの反応槽と光源とが透過
窓なしで結合可能であるため、反応生成物が透過窓上に
堆積することがなく、長時間の安定した照射が可能であ
り、装置の稼動率を格段に改善することができる。In this example, since the photoCVD reaction tank and the light source can be combined without a transmission window, the reaction products do not accumulate on the transmission window, and stable irradiation for a long time is possible. The operating rate of the device can be significantly improved.
第4図に、本発明を、通常の水銀ランプ等を光源とする
光 CVDに適用した実施例を示す。FIG. 4 shows an embodiment in which the present invention is applied to optical CVD using an ordinary mercury lamp or the like as a light source.
光源14からの光は、入射窓15を通して反射鏡チャン
バ6内に導ひかれ、(走査)反射鏡11こよって反射光
路3の方向に反射される。この反射光は、反射鏡チャン
バ6と露光部チャンバ9との間に設けられた、スリット
8を通して、露光部チャンバ9内の原料ガスを照射分解
し、基板13上に反応生成物質をたい積させる。The light from the light source 14 is guided into the reflector chamber 6 through the entrance window 15 and is reflected by the (scanning) reflector 11 in the direction of the reflection beam path 3 . This reflected light passes through a slit 8 provided between the reflector chamber 6 and the exposure chamber 9, irradiates and decomposes the source gas in the exposure chamber 9, and deposits a reaction product on the substrate 13.
第4図の実施例では、露光部チャンバ9内の原料ガスの
圧力が数Torr以上になるので、原料ガスの反射鏡チ
ャンバ6への流入をふせぐために、反射鏡チャンバ6内
に不活性ガスを充填した。In the embodiment shown in FIG. 4, since the pressure of the raw material gas in the exposure chamber 9 exceeds several Torr, an inert gas is added in the reflector chamber 6 to prevent the raw material gas from flowing into the reflector chamber 6. filled with.
この実施例においては、入射角θを(45±2)すなわ
ち43°から47°の間で走査し、スリット8の開口部
を100wX100μmに設定した。また、スリット8
から基板13までの距離を700Uにとり、照射面積を
100wX 100mに設定した。In this example, the incident angle θ was scanned at (45±2), that is, between 43° and 47°, and the opening of the slit 8 was set to 100w×100μm. Also, slit 8
The distance from the substrate 13 to the substrate 13 was set to 700U, and the irradiation area was set to 100w x 100m.
本実施例においては、入射窓15および反射鏡1が高濃
度の原料ガスにさらされないため、前記入射窓および反
射鏡上への反応生成物の堆積が非常に少なくなり、長時
間の照射が可能である。これによって、第3図の場合と
同様に、装置の稼動率を改善することができる。In this example, since the entrance window 15 and the reflecting mirror 1 are not exposed to high-concentration source gas, the deposition of reaction products on the entrance window and the reflecting mirror is extremely small, making it possible to irradiate for a long time. It is. As a result, as in the case of FIG. 3, the operating rate of the apparatus can be improved.
本発明によれば、軟X@を含む平行な光源を用いた光照
射において、真空隔壁を用いることなく、反射鏡チャン
バと照射または露光部チャンバ間に、2桁以上の圧力差
を容易に達成させることが出来、軟X線より長い波長を
有するすべての光に対して、光量を損することなく、ま
た被照射体の材料を制限することなく、大面積を照射出
来るという効果がある。According to the present invention, in light irradiation using a parallel light source including soft X@, a pressure difference of two orders of magnitude or more can be easily achieved between the reflector chamber and the irradiation or exposure chamber without using a vacuum partition This has the effect of irradiating a large area with all light having a wavelength longer than soft X-rays without losing the amount of light or limiting the material of the object to be irradiated.
また、下流に設置した細隙(スリット)は、光源側の迷
光の除去にも有効であり、照射に有害な散乱光を減少さ
せる効果がある。Furthermore, the slit installed downstream is effective in removing stray light on the light source side, and has the effect of reducing scattered light harmful to irradiation.
第1図は本発明による反射鏡走査機構の原理を示す概略
図である0第2図は本発明の一実施例の概略側面図であ
る。第3図は本発明の他の実施例の概略側面図である。
第4図は本発明のさらに他の実施例の概略側面図である
。
1・・・(走査)反射鏡、2・・・入射光、3・・・反
射光路、4・・・反射鏡回転中心、5・・・直線X”X
Q。
6・・・反射鏡チャンバ、7・・・真空ダクト、訃・・
スリット、9・・・露光部チャンバ、1o・・・真空ポ
ンプ、11・・・照射材料、 1274.、12 B・
・・筒状凹面反射鏡、13・・・基板、14・・・光源
、15・・・入射窓、19・・・反応チャンバ
代理人 弁理士 平 木 道 人第1図
1JBFIG. 1 is a schematic diagram showing the principle of a mirror scanning mechanism according to the present invention. FIG. 2 is a schematic side view of an embodiment of the present invention. FIG. 3 is a schematic side view of another embodiment of the invention. FIG. 4 is a schematic side view of yet another embodiment of the invention. 1... (scanning) reflecting mirror, 2... incident light, 3... reflected optical path, 4... reflecting mirror rotation center, 5... straight line X"X
Q. 6...Reflector chamber, 7...Vacuum duct, butt...
Slit, 9... Exposure section chamber, 1o... Vacuum pump, 11... Irradiation material, 1274. , 12 B.
... Cylindrical concave reflecting mirror, 13... Substrate, 14... Light source, 15... Entrance window, 19... Reaction chamber agent Michihito Hiraki, patent attorney Figure 1 1JB
Claims (3)
に垂直な一直線の回りに予定角度だけ回転される反射鏡
と、固定方向から入射し、前記反射鏡で反射した反射光
が通過する固定スリットを有し、その内部に被照射体が
収納される露光部チャンバとを具備した光照射装置にお
いて、前記反射鏡の回転中心位置、回転角度および前記
固定スリットの位置が、前記反射鏡の回転にかかわらず
、前記反射光が常に実質上前記固定スリットを通過する
ように設定されたことを特徴とする光照射装置。(1) A reflecting mirror that is rotated by a predetermined angle around a straight line perpendicular to a plane that includes the incident optical path and reflected optical path to the mirror surface, and a fixed fixture through which reflected light that is incident from a fixed direction and reflected by the reflecting mirror passes. In a light irradiation device including a slit and an exposure chamber in which an object to be irradiated is housed, the rotation center position and rotation angle of the reflecting mirror and the position of the fixed slit are determined by the rotation of the reflecting mirror. Regardless of the above, the light irradiation device is characterized in that the reflected light is set to substantially always pass through the fixed slit.
入射光の方向をx軸、前記反射鏡の回転中心から前記x
軸へ下ろした垂線方向をy軸とし、さらに前記反射鏡が
その中心位置において前記y軸となす角度をθ_0、回
転中心の座標を(0、y_0)としたとき、前記固定ス
リットが座標位置(y_0sin2θ_0、2y_0s
in^2θ_0)に設定されたことを特徴とする前記特
許請求の範囲第1項記載の光照射装置。(2) In the plane of rotation of the reflecting mirror, the direction of the light incident on the reflecting mirror is the x-axis, and the direction from the center of rotation of the reflecting mirror to the x
When the perpendicular direction to the axis is the y-axis, the angle that the reflecting mirror makes with the y-axis at its center position is θ_0, and the coordinates of the center of rotation are (0, y_0), the fixed slit is at the coordinate position ( y_0sin2θ_0, 2y_0s
The light irradiation device according to claim 1, wherein the light irradiation device is set to in^2θ_0).
バとが、前記固定スリットによって差動排気されること
を特徴とする前記特許請求の範囲第1項または第2項記
載の光照射装置。(3) The light irradiation device according to claim 1 or 2, characterized in that the light source for incident light, the reflecting mirror storage section, and the exposure section chamber are differentially pumped out by the fixed slit. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60084168A JPS61242022A (en) | 1985-04-19 | 1985-04-19 | light irradiation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60084168A JPS61242022A (en) | 1985-04-19 | 1985-04-19 | light irradiation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61242022A true JPS61242022A (en) | 1986-10-28 |
Family
ID=13822963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60084168A Pending JPS61242022A (en) | 1985-04-19 | 1985-04-19 | light irradiation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61242022A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239811A (en) * | 1987-03-27 | 1988-10-05 | Nippon Telegr & Teleph Corp <Ntt> | Optical reactor |
EP0877296A2 (en) * | 1997-05-06 | 1998-11-11 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation |
-
1985
- 1985-04-19 JP JP60084168A patent/JPS61242022A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239811A (en) * | 1987-03-27 | 1988-10-05 | Nippon Telegr & Teleph Corp <Ntt> | Optical reactor |
EP0877296A2 (en) * | 1997-05-06 | 1998-11-11 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation |
EP0877296A3 (en) * | 1997-05-06 | 2000-12-13 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation |
US6289077B1 (en) | 1997-05-06 | 2001-09-11 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation light |
US6295334B1 (en) | 1997-05-06 | 2001-09-25 | Sumitomo Heavy Industries, Ltd. | Transmission system for synchrotron radiation light |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4716852A (en) | Apparatus for thin film formation using photo-induced chemical reaction | |
US7455884B2 (en) | Atomic layer deposition with point of use generated reactive gas species | |
US8076055B2 (en) | Passivation of multi-layer mirror for extreme ultraviolet lithography | |
US4028547A (en) | X-ray photolithography | |
JP2002529927A5 (en) | ||
US8039820B2 (en) | Connection device | |
JP3078872B2 (en) | X-ray lithographic beamline method and apparatus | |
JPS63283022A (en) | Method and apparatus for changing projection scale of x-ray lithography | |
JPS61242022A (en) | light irradiation device | |
JP3077422B2 (en) | X-ray exposure equipment | |
WO1983003674A1 (en) | Providing x-rays | |
JP2005332972A (en) | Optical element, optical apparatus, and manufacturing method of semiconductor device | |
US20070165782A1 (en) | Soft x-ray processing device and soft x-ray processing method | |
JP2934601B2 (en) | Vacuum device, evacuation method using the vacuum device, and device using the vacuum device | |
JPH0533096B2 (en) | ||
JPH0527080B2 (en) | ||
JP3650154B2 (en) | Laser plasma light source | |
JP3069832B2 (en) | Teflon processing equipment | |
JPH01211920A (en) | Photochemical reaction apparatus | |
JPS63236321A (en) | X-ray exposure device | |
JP2709058B2 (en) | Optical dry etching apparatus and method | |
JPS63256900A (en) | Emitted-light irradiator | |
JPS62150718A (en) | Surface treatment equipment using radiant-light | |
JPH01223734A (en) | Photochemical reactor | |
JPH0440400A (en) | X-ray exposure device |